1
|
Song M, Zhang Y, Jia Q, Huang S, An R, Chen N, Zhu Y, Mu J, Hu S. Systematic analysis of MADS-box gene family in the U's triangle species and targeted mutagenesis of BnaAG homologs to explore its role in floral organ identity in Brassica napus. FRONTIERS IN PLANT SCIENCE 2023; 13:1115513. [PMID: 36714735 PMCID: PMC9878456 DOI: 10.3389/fpls.2022.1115513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
MADS-box transcription factors play an important role in regulating floral organ development and participate in environmental responses. To date, the MADS-box gene family has been widely identified in Brassica rapa (B. rapa), Brassica oleracea (B. oleracea), and Brassica napus (B. napus); however, there are no analogous reports in Brassica nigra (B. nigra), Brassica juncea (B. juncea), and Brassica carinata (B. carinata). In this study, a whole-genome survey of the MADS-box gene family was performed for the first time in the triangle of U species, and a total of 1430 MADS-box genes were identified. Based on the phylogenetic relationship and classification of MADS-box genes in Arabidopsis thaliana (A. thaliana), 1430 MADS-box genes were categorized as M-type subfamily (627 genes), further divided into Mα, Mβ, Mγ, and Mδ subclades, and MIKC-type subfamily (803 genes), further classified into 35 subclades. Gene structure and conserved protein motifs of MIKC-type MADS-box exhibit diversity and specificity among different subclades. Comparative analysis of gene duplication events and syngenic gene pairs among different species indicated that polyploidy is beneficial for MIKC-type gene expansion. Analysis of transcriptome data within diverse tissues and stresses in B. napus showed tissue-specific expression of MIKC-type genes and a broad response to various abiotic stresses, particularly dehydration stress. In addition, four representative floral organ mutants (wtl, feml, aglf-2, and aglf-1) in the T0 generation were generated by editing four AGAMOUS (BnaAG) homoeologs in B. napus that enriched the floral organ variant phenotype. In brief, this study provides useful information for investigating the function of MADS-box genes and contributes to revealing the regulatory mechanisms of floral organ development in the genetic improvement of new varieties.
Collapse
Affiliation(s)
- Min Song
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Qingli Jia
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Nana Chen
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Yantao Zhu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest Agriculture and Forestry University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Dolatabadian A, Fernando WGD. Genomic Variations and Mutational Events Associated with Plant-Pathogen Interactions. BIOLOGY 2022; 11:421. [PMID: 35336795 PMCID: PMC8945218 DOI: 10.3390/biology11030421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/23/2022]
Abstract
Phytopathologists are actively researching the molecular basis of plant-pathogen interactions. The mechanisms of responses to pathogens have been studied extensively in model crop plant species and natural populations. Today, with the rapid expansion of genomic technologies such as DNA sequencing, transcriptomics, proteomics, and metabolomics, as well as the development of new methods and protocols, data analysis, and bioinformatics, it is now possible to assess the role of genetic variation in plant-microbe interactions and to understand the underlying molecular mechanisms of plant defense and microbe pathogenicity with ever-greater resolution and accuracy. Genetic variation is an important force in evolution that enables organisms to survive in stressful environments. Moreover, understanding the role of genetic variation and mutational events is essential for crop breeders to produce improved cultivars. This review focuses on genetic variations and mutational events associated with plant-pathogen interactions and discusses how these genome compartments enhance plants' and pathogens' evolutionary processes.
Collapse
Affiliation(s)
- Aria Dolatabadian
- Department of Plant Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | | |
Collapse
|
3
|
Zhang Z, Guo J, Cai X, Li Y, Xi X, Lin R, Liang J, Wang X, Wu J. Improved Reference Genome Annotation of Brassica rapa by Pacific Biosciences RNA Sequencing. FRONTIERS IN PLANT SCIENCE 2022; 13:841618. [PMID: 35371168 PMCID: PMC8968949 DOI: 10.3389/fpls.2022.841618] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/17/2022] [Indexed: 05/05/2023]
Abstract
The species Brassica rapa includes several important vegetable crops. The draft reference genome of B. rapa ssp. pekinensis was completed in 2011, and it has since been updated twice. The pangenome with structural variations of 18 B. rapa accessions was published in 2021. Although extensive genomic analysis has been conducted on B. rapa, a comprehensive genome annotation including gene structure, alternative splicing (AS) events, and non-coding genes is still lacking. Therefore, we used the Pacific Biosciences (PacBio) single-molecular long-read technology to improve gene models and produced the annotated genome version 3.5. In total, we obtained 753,041 full-length non-chimeric (FLNC) reads and collapsed these into 92,810 non-redundant consensus isoforms, capturing 48% of the genes annotated in the B. rapa reference genome annotation v3.1. Based on the isoform data, we identified 830 novel protein-coding genes that were missed in previous genome annotations, defined the untranslated regions (UTRs) of 20,340 annotated genes and corrected 886 wrongly spliced genes. We also identified 28,564 AS events and 1,480 long non-coding RNAs (lncRNAs). We produced a relatively complete and high-quality reference transcriptome for B. rapa that can facilitate further functional genomic research.
Collapse
|
4
|
Cuacos M, Lambing C, Pachon-Penalba M, Osman K, Armstrong SJ, Henderson IR, Sanchez-Moran E, Franklin FCH, Heckmann S. Meiotic chromosome axis remodelling is critical for meiotic recombination in Brassica rapa. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3012-3027. [PMID: 33502451 PMCID: PMC8023211 DOI: 10.1093/jxb/erab035] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/21/2021] [Indexed: 05/23/2023]
Abstract
Meiosis generates genetic variation through homologous recombination (HR) that is harnessed during breeding. HR occurs in the context of meiotic chromosome axes and the synaptonemal complex. To study the role of axis remodelling in crossover (CO) formation in a crop species, we characterized mutants of the axis-associated protein ASY1 and the axis-remodelling protein PCH2 in Brassica rapa. asy1 plants form meiotic chromosome axes that fail to synapse. CO formation is almost abolished, and residual chiasmata are proportionally enriched in terminal chromosome regions, particularly in the nucleolar organizing region (NOR)-carrying chromosome arm. pch2 plants show impaired ASY1 loading and remodelling, consequently achieving only partial synapsis, which leads to reduced CO formation and loss of the obligatory CO. PCH2-independent chiasmata are proportionally enriched towards distal chromosome regions. Similarly, in Arabidopsis pch2, COs are increased towards telomeric regions at the expense of (peri-) centromeric COs compared with the wild type. Taken together, in B. rapa, axis formation and remodelling are critical for meiotic fidelity including synapsis and CO formation, and in asy1 and pch2 CO distributions are altered. While asy1 plants are sterile, pch2 plants are semi-sterile and thus PCH2 could be an interesting target for breeding programmes.
Collapse
Affiliation(s)
- Maria Cuacos
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, D-06466 Seeland, Germany
| | - Christophe Lambing
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | - Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Susan J Armstrong
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Cambridge CB2 3EA, UK
| | | | | | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, D-06466 Seeland, Germany
| |
Collapse
|
5
|
Chen W, Wang P, Wang D, Shi M, Xia Y, He Q, Dang J, Guo Q, Jing D, Liang G. EjFRI, FRIGIDA ( FRI) Ortholog from Eriobotrya japonica, Delays Flowering in Arabidopsis. Int J Mol Sci 2020; 21:ijms21031087. [PMID: 32041257 PMCID: PMC7038142 DOI: 10.3390/ijms21031087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
In the model species Arabidopsis thaliana, FRIGIDA (FRI) is a key regulator of flowering time and can inhibit flowering without vernalization. However, little information is available on the function in the Rosaceae family. Loquat (Eriobotrya japonica) belongs to the family Rosaceae and is a distinctive species, in which flowering can be induced without vernalization, followed by blooming in late-autumn or winter. To investigate the functional roles of FRI orthologs in this non-vernalization species, we isolated an FRI ortholog, dubbed as EjFRI, from loquat. Analyses of the phylogenetic tree and protein sequence alignment showed that EjFRI is assigned to eurosids I FRI lineage. Expression analysis revealed that the highest expression level of EjFRI was after flower initiation. Meanwhile, EjFRI was widely expressed in different tissues. Subcellular localization of EjFRI was only detected to be in the nucleus. Ectopic expression of EjFRI in wild-type Arabidopsis delayed flowering time. The expression levels of EjFRI in transgenic wild-type Arabidopsis were significantly higher than those of nontransgenic wild-type lines. However, the expression levels of AtFRI showed no significant difference between transgenic and nontransgenic wild-type lines. Furthermore, the upregulated AtFLC expression in the transgenic lines indicated that EjFRI functioned similarly to the AtFRI of the model plant Arabidopsis. Our study provides a foundation to further explore the characterization of EjFRI, and also contributes to illuminating the molecular mechanism about flowering in loquat.
Collapse
Affiliation(s)
- Weiwei Chen
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Peng Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Dan Wang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Min Shi
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Yan Xia
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Qiao He
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
| | - Danlong Jing
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
- Correspondence: (D.J.); (G.L.); Tel.: +86-023-6825-0383 (D.J. & G.L.)
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Beibei, Chongqing 400715, China; (W.C.)
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Beibei, Chongqing 400715, China
- Correspondence: (D.J.); (G.L.); Tel.: +86-023-6825-0383 (D.J. & G.L.)
| |
Collapse
|
6
|
Boutte J, Maillet L, Chaussepied T, Letort S, Aury JM, Belser C, Boideau F, Brunet A, Coriton O, Deniot G, Falentin C, Huteau V, Lodé-Taburel M, Morice J, Trotoux G, Chèvre AM, Rousseau-Gueutin M, Ferreira de Carvalho J. Genome Size Variation and Comparative Genomics Reveal Intraspecific Diversity in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2020; 11:577536. [PMID: 33281844 PMCID: PMC7689015 DOI: 10.3389/fpls.2020.577536] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/24/2020] [Indexed: 05/07/2023]
Abstract
Traditionally, reference genomes in crop species rely on the assembly of one accession, thus occulting most of intraspecific diversity. However, rearrangements, gene duplications, and transposable element content may have a large impact on the genomic structure, which could generate new phenotypic traits. Comparing two Brassica rapa genomes recently sequenced and assembled using long-read technology and optical mapping, we investigated structural variants and repetitive content between the two accessions and genome size variation among a core collection. We explored the structural consequences of the presence of large repeated sequences in B. rapa 'Z1' genome vs. the B. rapa 'Chiifu' genome, using comparative genomics and cytogenetic approaches. First, we showed that large genomic variants on chromosomes A05, A06, A09, and A10 are due to large insertions and inversions when comparing B. rapa 'Z1' and B. rapa 'Chiifu' at the origin of important length differences in some chromosomes. For instance, lengths of 'Z1' and 'Chiifu' A06 chromosomes were estimated in silico to be 55 and 29 Mb, respectively. To validate these observations, we compared using fluorescent in situ hybridization (FISH) the two A06 chromosomes present in an F1 hybrid produced by crossing these two varieties. We confirmed a length difference of 17.6% between the A06 chromosomes of 'Z1' compared to 'Chiifu.' Alternatively, using a copy number variation approach, we were able to quantify the presence of a higher number of rDNA and gypsy elements in 'Z1' genome compared to 'Chiifu' on different chromosomes including A06. Using flow cytometry, the total genome size of 12 Brassica accessions corresponding to a B. rapa available core collection was estimated and revealed a genome size variation of up to 16% between these accessions as well as some shared inversions. This study revealed the contribution of long-read sequencing of new accessions belonging to different cultigroups of B. rapa and highlighted the potential impact of differential insertion of repeat elements and inversions of large genomic regions in genome size intraspecific variability.
Collapse
Affiliation(s)
- Julien Boutte
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
- *Correspondence: Julien Boutte,
| | - Loeiz Maillet
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | | | | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut de biologie François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Caroline Belser
- Génomique Métabolique, Genoscope, Institut de biologie François-Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Franz Boideau
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | - Anael Brunet
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | | | | - Cyril Falentin
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | | | | - Jérôme Morice
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | - Gwenn Trotoux
- IGEPP, INRAE, Institut Agro, Univ Rennes, Le Rheu, France
| | | | | | | |
Collapse
|
7
|
Transcriptome Analysis of Diurnal Gene Expression in Chinese Cabbage. Genes (Basel) 2019; 10:genes10020130. [PMID: 30754711 PMCID: PMC6409912 DOI: 10.3390/genes10020130] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/17/2022] Open
Abstract
Plants have developed timing mechanisms that enable them to maintain synchrony with daily environmental events. These timing mechanisms, i.e., circadian clocks, include transcriptional/translational feedback loops that drive 24 h transcriptional rhythms, which underlie oscillations in protein abundance, thus mediating circadian rhythms of behavior, physiology, and metabolism. Circadian clock genes have been investigated in the diploid model plant Arabidopsis thaliana. Crop plants with polyploid genomes—such as Brassica species—have multiple copies of some clock-related genes. Over the last decade, numerous studies have been aimed at identifying and understanding the function of paralogous genes with conserved sequences, or those that diverged during evolution. Brassica rapa’s triplicate genomes retain sequence-level collinearity with Arabidopsis. In this study, we used RNA sequencing (RNAseq) to profile the diurnal transcriptome of Brassica rapa seedlings. We identified candidate paralogs of circadian clock-related genes and assessed their expression levels. These genes and their related traits that modulate the diurnal rhythm of gene expression contribute to the adaptation of crop cultivars. Our findings will contribute to the mechanistic study of circadian clock regulation inherent in polyploidy genome crops, which differ from those of model plants, and thus will be useful for future breeding studies using clock genes.
Collapse
|
8
|
|
9
|
Perumal S, Waminal NE, Lee J, Lee J, Choi BS, Kim HH, Grandbastien MA, Yang TJ. Elucidating the major hidden genomic components of the A, C, and AC genomes and their influence on Brassica evolution. Sci Rep 2017; 7:17986. [PMID: 29269833 PMCID: PMC5740159 DOI: 10.1038/s41598-017-18048-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 12/04/2017] [Indexed: 11/09/2022] Open
Abstract
Decoding complete genome sequences is prerequisite for comprehensive genomics studies. However, the currently available reference genome sequences of Brassica rapa (A genome), B. oleracea (C) and B. napus (AC) cover 391, 540, and 850 Mbp and represent 80.6, 85.7, and 75.2% of the estimated genome size, respectively, while remained are hidden or unassembled due to highly repetitive nature of these genome components. Here, we performed the first comprehensive genome-wide analysis using low-coverage whole-genome sequences to explore the hidden genome components based on characterization of major repeat families in the B. rapa and B. oleracea genomes. Our analysis revealed 10 major repeats (MRs) including a new family comprising about 18.8, 10.8, and 11.5% of the A, C and AC genomes, respectively. Nevertheless, these 10 MRs represented less than 0.7% of each assembled reference genome. Genomic survey and molecular cytogenetic analyses validates our insilico analysis and also pointed to diversity, differential distribution, and evolutionary dynamics in the three Brassica species. Overall, our work elucidates hidden portions of three Brassica genomes, thus providing a resource for understanding the complete genome structures. Furthermore, we observed that asymmetrical accumulation of the major repeats might be a cause of diversification between the A and C genomes.
Collapse
Affiliation(s)
- Sampath Perumal
- Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK S7N 0X2, Canada.,Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nomar Espinosa Waminal
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.,Department of Life Science, Plant Biotechnology Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | - Jonghoon Lee
- Joeun Seed, Goesan-Gun, Chungcheongbuk-Do, 28051, Republic of Korea
| | - Junki Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Beom-Soon Choi
- Phyzen Genomics Institute, Seongnam, 13558, Republic of Korea
| | - Hyun Hee Kim
- Department of Life Science, Plant Biotechnology Institute, Sahmyook University, Seoul, 01795, Republic of Korea
| | | | - Tae-Jin Yang
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea. .,Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 232-916, Republic of Korea.
| |
Collapse
|
10
|
Seo MS, Jin M, Sohn SH, Kim JS. Expression profiles of BrMYB transcription factors related to glucosinolate biosynthesis and stress response in eight subspecies of Brassica rapa. FEBS Open Bio 2017; 7:1646-1659. [PMID: 29123974 PMCID: PMC5666390 DOI: 10.1002/2211-5463.12231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/18/2017] [Accepted: 04/17/2017] [Indexed: 01/07/2023] Open
Abstract
Brassica rapa is a polyploid species with phenotypically diverse cultivated subspecies. Glucosinolates (GSLs) are secondary metabolites that contribute to anticarcinogenic activity and plant defense in Brassicaceae. Previously, complete coding sequences of 13 BrMYB transcription factors (TFs) related to GSL biosynthesis were identified in the B. rapa genome. In the present study, we investigated GSL content and expression levels of these BrMYBTFs in 38 accessions belonging to eight subspecies of B. rapa. Twelve identified GSLs were detected and were classified into three chemical groups based on patterns of GSL content and expression profiles of the BrMYBTFs. GSL content and BrMYBTF expression levels differed among genotypes, including B. rapa subspecies pekinensis, chinensis and rapa. BrMYB28.3, BrMYB51.1 and BrMYB122.2 positively regulated GSL content in 38 accessions. Furthermore, expression levels of BrMYB28s and BrMYB34.3 increased under most abiotic and biotic stress treatments. The three BrMYB51 paralogs also showed drastically increased expression levels after infection with Pectobacterium carotovorum. The results of the present study improve our understanding of the functional diversity of these 13 BrMYBTFs during the evolution of polyploid B. rapa.
Collapse
Affiliation(s)
- Mi-Suk Seo
- Genomics Division Department of Agricultural Bio-Resources Rural Development Administration National Institute of Agricultural Sciences Wansan-gu Jeonju Korea
| | - Mina Jin
- Genomics Division Department of Agricultural Bio-Resources Rural Development Administration National Institute of Agricultural Sciences Wansan-gu Jeonju Korea
| | - Seong-Han Sohn
- Genomics Division Department of Agricultural Bio-Resources Rural Development Administration National Institute of Agricultural Sciences Wansan-gu Jeonju Korea
| | - Jung Sun Kim
- Genomics Division Department of Agricultural Bio-Resources Rural Development Administration National Institute of Agricultural Sciences Wansan-gu Jeonju Korea
| |
Collapse
|
11
|
Huang L, Yang Y, Zhang F, Cao J. A genome-wide SNP-based genetic map and QTL mapping for agronomic traits in Chinese cabbage. Sci Rep 2017; 7:46305. [PMID: 28418033 PMCID: PMC5394690 DOI: 10.1038/srep46305] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/14/2017] [Indexed: 01/21/2023] Open
Abstract
The aim of this work was to construct a high-resolution genetic map for the dissection of complex morphological and agronomic traits in Chinese cabbage (Brassica rapa L. syn. B. campestris). Chinese cabbage, an economically important vegetable, is a good model plant for studies on the evolution of morphologic variation. Herein, two high-generation inbred Chinese cabbage lines, 'Huangxiaoza' and 'Bqq094-11', were crossed. Then restriction-site-associated DNA sequencing (RAD-seq) was performed on the parents and 120 F2 individuals. A genetic map containing 711 bins representing 3985 single nucleotide polymorphism (SNP) markers was constructed. By using WinQTL with composite interval mapping (CIM) and mixed-model based composite interval mapping (MCIM) analysis via QTLNetwork, quantitative trait loci (QTL) linked to 16 genetic traits related to plant size, color and leaf characteristics were mapped to 10 linkage groups. The high density genetic map and QTL identified for morphological and agronomic traits lay the groundwork for functional gene mapping, map-based cloning and marker-assisted selection (MAS) in Chinese cabbage.
Collapse
Affiliation(s)
- Li Huang
- Laboratory of Cell &Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Yafei Yang
- Laboratory of Cell &Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Fang Zhang
- Laboratory of Cell &Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| | - Jiashu Cao
- Laboratory of Cell &Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China.,Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou 310058, China.,Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Hangzhou 310058, China
| |
Collapse
|
12
|
Jeong YM, Kim N, Ahn BO, Oh M, Chung WH, Chung H, Jeong S, Lim KB, Hwang YJ, Kim GB, Baek S, Choi SB, Hyung DJ, Lee SW, Sohn SH, Kwon SJ, Jin M, Seol YJ, Chae WB, Choi KJ, Park BS, Yu HJ, Mun JH. Elucidating the triplicated ancestral genome structure of radish based on chromosome-level comparison with the Brassica genomes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1357-1372. [PMID: 27038817 DOI: 10.1007/s00122-016-2708-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 03/17/2016] [Indexed: 05/03/2023]
Abstract
This study presents a chromosome-scale draft genome sequence of radish that is assembled into nine chromosomal pseudomolecules. A comprehensive comparative genome analysis with the Brassica genomes provides genomic evidences on the evolution of the mesohexaploid radish genome. Radish (Raphanus sativus L.) is an agronomically important root vegetable crop and its origin and phylogenetic position in the tribe Brassiceae is controversial. Here we present a comprehensive analysis of the radish genome based on the chromosome sequences of R. sativus cv. WK10039. The radish genome was sequenced and assembled into 426.2 Mb spanning >98 % of the gene space, of which 344.0 Mb were integrated into nine chromosome pseudomolecules. Approximately 36 % of the genome was repetitive sequences and 46,514 protein-coding genes were predicted and annotated. Comparative mapping of the tPCK-like ancestral genome revealed that the radish genome has intermediate characteristics between the Brassica A/C and B genomes in the triplicated segments, suggesting an internal origin from the genus Brassica. The evolutionary characteristics shared between radish and other Brassica species provided genomic evidences that the current form of nine chromosomes in radish was rearranged from the chromosomes of hexaploid progenitor. Overall, this study provides a chromosome-scale draft genome sequence of radish as well as novel insight into evolution of the mesohexaploid genomes in the tribe Brassiceae.
Collapse
Affiliation(s)
- Young-Min Jeong
- Department of Life Science, The Catholic University of Korea, Bucheon, 420-743, Korea
| | - Namshin Kim
- Epigenomics Research Center of Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Byung Ohg Ahn
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Mijin Oh
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Won-Hyong Chung
- Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hee Chung
- Department of Life Science, The Catholic University of Korea, Bucheon, 420-743, Korea
| | - Seongmun Jeong
- Epigenomics Research Center of Genome Institute, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Ki-Byung Lim
- Department of Horticultural Science, Kyungpook National University, Daegu, 702-701, Korea
| | - Yoon-Jung Hwang
- Department of Life Science, Sahmyook University, Seoul, 139-800, Korea
| | - Goon-Bo Kim
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Korea
| | - Seunghoon Baek
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Korea
| | - Sang-Bong Choi
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Korea
| | | | | | - Seong-Han Sohn
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Soo-Jin Kwon
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Mina Jin
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Young-Joo Seol
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Won Byoung Chae
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 565-852, Korea
| | - Keun Jin Choi
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju, 565-852, Korea
| | - Beom-Seok Park
- Department of Genomics, National Academy of Agricultural Science, Rural Development Administration, Wanju, 565-851, Korea
| | - Hee-Ju Yu
- Department of Life Science, The Catholic University of Korea, Bucheon, 420-743, Korea.
| | - Jeong-Hwan Mun
- Department of Bioscience and Bioinformatics, Myongji University, Yongin, 449-728, Korea.
| |
Collapse
|
13
|
Mason AS, Rousseau-Gueutin M, Morice J, Bayer PE, Besharat N, Cousin A, Pradhan A, Parkin IAP, Chèvre AM, Batley J, Nelson MN. Centromere Locations in Brassica A and C Genomes Revealed Through Half-Tetrad Analysis. Genetics 2016; 202:513-23. [PMID: 26614742 PMCID: PMC4788232 DOI: 10.1534/genetics.115.183210] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 11/23/2015] [Indexed: 11/18/2022] Open
Abstract
Locating centromeres on genome sequences can be challenging. The high density of repetitive elements in these regions makes sequence assembly problematic, especially when using short-read sequencing technologies. It can also be difficult to distinguish between active and recently extinct centromeres through sequence analysis. An effective solution is to identify genetically active centromeres (functional in meiosis) by half-tetrad analysis. This genetic approach involves detecting heterozygosity along chromosomes in segregating populations derived from gametes (half-tetrads). Unreduced gametes produced by first division restitution mechanisms comprise complete sets of nonsister chromatids. Along these chromatids, heterozygosity is maximal at the centromeres, and homologous recombination events result in homozygosity toward the telomeres. We genotyped populations of half-tetrad-derived individuals (from Brassica interspecific hybrids) using a high-density array of physically anchored SNP markers (Illumina Brassica 60K Infinium array). Mapping the distribution of heterozygosity in these half-tetrad individuals allowed the genetic mapping of all 19 centromeres of the Brassica A and C genomes to the reference Brassica napus genome. Gene and transposable element density across the B. napus genome were also assessed and corresponded well to previously reported genetic map positions. Known centromere-specific sequences were located in the reference genome, but mostly matched unanchored sequences, suggesting that the core centromeric regions may not yet be assembled into the pseudochromosomes of the reference genome. The increasing availability of genetic markers physically anchored to reference genomes greatly simplifies the genetic and physical mapping of centromeres using half-tetrad analysis. We discuss possible applications of this approach, including in species where half-tetrads are currently difficult to isolate.
Collapse
Affiliation(s)
- Annaliese S Mason
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, 35392 Giessen, Germany School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia
| | | | - Jérôme Morice
- IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France
| | - Philipp E Bayer
- School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia
| | - Naghmeh Besharat
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia
| | - Anouska Cousin
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia
| | - Aneeta Pradhan
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia
| | - Isobel A P Parkin
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, Saskatoon, Saskatchewan, Canada
| | - Anne-Marie Chèvre
- IGEPP, Institut National de la Recherche Agronomique, BP35327, 35653 Le Rheu, France
| | - Jacqueline Batley
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia School of Agriculture and Food Sciences and Centre for Integrative Legume Research, The University of Queensland, Brisbane 4072, Australia
| | - Matthew N Nelson
- School of Plant Biology and The University of Western Australia (UWA) Institute of Agriculture, The UWA, Crawley 6009, Perth, Australia Natural Capital and Plant Health, Royal Botanic Gardens Kew, Ardingly, West Sussex, RH17 6TN, United Kingdom
| |
Collapse
|
14
|
Bakhtari B, Razi H. Differential expression of BnSRK2D gene in two Brassica napus cultivars under water deficit stress. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2014; 3:241-251. [PMID: 27843988 PMCID: PMC5019310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant unique serine/threonine kinases which play a key role in cellular signaling in response to abiotic stresses. The three SnRK2 members including SRK2D, SRK2I and SRK2E are known to phosphorylate major abscisic acid (ABA) responsive transcription factors, ABF2 and ABF4, involved in an ABA-dependent stress signaling pathway in Arabidopsis. This study aimed to clone and sequence an ortholog of the Arabidopsis SRK2D gene from Brassica napus, designated as BnSRK2D. An 833bp cDNA fragment of BnSRK2D, which shared high amino acid sequence identity with its Arabidopsis counterpart, was obtained suggesting a possible conserved function for these genes. The expression pattern of BnSRK2D and its potential target gene B. napus ABF2 (BnABF2) were then analyzed in the two cultivars with contrasting reaction to water deficit stress. Semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) showed that BnSRK2D and BnABF2 were water-deficit stress responsive genes with similar expression profiles. The accumulation of the BnSRK2D and BnABF2 transcripts in the two cultivars was linked with their level of drought tolerance, as the drought tolerant cultivar had significantly higher expression levels of both genes under normal and water deficit stress conditions. These findings suggest that BnSRK2D and BnABF2 genes may be involved in conferring drought tolerance in B. napus.
Collapse
Affiliation(s)
| | - Hooman Razi
- Address for correspondence: Department of Crop Production and Plant Breeding, College of Agriculture, Shiraz University, Shiraz, Iran, Tel: +98 (0711) 36138375, Fax: +98 (0711) 32286134, E-mail:
| |
Collapse
|
15
|
Yadava SK, Paritosh K, Panjabi-Massand P, Gupta V, Chandra A, Sodhi YS, Pradhan AK, Pental D. Tetralocular ovary and high silique width in yellow sarson lines of Brassica rapa (subspecies trilocularis) are due to a mutation in Bra034340 gene, a homologue of CLAVATA3 in Arabidopsis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2359-2369. [PMID: 25205130 DOI: 10.1007/s00122-014-2382-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 08/15/2014] [Indexed: 06/03/2023]
Abstract
Genetic locus for tetralocular ovary (tet-o) in Brassica rapa was identified and it was shown that the number of locules and width of silique are associated. Brassica rapa is a highly polymorphic species containing many vegetables and oleiferous types. An interesting group of oleiferous types is the yellow sarson group (subspecies trilocularis) grown mostly in eastern India. This group contains lines that have bilocular ovaries, a defining trait of Brassicaceae, but also lines that have tetralocular ovaries. Yellow sarson lines commonly have high silique width which is further enhanced in the tetralocular types. We mapped the locus influencing tetralocular ovary in B. rapa using three mapping populations (F2, F6 and F7) derived from a cross between Chiifu (subspecies pekinensis, having bilocular ovary) and Tetralocular (having tetralocular ovary). QTL mapping of silique width was undertaken using the three mapping populations and a F2 population derived from a cross between Chiifu and YSPB-24 (a bilocular line belonging to yellow sarson group). Qualitative mapping of the trait governing locule number (tet-o) in B. rapa mapped the locus to linkage group A4. QTL mapping for silique width detected a major QTL on LG A4, co-mapping with the tet-o locus in bilocular/tetralocular cross. This QTL was not detected in the bilocular/bilocular cross. Saturation mapping of the tet-o region with SNP markers identified Bra034340, a homologue of CLAVATA3 of Arabidopsis thaliana, as the candidate gene for locule number. A C → T transition at position 176 of the coding sequence of Bra034340 revealed co-segregation with the tetralocular phenotype. The study of silique related traits is of interest both for understanding evolution under artificial selection and for breeding of cultivated Brassica species.
Collapse
Affiliation(s)
- Satish Kumar Yadava
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Genome-wide comparative analysis of 20 miniature inverted-repeat transposable element families in Brassica rapa and B. oleracea. PLoS One 2014; 9:e94499. [PMID: 24747717 PMCID: PMC3991616 DOI: 10.1371/journal.pone.0094499] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 03/17/2014] [Indexed: 12/25/2022] Open
Abstract
Miniature inverted-repeat transposable elements (MITEs) are ubiquitous, non-autonomous class II transposable elements. Here, we conducted genome-wide comparative analysis of 20 MITE families in B. rapa, B. oleracea, and Arabidopsis thaliana. A total of 5894 and 6026 MITE members belonging to the 20 families were found in the whole genome pseudo-chromosome sequences of B. rapa and B. oleracea, respectively. Meanwhile, only four of the 20 families, comprising 573 members, were identified in the Arabidopsis genome, indicating that most of the families were activated in the Brassica genus after divergence from Arabidopsis. Copy numbers varied from 4 to 1459 for each MITE family, and there was up to 6-fold variation between B. rapa and B. oleracea. In particular, analysis of intact members showed that whereas eleven families were present in similar copy numbers in B. rapa and B. oleracea, nine families showed copy number variation ranging from 2- to 16-fold. Four of those families (BraSto-3, BraTo-3, 4, 5) were more abundant in B. rapa, and the other five (BraSto-1, BraSto-4, BraTo-1, 7 and BraHAT-1) were more abundant in B. oleracea. Overall, 54% and 51% of the MITEs resided in or within 2 kb of a gene in the B. rapa and B. oleracea genomes, respectively. Notably, 92 MITEs were found within the CDS of annotated genes, suggesting that MITEs might play roles in diversification of genes in the recently triplicated Brassica genome. MITE insertion polymorphism (MIP) analysis of 289 MITE members showed that 52% and 23% were polymorphic at the inter- and intra-species levels, respectively, indicating that there has been recent MITE activity in the Brassica genome. These recently activated MITE families with abundant MIP will provide useful resources for molecular breeding and identification of novel functional genes arising from MITE insertion.
Collapse
|
17
|
Sharma S, Padmaja KL, Gupta V, Paritosh K, Pradhan AK, Pental D. Two plastid DNA lineages--Rapa/Oleracea and Nigra--within the tribe Brassiceae can be best explained by reciprocal crosses at hexaploidy: evidence from divergence times of the plastid genomes and R-block genes of the A and B genomes of Brassica juncea. PLoS One 2014; 9:e93260. [PMID: 24691069 PMCID: PMC3972200 DOI: 10.1371/journal.pone.0093260] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/04/2014] [Indexed: 12/23/2022] Open
Abstract
Brassica species (tribe Brassiceae) belonging to U's triangle--B. rapa (AA), B. nigra (BB), B. oleracea (CC), B. juncea (AABB), B. napus (AACC) and B. carinata (BBCC)--originated via two polyploidization rounds: a U event producing the three allopolyploids, and a more ancient b genome-triplication event giving rise to the A-, B-, and C-genome diploid species. Molecular mapping studies, in situ hybridization, and genome sequencing of B. rapa support the genome triplication origin of tribe Brassiceae, and suggest that these three diploid species diversified from a common hexaploid ancestor. Analysis of plastid DNA has revealed two distinct lineages--Rapa/Oleracea and Nigra--that conflict with hexaploidization as a single event defining the tribe Brassiceae. We analysed an R-block region of A. thaliana present in six copies in B. juncea (AABB), three copies each on A- and B-genomes to study gene fractionation pattern and synonymous base substitution rates (Ks values). Divergence time of paralogues within the A and B genomes and homoeologues between the A and B genomes was estimated. Homoeologous R blocks of the A and B genomes exhibited high gene collinearity and a conserved gene fractionation pattern. The three progenitors of diploid Brassicas were estimated to have diverged approximately 12 mya. Divergence of B. rapa and B. nigra, calculated from plastid gene sequences, was estimated to have occurred approximately 12 mya, coinciding with the divergence of the three genomes participating in the b event. Divergence of B. juncea A and B genome homoeologues was estimated to have taken place around 7 mya. Based on divergence time estimates and the presence of distinct plastid lineages in tribe Brassiceae, it is concluded that at least two independent triplication events involving reciprocal crosses at the time of the b event have given rise to Rapa/Oleracea and Nigra lineages.
Collapse
Affiliation(s)
- Sarita Sharma
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - K. Lakshmi Padmaja
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Vibha Gupta
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Kumar Paritosh
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
| | - Akshay K. Pradhan
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| | - Deepak Pental
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, New Delhi, India
- Department of Genetics, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
18
|
Cheng F, Wu J, Wang X. Genome triplication drove the diversification of Brassica plants. HORTICULTURE RESEARCH 2014; 1:14024. [PMID: 26504539 PMCID: PMC4596316 DOI: 10.1038/hortres.2014.24] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 05/20/2023]
Abstract
The genus Brassica belongs to the plant family Brassicaceae, which includes many important crop species that are used as oilseed, condiments, or vegetables throughout the world. Brassica plants comprise many diverse species, and each species contains rich morphotypes showing extreme traits. Brassica species experienced an extra whole genome triplication (WGT) event compared with the model plant Arabidopsis thaliana. Whole genome sequencing of the Brassica species Brassica rapa, Brassica oleracea and others demonstrated that WGT plays an important role in the speciation and morphotype diversification of Brassica plants. Comparative genomic analysis based on the genome sequences of B. rapa and A. thaliana clearly identified the WGT event and further demonstrated that the translocated Proto-Calepine Karyotype (tPCK, n=7) was the diploid ancestor of the three subgenomes in B. rapa. Following WGT, subsequent extensive genome fractionation, block reshuffling and chromosome reduction accompanied by paleocentromere descent from the three tPCK subgenomes during the rediploidization process produced stable diploid species. Genomic rearrangement of the diploid species and their hybridization then contributed to Brassica speciation. The subgenome dominance effect and biased gene retention, such as the over-retention of auxin-related genes after WGT, promoted functional gene evolution and thus propelled the expansion of rich morphotypes in the Brassica species. In conclusion, the WGT event initiated subsequent genomic and gene-level evolution, which further drove Brassica speciation and created rich morphotypes in each species.
Collapse
Affiliation(s)
- Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
19
|
Wei L, Xiao M, Hayward A, Fu D. Applications and challenges of next-generation sequencing in Brassica species. PLANTA 2013; 238:1005-24. [PMID: 24062086 DOI: 10.1007/s00425-013-1961-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 05/09/2023]
Abstract
Next-generation sequencing (NGS) produces numerous (often millions) short DNA sequence reads, typically varying between 25 and 400 bp in length, at a relatively low cost and in a short time. This revolutionary technology is being increasingly applied in whole-genome, transcriptome, epigenome and small RNA sequencing, molecular marker and gene discovery, comparative and evolutionary genomics, and association studies. The Brassica genus comprises some of the most agro-economically important crops, providing abundant vegetables, condiments, fodder, oil and medicinal products. Many Brassica species have undergone the process of polyploidization, which makes their genomes exceptionally complex and can create difficulties in genomics research. NGS injects new vigor into Brassica research, yet also faces specific challenges in the analysis of complex crop genomes and traits. In this article, we review the advantages and limitations of different NGS technologies and their applications and challenges, using Brassica as an advanced model system for agronomically important, polyploid crops. Specifically, we focus on the use of NGS for genome resequencing, transcriptome sequencing, development of single-nucleotide polymorphism markers, and identification of novel microRNAs and their targets. We present trends and advances in NGS technology in relation to Brassica crop improvement, with wide application for sophisticated genomics research into agronomically important polyploid crops.
Collapse
Affiliation(s)
- Lijuan Wei
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Meili Xiao
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing, 400716, China
| | - Alice Hayward
- Centre for Integrative Legume Research, School of Agriculture and Food Sciences, The University of Queensland, St Lucia, 4072, Australia
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, 330045, China.
| |
Collapse
|
20
|
Tong C, Wang X, Yu J, Wu J, Li W, Huang J, Dong C, Hua W, Liu S. Comprehensive analysis of RNA-seq data reveals the complexity of the transcriptome in Brassica rapa. BMC Genomics 2013; 14:689. [PMID: 24098974 PMCID: PMC3853194 DOI: 10.1186/1471-2164-14-689] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 10/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background The species Brassica rapa (2n=20, AA) is an important vegetable and oilseed crop, and serves as an excellent model for genomic and evolutionary research in Brassica species. With the availability of whole genome sequence of B. rapa, it is essential to further determine the activity of all functional elements of the B. rapa genome and explore the transcriptome on a genome-wide scale. Here, RNA-seq data was employed to provide a genome-wide transcriptional landscape and characterization of the annotated and novel transcripts and alternative splicing events across tissues. Results RNA-seq reads were generated using the Illumina platform from six different tissues (root, stem, leaf, flower, silique and callus) of the B. rapa accession Chiifu-401-42, the same line used for whole genome sequencing. First, these data detected the widespread transcription of the B. rapa genome, leading to the identification of numerous novel transcripts and definition of 5'/3' UTRs of known genes. Second, 78.8% of the total annotated genes were detected as expressed and 45.8% were constitutively expressed across all tissues. We further defined several groups of genes: housekeeping genes, tissue-specific expressed genes and co-expressed genes across tissues, which will serve as a valuable repository for future crop functional genomics research. Third, alternative splicing (AS) is estimated to occur in more than 29.4% of intron-containing B. rapa genes, and 65% of them were commonly detected in more than two tissues. Interestingly, genes with high rate of AS were over-represented in GO categories relating to transcriptional regulation and signal transduction, suggesting potential importance of AS for playing regulatory role in these genes. Further, we observed that intron retention (IR) is predominant in the AS events and seems to preferentially occurred in genes with short introns. Conclusions The high-resolution RNA-seq analysis provides a global transcriptional landscape as a complement to the B. rapa genome sequence, which will advance our understanding of the dynamics and complexity of the B. rapa transcriptome. The atlas of gene expression in different tissues will be useful for accelerating research on functional genomics and genome evolution in Brassica species.
Collapse
Affiliation(s)
- Chaobo Tong
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, P,R, China, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan 430062, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Seo MS, Jin M, Lee SS, Kwon SJ, Mun JH, Park BS, Visser RGF, Bonnema G, Sohn SH. Mapping quantitative trait loci for tissue culture response in VCS3M-DH population of Brassica rapa. PLANT CELL REPORTS 2013; 32:1251-1261. [PMID: 23563522 DOI: 10.1007/s00299-013-1433-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/18/2013] [Accepted: 03/21/2013] [Indexed: 06/02/2023]
Abstract
Quantitative trait loci (QTL) controlling callus induction and plant regeneration were identified in the VCS3M-DH population of Brassica rapa. Quantitative trait loci (QTL) controlling callus induction and plant regeneration were identified in the VCS3M-DH population of Brassica rapa. The VCS3M-DH population showed wide and continuous variation in callus induction and shoot regeneration. Significant coefficient correlations were detected between these two parameters. Broad-sense heritability (h (2)) for the two traits was around 0.7, indicating genetic regulation of regeneration ability in this population. In the composite interval mapping analysis, two QTLs for callus induction ability, qCi2 and qCi7, were mapped on chromosome A02 and A07, explaining 28.6 % of phenotypic variation. For plant regeneration, four QTLs, qPr6-1 qPr6-2, qPr7, and qPr9 were identified on chromosome A06, A07, and A09, which in total explained 50.1 % of phenotypic variation. Furthermore, 15 putative candidate genes were found on the interval of the six QTLs, which were related to various plant hormones, MADS-box genes, and serine/threonine related genes. These results provide important information to identify genes related to tissue culture ability in B. rapa.
Collapse
Affiliation(s)
- Mi-Suk Seo
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro, Gwonseon-gu, Suwon, 441-707, Korea.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
The genesis of an exceptionally lethal venom in the timber rattlesnake (Crotalus horridus) revealed through comparative venom-gland transcriptomics. BMC Genomics 2013; 14:394. [PMID: 23758969 PMCID: PMC3701607 DOI: 10.1186/1471-2164-14-394] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 05/30/2013] [Indexed: 01/09/2023] Open
Abstract
Background Snake venoms generally show sequence and quantitative variation within and between species, but some rattlesnakes have undergone exceptionally rapid, dramatic shifts in the composition, lethality, and pharmacological effects of their venoms. Such shifts have occurred within species, most notably in Mojave (Crotalus scutulatus), South American (C. durissus), and timber (C. horridus) rattlesnakes, resulting in some populations with extremely potent, neurotoxic venoms without the hemorrhagic effects typical of rattlesnake bites. Results To better understand the evolutionary changes that resulted in the potent venom of a population of C. horridus from northern Florida, we sequenced the venom-gland transcriptome of an animal from this population for comparison with the previously described transcriptome of the eastern diamondback rattlesnake (C. adamanteus), a congener with a more typical rattlesnake venom. Relative to the toxin transcription of C. adamanteus, which consisted primarily of snake-venom metalloproteinases, C-type lectins, snake-venom serine proteinases, and myotoxin-A, the toxin transcription of C. horridus was far simpler in composition and consisted almost entirely of snake-venom serine proteinases, phospholipases A2, and bradykinin-potentiating and C-type natriuretic peptides. Crotalus horridus lacked significant expression of the hemorrhagic snake-venom metalloproteinases and C-type lectins. Evolution of shared toxin families involved differential expansion and loss of toxin clades within each species and pronounced differences in the highly expressed toxin paralogs. Toxin genes showed significantly higher rates of nonsynonymous substitution than nontoxin genes. The expression patterns of nontoxin genes were conserved between species, despite the vast differences in toxin expression. Conclusions Our results represent the first complete, sequence-based comparison between the venoms of closely related snake species and reveal in unprecedented detail the rapid evolution of snake venoms. We found that the difference in venom properties resulted from major changes in expression levels of toxin gene families, differential gene-family expansion and loss, changes in which paralogs within gene families were expressed at high levels, and higher nonsynonymous substitution rates in the toxin genes relative to nontoxins. These massive alterations in the genetics of the venom phenotype emphasize the evolutionary lability and flexibility of this ecologically critical trait.
Collapse
|
23
|
Cheng F, Mandáková T, Wu J, Xie Q, Lysak MA, Wang X. Deciphering the diploid ancestral genome of the Mesohexaploid Brassica rapa. THE PLANT CELL 2013; 25:1541-54. [PMID: 23653472 PMCID: PMC3694691 DOI: 10.1105/tpc.113.110486] [Citation(s) in RCA: 250] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/23/2013] [Accepted: 04/17/2013] [Indexed: 05/18/2023]
Abstract
The genus Brassica includes several important agricultural and horticultural crops. Their current genome structures were shaped by whole-genome triplication followed by extensive diploidization. The availability of several crucifer genome sequences, especially that of Chinese cabbage (Brassica rapa), enables study of the evolution of the mesohexaploid Brassica genomes from their diploid progenitors. We reconstructed three ancestral subgenomes of B. rapa (n = 10) by comparing its whole-genome sequence to ancestral and extant Brassicaceae genomes. All three B. rapa paleogenomes apparently consisted of seven chromosomes, similar to the ancestral translocation Proto-Calepineae Karyotype (tPCK; n = 7), which is the evolutionarily younger variant of the Proto-Calepineae Karyotype (n = 7). Based on comparative analysis of genome sequences or linkage maps of Brassica oleracea, Brassica nigra, radish (Raphanus sativus), and other closely related species, we propose a two-step merging of three tPCK-like genomes to form the hexaploid ancestor of the tribe Brassiceae with 42 chromosomes. Subsequent diversification of the Brassiceae was marked by extensive genome reshuffling and chromosome number reduction mediated by translocation events and followed by loss and/or inactivation of centromeres. Furthermore, via interspecies genome comparison, we refined intervals for seven of the genomic blocks of the Ancestral Crucifer Karyotype (n = 8), thus revising the key reference genome for evolutionary genomics of crucifers.
Collapse
Affiliation(s)
- Feng Cheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Terezie Mandáková
- Plant Cytogenomics, Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Jian Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Martin A. Lysak
- Plant Cytogenomics, Central European Institute of Technology (CEITEC) and Faculty of Science, Masaryk University, CZ-625 00 Brno, Czech Republic
| | - Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Address correspondence to
| |
Collapse
|
24
|
Shi J, Huang S, Fu D, Yu J, Wang X, Hua W, Liu S, Liu G, Wang H. Evolutionary dynamics of microsatellite distribution in plants: insight from the comparison of sequenced brassica, Arabidopsis and other angiosperm species. PLoS One 2013; 8:e59988. [PMID: 23555856 PMCID: PMC3610691 DOI: 10.1371/journal.pone.0059988] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 02/24/2013] [Indexed: 11/19/2022] Open
Abstract
Despite their ubiquity and functional importance, microsatellites have been largely ignored in comparative genomics, mostly due to the lack of genomic information. In the current study, microsatellite distribution was characterized and compared in the whole genomes and both the coding and non-coding DNA sequences of the sequenced Brassica, Arabidopsis and other angiosperm species to investigate their evolutionary dynamics in plants. The variation in the microsatellite frequencies of these angiosperm species was much smaller than those for their microsatellite numbers and genome sizes, suggesting that microsatellite frequency may be relatively stable in plants. The microsatellite frequencies of these angiosperm species were significantly negatively correlated with both their genome sizes and transposable elements contents. The pattern of microsatellite distribution may differ according to the different genomic regions (such as coding and non-coding sequences). The observed differences in many important microsatellite characteristics (especially the distribution with respect to motif length, type and repeat number) of these angiosperm species were generally accordant with their phylogenetic distance, which suggested that the evolutionary dynamics of microsatellite distribution may be generally consistent with plant divergence/evolution. Importantly, by comparing these microsatellite characteristics (especially the distribution with respect to motif type) the angiosperm species (aside from a few species) all clustered into two obviously different groups that were largely represented by monocots and dicots, suggesting a complex and generally dichotomous evolutionary pattern of microsatellite distribution in angiosperms. Polyploidy may lead to a slight increase in microsatellite frequency in the coding sequences and a significant decrease in microsatellite frequency in the whole genome/non-coding sequences, but have little effect on the microsatellite distribution with respect to motif length, type and repeat number. Interestingly, several microsatellite characteristics seemed to be constant in plant evolution, which can be well explained by the general biological rules.
Collapse
Affiliation(s)
- Jiaqin Shi
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shunmou Huang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Donghui Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Agronomy College, Jiangxi Agricultural University, Nanchang, China
| | - Jinyin Yu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xinfa Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wei Hua
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Guihua Liu
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Hanzhong Wang
- Key Laboratory of Oil Crop Biology of the Ministry of Agriculture, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- * E-mail:
| |
Collapse
|
25
|
Wei L, Xiao M, An Z, Ma B, Mason AS, Qian W, Li J, Fu D. New insights into nested long terminal repeat retrotransposons in Brassica species. MOLECULAR PLANT 2013; 6:470-482. [PMID: 22930733 DOI: 10.1093/mp/sss081] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Long terminal repeat (LTR) retrotransposons, one of the foremost types of transposons, continually change or modify gene function and reorganize the genome through bursts of dramatic proliferation. Many LTR-TEs preferentially insert within other LTR-TEs, but the cause and evolutionary significance of these nested LTR-TEs are not well understood. In this study, a total of 1.52Gb of Brassica sequence containing 2020 bacterial artificial chromosomes (BACs) was scanned, and six bacterial artificial chromosome (BAC) clones with extremely nested LTR-TEs (LTR-TEs density: 7.24/kb) were selected for further analysis. The majority of the LTR-TEs in four of the six BACs were found to be derived from the rapid proliferation of retrotransposons originating within the BAC regions, with only a few LTR-TEs originating from the proliferation and insertion of retrotransposons from outside the BAC regions approximately 5-23Mya. LTR-TEs also preferably inserted into TA-rich repeat regions. Gene prediction by Genescan identified 207 genes in the 0.84Mb of total BAC sequences. Only a few genes (3/207) could be matched to the Brassica expressed sequence tag (EST) database, indicating that most genes were inactive after retrotransposon insertion. Five of the six BACs were putatively centromeric. Hence, nested LTR-TEs in centromere regions are rapidly duplicated, repeatedly inserted, and act to suppress activity of genes and to reshuffle the structure of the centromeric sequences. Our results suggest that LTR-TEs burst and proliferate on a local scale to create nested LTR-TE regions, and that these nested LTR-TEs play a role in the formation of centromeres.
Collapse
Affiliation(s)
- Lijuan Wei
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, Chongqing 400716, China
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Townsley BT, Sinha NR, Kang J. KNOX1 genes regulate lignin deposition and composition in monocots and dicots. FRONTIERS IN PLANT SCIENCE 2013; 4:121. [PMID: 23653631 PMCID: PMC3642508 DOI: 10.3389/fpls.2013.00121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 04/16/2013] [Indexed: 05/04/2023]
Abstract
Plant secondary cell walls are deposited mostly in vascular tissues such as xylem vessels, tracheids, and fibers. These cell walls are composed of a complex matrix of compounds including cellulose, hemicellulose, and lignin. Lignin functions primarily to maintain the structural and mechanical integrity of both the transport vessel and the entire plant itself. Since lignin has been identified as a major source of biomass for biofuels, regulation of secondary cell wall biosynthesis has been a topic of much recent investigation. Biosynthesis and patterning of lignin involves many developmental and environmental cues including evolutionarily conserved transcriptional regulatory modules and hormonal signals. Here, we investigate the role of the class I Knotted1-like-homeobox (KNOX) genes and gibberellic acid in the lignin biosynthetic pathway in a representative monocot and a representative eudicot. Knotted1 overexpressing mutant plants showed a reduction in lignin content in both maize and tobacco. Expression of four key lignin biosynthesis genes was analyzed and revealed that KNOX1 genes regulate at least two steps in the lignin biosynthesis pathway. The negative regulation of lignin both in a monocot and a eudicot by the maize Kn1 gene suggests that lignin biosynthesis may be preserved across large phylogenetic distances. The evolutionary implications of regulation of lignification across divergent species are discussed.
Collapse
Affiliation(s)
- Brad T. Townsley
- Section of Plant Biology, University of California DavisDavis, CA, USA
| | - Neelima R. Sinha
- Section of Plant Biology, University of California DavisDavis, CA, USA
| | - Julie Kang
- Biology Department, University of Northern IowaCedar Falls, IA, USA
- *Correspondence: Julie Kang, Biology Department, University of Northern Iowa, 144 McCollum Science Hall, Cedar Falls, IA 50613, USA. e-mail:
| |
Collapse
|
27
|
Zou X, Suppanz I, Raman H, Hou J, Wang J, Long Y, Jung C, Meng J. Comparative analysis of FLC homologues in Brassicaceae provides insight into their role in the evolution of oilseed rape. PLoS One 2012; 7:e45751. [PMID: 23029223 PMCID: PMC3459951 DOI: 10.1371/journal.pone.0045751] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2012] [Accepted: 08/24/2012] [Indexed: 11/18/2022] Open
Abstract
We identified nine FLOWERING LOCUS C homologues (BnFLC) in Brassica napus and found that the coding sequences of all BnFLCs were relatively conserved but the intronic and promoter regions were more divergent. The BnFLC homologues were mapped to six of 19 chromosomes. All of the BnFLC homologues were located in the collinear region of FLC in the Arabidopsis genome except BnFLC.A3b and BnFLC.C3b, which were mapped to noncollinear regions of chromosome A3 and C3, respectively. Four of the homologues were associated significantly with quantitative trait loci for flowering time in two mapping populations. The BnFLC homologues showed distinct expression patterns in vegetative and reproductive organs, and at different developmental stages. BnFLC.A3b was differentially expressed between the winter-type and semi-winter-type cultivars. Microsynteny analysis indicated that BnFLC.A3b might have been translocated to the present segment in a cluster with other flowering-time regulators, such as a homologue of FRIGIDA in Arabidopsis. This cluster of flowering-time genes might have conferred a selective advantage to Brassica species in terms of increased adaptability to diverse environments during their evolution and domestication process.
Collapse
Affiliation(s)
- Xiaoxiao Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Ida Suppanz
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Harsh Raman
- EH Graham Centre for Agricultural Innovation (an alliance between the Charles Sturt University and New South Wales Department of Primary Industries), Wagga Wagga Agricultural Institute, Wagga Wagga, New South Wales, Australia
| | - Jinna Hou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yan Long
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Christian Jung
- Plant Breeding Institute, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
28
|
Kato T, Hatakeyama K, Fukino N, Matsumoto S. Identificaiton of a clubroot resistance locus conferring resistance to a Plasmodiophora brassicae classified into pathotype group 3 in Chinese cabbage (Brassica rapa L.). BREEDING SCIENCE 2012; 62:282-7. [PMID: 23226089 PMCID: PMC3501946 DOI: 10.1270/jsbbs.62.282] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 04/19/2012] [Indexed: 05/24/2023]
Abstract
In Chinese cabbage (Brassica rapa), the clubroot resistance (CR) genes Crr1 and Crr2 are effective against the mild Plasmodiophora brassicae isolate Ano-01 and the more virulent isolate Wakayama-01, but not against isolate No. 14, classified into pathotype group 3. 'Akiriso', a clubroot-resistant F(1) cultivar, showed resistance to isolate No. 14. To increase the durability of resistance, we attempted to identify the CR locus in 'Akiriso'. CR in 'Akiriso' segregated as a single dominant gene and was linked to several molecular markers that were also linked to CRb, a CR locus from cultivar 'CR Shinki'. We developed additional markers around CRb and constructed partial genetic maps of this region in 'Akiriso' and 'CR Shinki'. The positions and order of markers in the genetic maps of the two cultivars were very similar. The segregation ratios for resistance to isolate No. 14 in F(2) populations derived from each of the two cultivars were also very similar. These results suggest that the CR locus in 'Akiriso' is CRb or a tightly linked locus. The newly developed markers in this study were more closely linked to CRb than previously reported markers and will be useful for marker-assisted selection of CRb in Chinese cabbage breeding.
Collapse
Affiliation(s)
- Takeyuki Kato
- Graduate School of Bioresources, Mie University, 1577 Kurima-machiya, Tsu, Mie 514-8507, Japan
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Katsunori Hatakeyama
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Nobuko Fukino
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| | - Satoru Matsumoto
- NARO Institute of Vegetable and Tea Science, 360 Kusawa, Ano, Tsu, Mie 514-2392, Japan
| |
Collapse
|
29
|
Mun JH, Yu HJ, Shin JY, Oh M, Hwang HJ, Chung H. Auxin response factor gene family in Brassica rapa: genomic organization, divergence, expression, and evolution. Mol Genet Genomics 2012; 287:765-84. [PMID: 22915303 PMCID: PMC3459075 DOI: 10.1007/s00438-012-0718-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Accepted: 08/03/2012] [Indexed: 12/30/2022]
Abstract
Completion of the sequencing of the Brassica rapa genome enabled us to undertake a genome-wide identification and functional study of the gene families related to the morphological diversity and agronomic traits of Brassica crops. In this study, we identified the auxin response factor (ARF) gene family, which is one of the key regulators of auxin-mediated plant growth and development in the B. rapa genome. A total of 31 ARF genes were identified in the genome. Phylogenetic and evolutionary analyses suggest that ARF genes fell into four major classes and were amplified in the B. rapa genome as a result of a recent whole genome triplication after speciation from Arabidopsis thaliana. Despite its recent hexaploid ancestry, B. rapa includes a relatively small number of ARF genes compared with the 23 members in A. thaliana, presumably due to a paralog reduction related to repetitive sequence insertion into promoter and non-coding transcribed region of the genes. Comparative genomic and mRNA sequencing analyses demonstrated that 27 of the 31 BrARF genes were transcriptionally active, and their expression was affected by either auxin treatment or floral development stage, although 4 genes were inactive, suggesting that the generation and pseudogenization of ARF members are likely to be an ongoing process. This study will provide a fundamental basis for the modification and evolution of the gene family after a polyploidy event, as well as a functional study of ARF genes in a polyploidy crop species.
Collapse
Affiliation(s)
- Jeong-Hwan Mun
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro, Gwonseon-gu, Suwon, 441-707 Korea
| | - Hee-Ju Yu
- Department of Life Sciences, The Catholic University of Korea, Bucheon, 420-743 Korea
| | - Ja Young Shin
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro, Gwonseon-gu, Suwon, 441-707 Korea
| | - Mijin Oh
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro, Gwonseon-gu, Suwon, 441-707 Korea
| | - Hyun-Ju Hwang
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, 150 Suin-ro, Gwonseon-gu, Suwon, 441-707 Korea
| | - Hee Chung
- Department of Life Sciences, The Catholic University of Korea, Bucheon, 420-743 Korea
| |
Collapse
|
30
|
Kim JA, Kim JS, Hong JK, Lee YH, Choi BS, Seol YJ, Jeon CH. Comparative mapping, genomic structure, and expression analysis of eight pseudo-response regulator genes in Brassica rapa. Mol Genet Genomics 2012; 287:373-88. [PMID: 22466714 DOI: 10.1007/s00438-012-0682-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/15/2012] [Indexed: 12/30/2022]
Abstract
Circadian clocks regulate plant growth and development in response to environmental factors. In this function, clocks influence the adaptation of species to changes in location or climate. Circadian-clock genes have been subject of intense study in models such as Arabidopsis thaliana but the results may not necessarily reflect clock functions in species with polyploid genomes, such as Brassica species, that include multiple copies of clock-related genes. The triplicate genome of Brassica rapa retains high sequence-level co-linearity with Arabidopsis genomes. In B. rapa we had previously identified five orthologs of the five known Arabidopsis pseudo-response regulator (PRR) genes that are key regulators of the circadian clock in this species. Three of these B. rapa genes, BrPRR1, BrPPR5, and BrPPR7, are present in two copies each in the B. rapa genome, for a total of eight B. rapa PRR (BrPRR) orthologs. We have now determined sequences and expression characteristics of the eight BrPRR genes and mapped their positions in the B. rapa genome. Although both members of each paralogous pair exhibited the same expression pattern, some variation in their gene structures was apparent. The BrPRR genes are tightly linked to several flowering genes. The knowledge about genome location, copy number variation and structural diversity of these B. rapa clock genes will improve our understanding of clock-related functions in this important crop. This will facilitate the development of Brassica crops for optimal growth in new environments and under changing conditions.
Collapse
Affiliation(s)
- Jin A Kim
- Department of Agricultural Bio-resources, National Academy of Agricultural Science, Rural Development Administration, Suinro Gwonseon-gu, Suwon, Gyeonggi-do, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
31
|
Hayward A, Mason AS, Dalton-Morgan J, Zander M, Edwards D, Batley J. SNP discovery and applications in Brassica napus. ACTA ACUST UNITED AC 2012. [DOI: 10.5010/jpb.2012.39.1.049] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
Irwin JA, Lister C, Soumpourou E, Zhang Y, Howell EC, Teakle G, Dean C. Functional alleles of the flowering time regulator FRIGIDA in the Brassica oleracea genome. BMC PLANT BIOLOGY 2012; 12:21. [PMID: 22333192 PMCID: PMC3299615 DOI: 10.1186/1471-2229-12-21] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 02/14/2012] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plants adopt different reproductive strategies as an adaptation to growth in a range of climates. In Arabidopsis thaliana FRIGIDA (FRI) confers a vernalization requirement and thus winter annual habit by increasing the expression of the MADS box transcriptional repressor FLOWERING LOCUS C (FLC). Variation at FRI plays a major role in A. thaliana life history strategy, as independent loss-of-function alleles that result in a rapid-cycling habit in different accessions, appear to have evolved many times. The aim of this study was to identify and characterize orthologues of FRI in Brassica oleracea. RESULTS We describe the characterization of FRI from Brassica oleracea and identify the two B. oleracea FRI orthologues (BolC.FRI.a and BolC.FRI.b). These show extensive amino acid conservation in the central and C-terminal regions to FRI from other Brassicaceae, including A. thaliana, but have a diverged N-terminus. The genes map to two of the three regions of B. oleracea chromosomes syntenic to part of A. thaliana chromosome 5 suggesting that one of the FRI copies has been lost since the ancient triplication event that formed the B. oleracea genome. This genomic position is not syntenic with FRI in A. thaliana and comparative analysis revealed a recombination event within the A. thaliana FRI promoter. This relocated A. thaliana FRI to chromosome 4, very close to the nucleolar organizer region, leaving a fragment of FRI in the syntenic location on A. thaliana chromosome 5. Our data show this rearrangement occurred after the divergence from A. lyrata. We explored the allelic variation at BolC.FRI.a within cultivated B. oleracea germplasm and identified two major alleles, which appear equally functional both to each other and A. thaliana FRI, when expressed as fusions in A. thaliana. CONCLUSIONS We identify the two Brassica oleracea FRI genes, one of which we show through A. thaliana complementation experiments is functional, and show their genomic location is not syntenic with A. thaliana FRI due to an ancient recombination event. This has complicated previous association analyses of FRI with variation in life history strategy in the Brassica genus.
Collapse
Affiliation(s)
- Judith A Irwin
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Clare Lister
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Eleni Soumpourou
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yanwen Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Elaine C Howell
- School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Graham Teakle
- School of Life Sciences, University of Warwick, Wellesbourne CV35 9EF, UK
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
33
|
Kaur S, Francki MG, Forster JW. Identification, characterization and interpretation of single-nucleotide sequence variation in allopolyploid crop species. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:125-38. [PMID: 21831136 DOI: 10.1111/j.1467-7652.2011.00644.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
An understanding of nature and extent of nucleotide sequence variation is required for programmes of discovery and characterization of single nucleotide polymorphisms (SNPs), which provide the most versatile class of molecular genetic marker. A majority of higher plant species are polyploids, and allopolyploidy, because of hybrid formation between closely related taxa, is very common. Mutational variation may arise both between allelic (homologous) sequences within individual subgenomes and between homoeologous sequences among subgenomes, in addition to paralogous variation between duplicated gene copies. Successful SNP validation in allopolyploids depends on differentiation of the sequence variation classes. A number of biological factors influence the feasibility of discrimination, including degree of gene family complexity, inbreeding or outbreeding reproductive habit, and the level of knowledge concerning progenitor diploid species. In addition, developments in high-throughput DNA sequencing and associated computational analysis provide general solutions for the genetic analysis of allopolyploids. These issues are explored in the context of experience from a range of allopolyploid species, representing grain (wheat and canola), forage (pasture legumes and grasses), and horticultural (strawberry) crop. Following SNP discovery, detection in routine genotyping applications also presents challenges for allopolyploids. Strategies based on either design of subgenome-specific SNP assays through homoeolocus-targeted polymerase chain reaction (PCR) amplification, or detection of incremental changes in nucleotide variant dosage, are described.
Collapse
Affiliation(s)
- Sukhjiwan Kaur
- Department of Primary Industries, Biosciences Research Division, Victorian AgriBiosciences Centre, La Trobe University Research and Development Park, Bundoora, Victoria, Australia
| | | | | |
Collapse
|
34
|
Jiang C, Ramchiary N, Ma Y, Jin M, Feng J, Li R, Wang H, Long Y, Choi SR, Zhang C, Cowling WA, Park BS, Lim YP, Meng J. Structural and functional comparative mapping between the Brassica A genomes in allotetraploid Brassica napus and diploid Brassica rapa. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:927-941. [PMID: 21761162 DOI: 10.1007/s00122-011-1637-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 06/13/2011] [Indexed: 05/29/2023]
Abstract
Brassica napus (AACC genome) is an important oilseed crop that was formed by the fusion of the diploids B. rapa (AA) and B. oleracea (CC). The complete genomic sequence of the Brassica A genome will be available soon from the B. rapa genome sequencing project, but it is not clear how informative the A genome sequence in B. rapa (A(r)) will be for predicting the structure and function of the A subgenome in the allotetraploid Brassica species B. napus (A(n)). In this paper, we report the results of structural and functional comparative mapping between the A subgenomes of B. napus and B. rapa based on genetic maps that were anchored with bacterial artificial chromosomes (BACs)-sequence of B. rapa. We identified segmental conservation that represented by syntenic blocks in over one third of the A genome; meanwhile, comparative mapping of quantitative trait loci for seed quality traits identified a dozen homologous regions with conserved function in the A genome of the two species. However, several genomic rearrangement events, such as inversions, intra- and inter-chromosomal translocations, were also observed, covering totally at least 5% of the A genome, between allotetraploid B. napus and diploid B. rapa. Based on these results, the A genomes of B. rapa and B. napus are mostly functionally conserved, but caution will be necessary in applying the full sequence data from B. rapa to the B. napus as a result of genomic rearrangements in the A genome between the two species.
Collapse
Affiliation(s)
- Congcong Jiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Wang X, Torres MJ, Pierce G, Lemke C, Nelson LK, Yuksel B, Bowers JE, Marler B, Xiao Y, Lin L, Epps E, Sarazen H, Rogers C, Karunakaran S, Ingles J, Giattina E, Mun JH, Seol YJ, Park BS, Amasino RM, Quiros CF, Osborn TC, Pires JC, Town C, Paterson AH. A physical map of Brassica oleracea shows complexity of chromosomal changes following recursive paleopolyploidizations. BMC Genomics 2011; 12:470. [PMID: 21955929 PMCID: PMC3193055 DOI: 10.1186/1471-2164-12-470] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 09/28/2011] [Indexed: 11/17/2022] Open
Abstract
Background Evolution of the Brassica species has been recursively affected by polyploidy events, and comparison to their relative, Arabidopsis thaliana, provides means to explore their genomic complexity. Results A genome-wide physical map of a rapid-cycling strain of B. oleracea was constructed by integrating high-information-content fingerprinting (HICF) of Bacterial Artificial Chromosome (BAC) clones with hybridization to sequence-tagged probes. Using 2907 contigs of two or more BACs, we performed several lines of comparative genomic analysis. Interspecific DNA synteny is much better preserved in euchromatin than heterochromatin, showing the qualitative difference in evolution of these respective genomic domains. About 67% of contigs can be aligned to the Arabidopsis genome, with 96.5% corresponding to euchromatic regions, and 3.5% (shown to contain repetitive sequences) to pericentromeric regions. Overgo probe hybridization data showed that contigs aligned to Arabidopsis euchromatin contain ~80% of low-copy-number genes, while genes with high copy number are much more frequently associated with pericentromeric regions. We identified 39 interchromosomal breakpoints during the diversification of B. oleracea and Arabidopsis thaliana, a relatively high level of genomic change since their divergence. Comparison of the B. oleracea physical map with Arabidopsis and other available eudicot genomes showed appreciable 'shadowing' produced by more ancient polyploidies, resulting in a web of relatedness among contigs which increased genomic complexity. Conclusions A high-resolution genetically-anchored physical map sheds light on Brassica genome organization and advances positional cloning of specific genes, and may help to validate genome sequence assembly and alignment to chromosomes. All the physical mapping data is freely shared at a WebFPC site (http://lulu.pgml.uga.edu/fpc/WebAGCoL/brassica/WebFPC/; Temporarily password-protected: account: pgml; password: 123qwe123.
Collapse
Affiliation(s)
- Xiyin Wang
- Plant Genome Mapping Laboratory, University of Georgia, Athens, 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
There is increasing evidence that epigenetic marks such as DNA methylation contribute to phenotypic variation by regulating gene transcription, developmental plasticity, and interactions with the environment. However, relatively little is known about the relationship between the stability and distribution of DNA methylation within chromosomes and the ability to detect trait loci. Plant genomes have a distinct range of target sites and more extensive DNA methylation than animals. We analyzed the stability and distribution of epialleles within the complex genome of the oilseed crop plant Brassica napus. For methylation sensitive AFLP (MSAP) and retrotransposon (RT) epimarkers, we found a high degree of stability, with 90% of mapped markers retaining their allelic pattern in contrasting environments and developmental stages. Moreover, for two distinct parental lines 97% of epialleles were transmitted through five meioses and segregated in a mapping population. For the first time we have established the genetic position for 17 of the 19 centromeres within this amphidiploid species. Epiloci and genetic loci were distributed within distinct clusters, indicating differential detection of recombination events. This enabled us to identify additional significant QTL associated with seven important agronomic traits in the centromeric regions of five linkage groups.
Collapse
|
37
|
Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, et alWang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W, Wang J, Wang X, Freeling M, Pires JC, Paterson AH, Chalhoub B, Wang B, Hayward A, Sharpe AG, Park BS, Weisshaar B, Liu B, Li B, Liu B, Tong C, Song C, Duran C, Peng C, Geng C, Koh C, Lin C, Edwards D, Mu D, Shen D, Soumpourou E, Li F, Fraser F, Conant G, Lassalle G, King GJ, Bonnema G, Tang H, Wang H, Belcram H, Zhou H, Hirakawa H, Abe H, Guo H, Wang H, Jin H, Parkin IAP, Batley J, Kim JS, Just J, Li J, Xu J, Deng J, Kim JA, Li J, Yu J, Meng J, Wang J, Min J, Poulain J, Wang J, Hatakeyama K, Wu K, Wang L, Fang L, Trick M, Links MG, Zhao M, Jin M, Ramchiary N, Drou N, Berkman PJ, Cai Q, Huang Q, Li R, Tabata S, Cheng S, Zhang S, Zhang S, Huang S, Sato S, Sun S, Kwon SJ, Choi SR, Lee TH, Fan W, Zhao X, Tan X, Xu X, Wang Y, Qiu Y, Yin Y, Li Y, Du Y, Liao Y, Lim Y, Narusaka Y, Wang Y, Wang Z, Li Z, Wang Z, Xiong Z, Zhang Z. The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 2011; 43:1035-9. [PMID: 21873998 DOI: 10.1038/ng.919] [Show More Authors] [Citation(s) in RCA: 1322] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 08/03/2011] [Indexed: 11/09/2022]
Abstract
We report the annotation and analysis of the draft genome sequence of Brassica rapa accession Chiifu-401-42, a Chinese cabbage. We modeled 41,174 protein coding genes in the B. rapa genome, which has undergone genome triplication. We used Arabidopsis thaliana as an outgroup for investigating the consequences of genome triplication, such as structural and functional evolution. The extent of gene loss (fractionation) among triplicated genome segments varies, with one of the three copies consistently retaining a disproportionately large fraction of the genes expected to have been present in its ancestor. Variation in the number of members of gene families present in the genome may contribute to the remarkable morphological plasticity of Brassica species. The B. rapa genome sequence provides an important resource for studying the evolution of polyploid genomes and underpins the genetic improvement of Brassica oil and vegetable crops.
Collapse
Affiliation(s)
- Xiaowu Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences (IVF, CAAS), Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Dassanayake M, Oh DH, Haas JS, Hernandez A, Hong H, Ali S, Yun DJ, Bressan RA, Zhu JK, Bohnert HJ, Cheeseman JM. The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 2011; 43:913-8. [PMID: 21822265 DOI: 10.1038/ng.889] [Citation(s) in RCA: 223] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 06/24/2011] [Indexed: 01/02/2023]
Abstract
Thellungiella parvula is related to Arabidopsis thaliana and is endemic to saline, resource-poor habitats, making it a model for the evolution of plant adaptation to extreme environments. Here we present the draft genome for this extremophile species. Exclusively by next generation sequencing, we obtained the de novo assembled genome in 1,496 gap-free contigs, closely approximating the estimated genome size of 140 Mb. We anchored these contigs to seven pseudo chromosomes without the use of maps. We show that short reads can be assembled to a near-complete chromosome level for a eukaryotic species lacking prior genetic information. The sequence identifies a number of tandem duplications that, by the nature of the duplicated genes, suggest a possible basis for T. parvula's extremophile lifestyle. Our results provide essential background for developing genomically influenced testable hypotheses for the evolution of environmental stress tolerance.
Collapse
Affiliation(s)
- Maheshi Dassanayake
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Li F, Hasegawa Y, Saito M, Shirasawa S, Fukushima A, Ito T, Fujii H, Kishitani S, Kitashiba H, Nishio T. Extensive chromosome homoeology among Brassiceae species were revealed by comparative genetic mapping with high-density EST-based SNP markers in radish (Raphanus sativus L.). DNA Res 2011; 18:401-11. [PMID: 21816873 PMCID: PMC3190960 DOI: 10.1093/dnares/dsr027] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
A linkage map of expressed sequence tag (EST)-based markers in radish (Raphanus sativus L.) was constructed using a low-cost and high-efficiency single-nucleotide polymorphism (SNP) genotyping method named multiplex polymerase chain reaction–mixed probe dot-blot analysis developed in this study. Seven hundred and forty-six SNP markers derived from EST sequences of R. sativus were assigned to nine linkage groups with a total length of 806.7 cM. By BLASTN, 726 markers were found to have homologous genes in Arabidopsis thaliana, and 72 syntenic regions, which have great potential for utilizing genomic information of the model species A. thaliana in basic and applied genetics of R. sativus, were identified. By construction and analysis of the genome structures of R. sativus based on the 24 genomic blocks within the Brassicaceae ancestral karyotype, 23 of the 24 genomic blocks were detected in the genome of R. sativus, and half of them were found to be triplicated. Comparison of the genome structure of R. sativus with those of the A, B, and C genomes of Brassica species and that of Sinapis alba L. revealed extensive chromosome homoeology among Brassiceae species, which would facilitate transfer of the genomic information from one Brassiceae species to another.
Collapse
Affiliation(s)
- Feng Li
- Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai, Miyagi 981-8555, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wang Y, Sun S, Liu B, Wang H, Deng J, Liao Y, Wang Q, Cheng F, Wang X, Wu J. A sequence-based genetic linkage map as a reference for Brassica rapa pseudochromosome assembly. BMC Genomics 2011; 12:239. [PMID: 21569561 PMCID: PMC3224973 DOI: 10.1186/1471-2164-12-239] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 05/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background Brassica rapa is an economically important crop and a model plant for studies concerning polyploidization and the evolution of extreme morphology. The multinational B. rapa Genome Sequencing Project (BrGSP) was launched in 2003. In 2008, next generation sequencing technology was used to sequence the B. rapa genome. Several maps concerning B. rapa pseudochromosome assembly have been published but their coverage of the genome is incomplete, anchoring approximately 73.6% of the scaffolds on to chromosomes. Therefore, a new genetic map to aid pseudochromosome assembly is required. Results This study concerns the construction of a reference genetic linkage map for Brassica rapa, forming the backbone for anchoring sequence scaffolds of the B. rapa genome resulting from recent sequencing efforts. One hundred and nineteen doubled haploid (DH) lines derived from microspore cultures of an F1 cross between a Chinese cabbage (B. rapa ssp. pekinensis) DH line (Z16) and a rapid cycling inbred line (L144) were used to construct the linkage map. PCR-based insertion/deletion (InDel) markers were developed by re-sequencing the two parental lines. The map comprises a total of 507 markers including 415 InDels and 92 SSRs. Alignment and orientation using SSR markers in common with existing B. rapa linkage maps allowed ten linkage groups to be identified, designated A01-A10. The total length of the linkage map was 1234.2 cM, with an average distance of 2.43 cM between adjacent marker loci. The lengths of linkage groups ranged from 71.5 cM to 188.5 cM for A08 and A09, respectively. Using the developed linkage map, 152 scaffolds were anchored on to the chromosomes, encompassing more than 82.9% of the B. rapa genome. Taken together with the previously available linkage maps, 183 scaffolds were anchored on to the chromosomes and the total coverage of the genome was 88.9%. Conclusions The development of this linkage map is vital for the integration of genome sequences and genetic information, and provides a useful resource for the international Brassica research community.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|