1
|
Hyperactive nanobacteria with host-dependent traits pervade Omnitrophota. Nat Microbiol 2023; 8:727-744. [PMID: 36928026 PMCID: PMC10066038 DOI: 10.1038/s41564-022-01319-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 12/30/2022] [Indexed: 03/18/2023]
Abstract
Candidate bacterial phylum Omnitrophota has not been isolated and is poorly understood. We analysed 72 newly sequenced and 349 existing Omnitrophota genomes representing 6 classes and 276 species, along with Earth Microbiome Project data to evaluate habitat, metabolic traits and lifestyles. We applied fluorescence-activated cell sorting and differential size filtration, and showed that most Omnitrophota are ultra-small (~0.2 μm) cells that are found in water, sediments and soils. Omnitrophota genomes in 6 classes are reduced, but maintain major biosynthetic and energy conservation pathways, including acetogenesis (with or without the Wood-Ljungdahl pathway) and diverse respirations. At least 64% of Omnitrophota genomes encode gene clusters typical of bacterial symbionts, suggesting host-associated lifestyles. We repurposed quantitative stable-isotope probing data from soils dominated by andesite, basalt or granite weathering and identified 3 families with high isotope uptake consistent with obligate bacterial predators. We propose that most Omnitrophota inhabit various ecosystems as predators or parasites.
Collapse
|
2
|
Rockwell NC, Moreno MV, Martin SS, Lagarias JC. Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes. Photochem Photobiol Sci 2022; 21:471-491. [PMID: 35411484 PMCID: PMC9609751 DOI: 10.1007/s43630-022-00213-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/21/2022] [Indexed: 10/18/2022]
Abstract
Photoreceptors in the phytochrome superfamily use 15,16-photoisomerization of a linear tetrapyrrole (bilin) chromophore to photoconvert between two states with distinct spectral and biochemical properties. Canonical phytochromes include master regulators of plant growth and development in which light signals trigger interconversion between a red-absorbing 15Z dark-adapted state and a metastable, far-red-absorbing 15E photoproduct state. Distantly related cyanobacteriochromes (CBCRs) carry out a diverse range of photoregulatory functions in cyanobacteria and exhibit considerable spectral diversity. One widespread CBCR subfamily typically exhibits a red-absorbing 15Z dark-adapted state similar to that of phytochrome that gives rise to a distinct green-absorbing 15E photoproduct. This red/green CBCR subfamily also includes red-inactive examples that fail to undergo photoconversion, providing an opportunity to study protein-chromophore interactions that either promote photoisomerization or block it. In this work, we identified a conserved lineage of red-inactive CBCRs. This enabled us to identify three substitutions sufficient to block photoisomerization in photoactive red/green CBCRs. The resulting red-inactive variants faithfully replicated the fluorescence and circular dichroism properties of naturally occurring examples. Converse substitutions restored photoconversion in naturally red-inactive CBCRs. This work thus identifies protein-chromophore interactions that control the fate of the excited-state population in red/green cyanobacteriochromes.
Collapse
Affiliation(s)
- Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California at Davis, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Kozlowski MT, Silverman BR, Johnstone CP, Tirrell DA. Genetically Programmable Microbial Assembly. ACS Synth Biol 2021; 10:1351-1359. [PMID: 34009951 DOI: 10.1021/acssynbio.0c00616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Engineered microbial communities show promise in a wide range of applications, including environmental remediation, microbiome engineering, and synthesis of fine chemicals. Here we present methods by which bacterial aggregates can be directed into several distinct architectures by inducible surface expression of heteroassociative protein domains (SpyTag/SpyCatcher and SynZip17/18). Programmed aggregation can be used to activate a quorum-sensing circuit, and aggregate size can be tuned via control of the amount of the associative protein displayed on the cell surface. We further demonstrate reversibility of SynZip-mediated assembly by addition of soluble competitor peptide. Genetically programmable bacterial assembly provides a starting point for the development of new applications of engineered microbial communities in environmental technology, agriculture, human health, and bioreactor design.
Collapse
Affiliation(s)
- Mark T. Kozlowski
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Bradley R. Silverman
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - Christopher P. Johnstone
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| | - David A. Tirrell
- Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, California 91125, United States
| |
Collapse
|
4
|
Kyndt JA, Van Beeumen JJ, Meyer TE. Simultaneous Genome Sequencing of Prosthecochloris ethylica and Desulfuromonas acetoxidans within a Syntrophic Mixture Reveals Unique Pili and Protein Interactions. Microorganisms 2020; 8:microorganisms8121939. [PMID: 33297414 PMCID: PMC7762298 DOI: 10.3390/microorganisms8121939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023] Open
Abstract
Strains of Chloropseudomonas ethylica, 2-K, N2, and N3 are known to be composed of a syntrophic mixture of a green sulfur bacterium and a sulfur-reducing colorless component. Upon sequence analysis, the green sulfur photosynthetic bacterial component of strain N3 was dominant and was readily sequenced, but the less abundant sulfur-reducing bacterial component was apparent only when analyzed by metagenomic binning. Whole-genome comparison showed that the green bacterium belonged to the genus Prosthecochloris and apparently was a species for which there was no genome sequence on file. For comparison, we also sequenced the genome of Prosthecochloris sp. DSM 1685, which had previously been isolated from the 2-K mixture in pure culture and have shown that all three Prosthecochloris genomes belong to a new species, which we propose to be named Prosthecochloris ethylica comb. nov. Whole genomes were also sequenced for the isolated Desulfuromonas strains DSM 1675 (from strain 2-K) and DSM 1676 (from strain N2) and shown to be nearly identical to the genome found in the N3 mixture. The genome of the green sulfur bacterium contains large genes for agglutination proteins, similar to the ones proposed to be involved in larger photosynthetic consortia of Chlorochromatium aggregatum. In addition, we also identified several unique “tight adhesion (tad)” pili genes that are presumably involved in the formation of cell–cell interactions. The colorless component, on the other hand, contained a unique large multiheme cytochrome C and unique genes for e-pili (geopilin) formation, genetically clustered with a conserved ferredoxin gene, which are all expected to play an electron transfer role in the closed sulfur cycle in the syntrophic mixture. The findings from the simultaneous genome sequencing of the components of Cp. ethylica have implications for the phenomenon of direct interspecies interactions and coupled electron transfer in photosynthetic symbionts. The mechanisms for such interactions appear to be more common in the environment than originally anticipated.
Collapse
Affiliation(s)
- John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA
- Correspondence: ; Tel.: +1-402-557-7551
| | - Jozef J. Van Beeumen
- Department of Biochemistry and Microbiology, Ghent University, 9000 Gent, Belgium;
| | - Terry E. Meyer
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ 85721, USA;
| |
Collapse
|
5
|
Madigan MT, Kempher ML, Bender KS, Jung DO, Sattley WM, Lindemann SR, Konopka AE, Dohnalkova AC, Fredrickson JK. A green sulfur bacterium from epsomitic Hot Lake, Washington, USA. Can J Microbiol 2020; 67:332-341. [PMID: 33136441 DOI: 10.1139/cjm-2020-0462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hot Lake is a small heliothermal and hypersaline lake in far north-central Washington State (USA) and is limnologically unusual because MgSO4 rather than NaCl is the dominant salt. In late summer, the Hot Lake metalimnion becomes distinctly green from blooms of planktonic phototrophs. In a study undertaken over 60 years ago, these blooms were predicted to include green sulfur bacteria, but no cultures were obtained. We sampled Hot Lake and established enrichment cultures for phototrophic sulfur bacteria in MgSO4-rich sulfidic media. Most enrichments turned green or red within 2 weeks, and from green-colored enrichments, pure cultures of a lobed green sulfur bacterium (phylum Chlorobi) were isolated. Phylogenetic analyses showed the organism to be a species of the prosthecate green sulfur bacterium Prosthecochloris. Cultures of this Hot Lake phototroph were halophilic and tolerated high levels of sulfide and MgSO4. In addition, unlike all recognized species of Prosthecochloris, the Hot Lake isolates grew at temperatures up to 45 °C, indicating an adaptation to the warm summer temperatures of the lake. Photoautotrophy by Hot Lake green sulfur bacteria may contribute dissolved organic matter to anoxic zones of the lake, and their diazotrophic capacity may provide a key source of bioavailable nitrogen, as well.
Collapse
Affiliation(s)
- Michael T Madigan
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Megan L Kempher
- Department of Microbiology and Plant Sciences, University of Oklahoma, Norman, OK 73019, USA
| | - Kelly S Bender
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - Deborah O Jung
- Department of Microbiology, Southern Illinois University, Carbondale, IL 62901, USA
| | - W Matthew Sattley
- Division of Natural Sciences, Indiana Wesleyan University, Marion, IN 46953, USA
| | - Stephen R Lindemann
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA
| | - Allan E Konopka
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
6
|
Zachar I, Boza G. Endosymbiosis before eukaryotes: mitochondrial establishment in protoeukaryotes. Cell Mol Life Sci 2020; 77:3503-3523. [PMID: 32008087 PMCID: PMC7452879 DOI: 10.1007/s00018-020-03462-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 12/25/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Endosymbiosis and organellogenesis are virtually unknown among prokaryotes. The single presumed example is the endosymbiogenetic origin of mitochondria, which is hidden behind the event horizon of the last eukaryotic common ancestor. While eukaryotes are monophyletic, it is unlikely that during billions of years, there were no other prokaryote-prokaryote endosymbioses as symbiosis is extremely common among prokaryotes, e.g., in biofilms. Therefore, it is even more precarious to draw conclusions about potentially existing (or once existing) prokaryotic endosymbioses based on a single example. It is yet unknown if the bacterial endosymbiont was captured by a prokaryote or by a (proto-)eukaryote, and if the process of internalization was parasitic infection, slow engulfment, or phagocytosis. In this review, we accordingly explore multiple mechanisms and processes that could drive the evolution of unicellular microbial symbioses with a special attention to prokaryote-prokaryote interactions and to the mitochondrion, possibly the single prokaryotic endosymbiosis that turned out to be a major evolutionary transition. We investigate the ecology and evolutionary stability of inter-species microbial interactions based on dependence, physical proximity, cost-benefit budget, and the types of benefits, investments, and controls. We identify challenges that had to be conquered for the mitochondrial host to establish a stable eukaryotic lineage. Any assumption about the initial interaction of the mitochondrial ancestor and its contemporary host based solely on their modern relationship is rather perilous. As a result, we warn against assuming an initial mutually beneficial interaction based on modern mitochondria-host cooperation. This assumption is twice fallacious: (i) endosymbioses are known to evolve from exploitative interactions and (ii) cooperativity does not necessarily lead to stable mutualism. We point out that the lack of evidence so far on the evolution of endosymbiosis from mutual syntrophy supports the idea that mitochondria emerged from an exploitative (parasitic or phagotrophic) interaction rather than from syntrophy.
Collapse
Affiliation(s)
- István Zachar
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary.
- MTA-ELTE Theoretical Biology and Evolutionary Ecology Research Group, Department of Plant Taxonomy and Ecology, Eötvös Loránd University, Pázmány Péter sétány 1/c, Budapest, 1117, Hungary.
- Center for the Conceptual Foundations of Science, Parmenides Foundation, Kirchplatz 1, 82049, Munich, Germany.
| | - Gergely Boza
- Evolutionary Systems Research Group, Institute of Evolution, Centre for Ecological Research, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary
- Evolution and Ecology Program, International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, 2361, Laxenburg, Austria
| |
Collapse
|
7
|
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME. Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 2020; 70:3956-4042. [DOI: 10.1099/ijsem.0.003789] [Citation(s) in RCA: 782] [Impact Index Per Article: 156.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
We here present annotated lists of names of Candidatus taxa of prokaryotes with ranks between subspecies and class, proposed between the mid-1990s, when the provisional status of Candidatus taxa was first established, and the end of 2018. Where necessary, corrected names are proposed that comply with the current provisions of the International Code of Nomenclature of Prokaryotes and its Orthography appendix. These lists, as well as updated lists of newly published names of Candidatus taxa with additions and corrections to the current lists to be published periodically in the International Journal of Systematic and Evolutionary Microbiology, may serve as the basis for the valid publication of the Candidatus names if and when the current proposals to expand the type material for naming of prokaryotes to also include gene sequences of yet-uncultivated taxa is accepted by the International Committee on Systematics of Prokaryotes.
Collapse
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - George M. Garrity
- NamesforLife, LLC, PO Box 769, Okemos MI 48805-0769, USA
- Department of Microbiology & Molecular Genetics, Biomedical Physical Sciences, Michigan State University, East Lansing, MI 48824-4320, USA
| | | | - Maria Chuvochina
- Australian Centre for Ecogenomics, University of Queensland, St. Lucia QLD 4072, Brisbane, Australia
| | - Martha E. Trujillo
- Departamento de Microbiología y Genética, Campus Miguel de Unamuno, Universidad de Salamanca, 37007, Salamanca, Spain
| |
Collapse
|
8
|
Bateman A. Division of labour in a matrix, rather than phagocytosis or endosymbiosis, as a route for the origin of eukaryotic cells. Biol Direct 2020; 15:8. [PMID: 32345370 PMCID: PMC7187495 DOI: 10.1186/s13062-020-00260-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Abstract Two apparently irreconcilable models dominate research into the origin of eukaryotes. In one model, amitochondrial proto-eukaryotes emerged autogenously from the last universal common ancestor of all cells. Proto-eukaryotes subsequently acquired mitochondrial progenitors by the phagocytic capture of bacteria. In the second model, two prokaryotes, probably an archaeon and a bacterial cell, engaged in prokaryotic endosymbiosis, with the species resident within the host becoming the mitochondrial progenitor. Both models have limitations. A search was therefore undertaken for alternative routes towards the origin of eukaryotic cells. The question was addressed by considering classes of potential pathways from prokaryotic to eukaryotic cells based on considerations of cellular topology. Among the solutions identified, one, called here the “third-space model”, has not been widely explored. A version is presented in which an extracellular space (the third-space), serves as a proxy cytoplasm for mixed populations of archaea and bacteria to “merge” as a transitionary complex without obligatory endosymbiosis or phagocytosis and to form a precursor cell. Incipient nuclei and mitochondria diverge by division of labour. The third-space model can accommodate the reorganization of prokaryote-like genomes to a more eukaryote-like genome structure. Nuclei with multiple chromosomes and mitosis emerge as a natural feature of the model. The model is compatible with the loss of archaeal lipid biochemistry while retaining archaeal genes and provides a route for the development of membranous organelles such as the Golgi apparatus and endoplasmic reticulum. Advantages, limitations and variations of the “third-space” models are discussed. Reviewers This article was reviewed by Damien Devos, Buzz Baum and Michael Gray.
Collapse
Affiliation(s)
- Andrew Bateman
- Division of Experimental Medicine, Department of Medicine, McGill University, Glen Site Pavilion E, 1001 Boulevard Decarie, Montreal, Quebec, H4A 3J1, Canada. .,Centre for Translational Biology, Research Institute of McGill University Health Centre, Glen Site Pavilion E, 1001 Boulevard Decarie, Montreal, Quebec, H4A 3J1, Canada.
| |
Collapse
|
9
|
Sitaraman R. The Role of Constructive Neutral Evolution in the Development of Complexity from Symbioses: A Microbe-Centric View. Results Probl Cell Differ 2020; 69:225-235. [PMID: 33263874 DOI: 10.1007/978-3-030-51849-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Symbiogenesis presents the biologist with very different explanatory issues compared to the lineal and selectionist view of evolution based on individual entities, whether genes, organisms or species. A key question is how the co-existence of two or more partners in close association during a given generation can ultimately be stabilized enough to be transmitted to the next, how the ensuing complexity is maintained and how this arrangement impacts the reproductive fitness of the collective over evolutionary time. In this chapter, we highlight some observations gleaned from the microbial world that could shed light on this problem if viewed within the framework of constructive neutral evolution.
Collapse
|
10
|
Draft Whole-Genome Sequence of the Green Sulfur Photosynthetic Bacterium Chlorobaculum sp. Strain 24CR, Isolated from the Carmel River. Microbiol Resour Announc 2019; 8:8/12/e00116-19. [PMID: 30938700 PMCID: PMC6430317 DOI: 10.1128/mra.00116-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Green sulfur bacteria are in the family Chlorobiaceae, which is composed of four distinct genera, namely, Chlorobaculum, Chlorobium, Prosthecochloris, and Chloroherpeton, with Chlorobium species being the most commonly represented in genome studies. We have now sequenced only the fourth species of Chlorobaculum, which established Chlorobaculum sp. 24CR as a separate species and should help characterize the genus. Green sulfur bacteria are in the family Chlorobiaceae, which is composed of four distinct genera, namely, Chlorobaculum, Chlorobium, Prosthecochloris, and Chloroherpeton, with Chlorobium species being the most commonly represented in genome studies. We have now sequenced only the fourth species of Chlorobaculum, which established Chlorobaculum sp. 24CR as a separate species and should help characterize the genus.
Collapse
|
11
|
Jarett JK, Nayfach S, Podar M, Inskeep W, Ivanova NN, Munson-McGee J, Schulz F, Young M, Jay ZJ, Beam JP, Kyrpides NC, Malmstrom RR, Stepanauskas R, Woyke T. Single-cell genomics of co-sorted Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis. MICROBIOME 2018; 6:161. [PMID: 30223889 PMCID: PMC6142677 DOI: 10.1186/s40168-018-0539-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 08/26/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Nanoarchaeota are obligate symbionts of other Archaea first discovered 16 years ago, yet little is known about this largely uncultivated taxon. While Nanoarchaeota diversity has been detected in a variety of habitats using 16S rRNA gene surveys, genome sequences have been available for only three Nanoarchaeota and their hosts. The host range and adaptation of Nanoarchaeota to a wide range of environmental conditions has thus largely remained elusive. Single-cell genomics is an ideal approach to address these questions as Nanoarchaeota can be isolated while still attached to putative hosts, enabling the exploration of cell-cell interactions and fine-scale genomic diversity. RESULTS From 22 single amplified genomes (SAGs) from three hot springs in Yellowstone National Park, we derived a genome-based phylogeny of the phylum Nanoarchaeota, linking it to global 16S rRNA gene diversity. By exploiting sequencing of co-sorted tightly attached cells, we associated Nanoarchaeota with 6 novel putative hosts, 2 of which were found in multiple SAGs, and showed that the same host species may associate with multiple species of Nanoarchaeota. Comparison of single nucleotide polymorphisms (SNPs) within a population of Nanoarchaeota SAGs indicated that Nanoarchaeota attached to a single host cell in situ are likely clonal. In addition to an overall pattern of purifying selection, we found significantly higher densities of non-synonymous SNPs in hypothetical cell surface proteins, as compared to other functional categories. Genes implicated in interactions in other obligate microbe-microbe symbioses, including those encoding a cytochrome bd-I ubiquinol oxidase and a FlaJ/TadC homologue possibly involved in type IV pili production, also had relatively high densities of non-synonymous SNPs. CONCLUSIONS This population genetics study of Nanoarchaeota greatly expands the known potential host range of the phylum and hints at what genes may be involved in adaptation to diverse environments or different hosts. We provide the first evidence that Nanoarchaeota cells attached to the same host cell are clonal and propose a hypothesis for how clonality may occur despite diverse symbiont populations.
Collapse
Affiliation(s)
| | | | - Mircea Podar
- Oak Ridge National Laboratory, Oak Ridge, TN USA
- Department of Microbiology, University of Tennessee, Knoxville, TN USA
| | - William Inskeep
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT USA
| | | | - Jacob Munson-McGee
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT USA
| | | | - Mark Young
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT USA
| | - Zackary J. Jay
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT USA
| | - Jacob P. Beam
- Department of Land Resources and Environmental Sciences, Montana State University, Bozeman, MT USA
- Bigelow Laboratory for Ocean Sciences, East Boothbay, ME USA
| | | | | | | | - Tanja Woyke
- DOE Joint Genome Institute, Walnut Creek, CA USA
| |
Collapse
|
12
|
D'Souza G, Shitut S, Preussger D, Yousif G, Waschina S, Kost C. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat Prod Rep 2018; 35:455-488. [PMID: 29799048 DOI: 10.1039/c8np00009c] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Literature covered: early 2000s to late 2017Bacteria frequently exchange metabolites with other micro- and macro-organisms. In these often obligate cross-feeding interactions, primary metabolites such as vitamins, amino acids, nucleotides, or growth factors are exchanged. The widespread distribution of this type of metabolic interactions, however, is at odds with evolutionary theory: why should an organism invest costly resources to benefit other individuals rather than using these metabolites to maximize its own fitness? Recent empirical work has shown that bacterial genotypes can significantly benefit from trading metabolites with other bacteria relative to cells not engaging in such interactions. Here, we will provide a comprehensive overview over the ecological factors and evolutionary mechanisms that have been identified to explain the evolution and maintenance of metabolic mutualisms among microorganisms. Furthermore, we will highlight general principles that underlie the adaptive evolution of interconnected microbial metabolic networks as well as the evolutionary consequences that result for cells living in such communities.
Collapse
Affiliation(s)
- Glen D'Souza
- Department of Environmental Systems Sciences, ETH-Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
13
|
Thiel V, Tank M, Bryant DA. Diversity of Chlorophototrophic Bacteria Revealed in the Omics Era. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:21-49. [PMID: 29505738 DOI: 10.1146/annurev-arplant-042817-040500] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Because of recent advances in omics methodologies, knowledge of chlorophototrophy (i.e., chlorophyll-based phototrophy) in bacteria has rapidly increased. Chlorophototrophs currently are known to occur in seven bacterial phyla: Cyanobacteria, Proteobacteria, Chlorobi, Chloroflexi, Firmicutes, Acidobacteria, and Gemmatimonadetes. Other organisms that can produce chlorophylls and photochemical reaction centers may still be undiscovered. Here we summarize the current status of the taxonomy and phylogeny of chlorophototrophic bacteria as revealed by genomic methods. In specific cases, we briefly describe important ecophysiological and metabolic insights that have been gained from the application of genomic methods to these bacteria. In the 20 years since the completion of the Synechocystis sp. PCC 6803 genome in 1996, approximately 1,100 genomes have been sequenced, which represents nearly the complete diversity of known chlorophototrophic bacteria. These data are leading to new insights into many important processes, including photosynthesis, nitrogen and carbon fixation, cellular differentiation and development, symbiosis, and ecosystem functionality.
Collapse
Affiliation(s)
- Vera Thiel
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; ,
| | - Marcus Tank
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan; ,
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA;
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| |
Collapse
|
14
|
Rhie MN, Park B, Ko H, Choi I, Kim OB. Transcriptome analysis and anaerobic C 4 -dicarboxylate transport in Actinobacillus succinogenes. Microbiologyopen 2017; 7:e00565. [PMID: 29230966 PMCID: PMC6011838 DOI: 10.1002/mbo3.565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/26/2017] [Accepted: 10/30/2017] [Indexed: 11/07/2022] Open
Abstract
A global transcriptome analysis of the natural succinate producer Actinobacillus succinogenes revealed that 353 genes were differentially expressed when grown on various carbon and energy sources, which were categorized into six functional groups. We then analyzed the expression pattern of 37 potential C4‐dicarboxylate transporters in detail. A total of six transporters were considered potential fumarate transporters: three transporters, Asuc_1999 (Dcu), Asuc_0304 (DASS), and Asuc_0270‐0273 (TRAP), were constitutively expressed, whereas three others, Asuc_1568 (DASS), Asuc_1482 (DASS), and Asuc_0142 (Dcu), were differentially expressed during growth on fumarate. Transport assays under anaerobic conditions with [14C]fumarate and [14C]succinate were performed to experimentally verify that A. succinogenes possesses multiple C4‐dicarboxlayte transport systems with different substrate affinities. Upon uptake of 5 mmol/L fumarate, the systems had substrate specificity for fumarate, oxaloacetate, and malate, but not for succinate. Uptake was optimal at pH 7, and was dependent on both proton and sodium gradients. Asuc_1999 was suspected to be a major C4‐dicarboxylate transporter because of its noticeably high and constitutive expression. An Asuc_1999 deletion (∆1999) decreased fumarate uptake significantly at approximately 5 mmol/L fumarate, which was complemented by the introduction of Asuc_1999. Asuc_1999 expressed in Escherichia coli catalyzed fumarate uptake at a level of 21.6 μmol·gDW−1·min−1. These results suggest that C4‐dicarboxylate transport in A. succinogenes is mediated by multiple transporters, which transport various types and concentrations of C4‐dicarboxylates.
Collapse
Affiliation(s)
- Mi Na Rhie
- Department of Life Science, and Interdisciplinary Program of EcoCreativeEwha Womans UniversitySeoulKorea
| | - Byeonghyeok Park
- Department of BiotechnologyCollege of Life Sciences and BiotechnologyKorea UniversitySeoulKorea
| | - Hyeok‐Jin Ko
- Department of BiotechnologyCollege of Life Sciences and BiotechnologyKorea UniversitySeoulKorea
| | - In‐Geol Choi
- Department of BiotechnologyCollege of Life Sciences and BiotechnologyKorea UniversitySeoulKorea
| | - Ok Bin Kim
- Department of Life Science, and Interdisciplinary Program of EcoCreativeEwha Womans UniversitySeoulKorea
| |
Collapse
|
15
|
Affiliation(s)
- Jörg Overmann
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Birte Abt
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, 38124 Braunschweig, Germany
| | - Johannes Sikorski
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| |
Collapse
|
16
|
Metagenomic analysis reveals a green sulfur bacterium as a potential coral symbiont. Sci Rep 2017; 7:9320. [PMID: 28839161 PMCID: PMC5571212 DOI: 10.1038/s41598-017-09032-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/20/2017] [Indexed: 01/27/2023] Open
Abstract
Coral reefs are ecologically significant habitats. Coral-algal symbiosis confers ecological success on coral reefs and coral-microbial symbiosis is also vital to coral reefs. However, current understanding of coral-microbial symbiosis on a genomic scale is largely unknown. Here we report a potential microbial symbiont in corals revealed by metagenomics-based genomic study. Microbial cells in coral were enriched for metagenomic analysis and a high-quality draft genome of “Candidatus Prosthecochloris korallensis” was recovered by metagenome assembly and genome binning. Phylogenetic analysis shows “Ca. P. korallensis” belongs to the Prosthecochloris clade and is clustered with two Prosthecochloris clones derived from Caribbean corals. Genomic analysis reveals “Ca. P. korallensis” has potentially important ecological functions including anoxygenic photosynthesis, carbon fixation via the reductive tricarboxylic acid (rTCA) cycle, nitrogen fixation, and sulfur oxidization. Core metabolic pathway analysis suggests “Ca. P. korallensis” is a green sulfur bacterium capable of photoautotrophy or mixotrophy. Potential host-microbial interaction reveals a symbiotic relationship: “Ca. P. korallensis” might provide organic and nitrogenous nutrients to its host and detoxify sulfide for the host; the host might provide “Ca. P. korallensis” with an anaerobic environment for survival, carbon dioxide and acetate for growth, and hydrogen sulfide as an electron donor for photosynthesis.
Collapse
|
17
|
Zachar I, Szathmáry E. Breath-giving cooperation: critical review of origin of mitochondria hypotheses : Major unanswered questions point to the importance of early ecology. Biol Direct 2017; 12:19. [PMID: 28806979 PMCID: PMC5557255 DOI: 10.1186/s13062-017-0190-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/20/2017] [Indexed: 02/08/2023] Open
Abstract
The origin of mitochondria is a unique and hard evolutionary problem, embedded within the origin of eukaryotes. The puzzle is challenging due to the egalitarian nature of the transition where lower-level units took over energy metabolism. Contending theories widely disagree on ancestral partners, initial conditions and unfolding of events. There are many open questions but there is no comparative examination of hypotheses. We have specified twelve questions about the observable facts and hidden processes leading to the establishment of the endosymbiont that a valid hypothesis must address. We have objectively compared contending hypotheses under these questions to find the most plausible course of events and to draw insight on missing pieces of the puzzle. Since endosymbiosis borders evolution and ecology, and since a realistic theory has to comply with both domains' constraints, the conclusion is that the most important aspect to clarify is the initial ecological relationship of partners. Metabolic benefits are largely irrelevant at this initial phase, where ecological costs could be more disruptive. There is no single theory capable of answering all questions indicating a severe lack of ecological considerations. A new theory, compliant with recent phylogenomic results, should adhere to these criteria. REVIEWERS This article was reviewed by Michael W. Gray, William F. Martin and Purificación López-García.
Collapse
Affiliation(s)
- István Zachar
- Eötvös Loránd University, Department of Plant Systematics, Ecology and Theoretical Biology, Pázmány P. sétány 1/C, Budapest, 1117, Hungary.
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary.
| | - Eörs Szathmáry
- Eötvös Loránd University, Department of Plant Systematics, Ecology and Theoretical Biology, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
- Evolutionary Systems Research Group, MTA, Centre for Ecological Research, Hungarian Academy of Sciences, Klebelsberg Kunó str. 3., Tihany, 8237, Hungary
- Parmenides Foundation, Kirchplatz 1, 82049 Pullach/Munich, Munich, Germany
| |
Collapse
|
18
|
Marchal M, Goldschmidt F, Derksen-Müller SN, Panke S, Ackermann M, Johnson DR. A passive mutualistic interaction promotes the evolution of spatial structure within microbial populations. BMC Evol Biol 2017; 17:106. [PMID: 28438135 PMCID: PMC5402672 DOI: 10.1186/s12862-017-0950-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 04/04/2017] [Indexed: 12/02/2022] Open
Abstract
Background While mutualistic interactions between different genotypes are pervasive in nature, their evolutionary origin is not clear. The dilemma is that, for mutualistic interactions to emerge and persist, an investment into the partner genotype must pay off: individuals of a first genotype that invest resources to promote the growth of a second genotype must receive a benefit that is not equally accessible to individuals that do not invest. One way for exclusive benefits to emerge is through spatial structure (i.e., physical barriers to the movement of individuals and resources). Results Here we propose that organisms can evolve their own spatial structure based on physical attachment between individuals, and we hypothesize that attachment evolves when spatial proximity to members of another species is advantageous. We tested this hypothesis using experimental evolution with combinations of E. coli strains that depend on each other to grow. We found that attachment between cells repeatedly evolved within 8 weeks of evolution and observed that many different types of mutations potentially contributed to increased attachment. Conclusions We postulate a general principle by which passive beneficial interactions between organisms select for attachment, and attachment then provides spatial structure that could be conducive for the evolution of active mutualistic interactions. Electronic supplementary material The online version of this article (doi:10.1186/s12862-017-0950-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marie Marchal
- Department of Environmental Microbiology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland
| | - Felix Goldschmidt
- Department of Environmental Microbiology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Selina N Derksen-Müller
- Department of Environmental Microbiology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.,Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Sven Panke
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Martin Ackermann
- Department of Environmental Microbiology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland. .,Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland.
| | - David R Johnson
- Department of Environmental Microbiology, Eawag, Überlandstrasse 133, 8600, Dübendorf, Switzerland.
| |
Collapse
|
19
|
López-García P, Eme L, Moreira D. Symbiosis in eukaryotic evolution. J Theor Biol 2017; 434:20-33. [PMID: 28254477 DOI: 10.1016/j.jtbi.2017.02.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/19/2017] [Accepted: 02/25/2017] [Indexed: 01/27/2023]
Abstract
Fifty years ago, Lynn Margulis, inspiring in early twentieth-century ideas that put forward a symbiotic origin for some eukaryotic organelles, proposed a unified theory for the origin of the eukaryotic cell based on symbiosis as evolutionary mechanism. Margulis was profoundly aware of the importance of symbiosis in the natural microbial world and anticipated the evolutionary significance that integrated cooperative interactions might have as mechanism to increase cellular complexity. Today, we have started fully appreciating the vast extent of microbial diversity and the importance of syntrophic metabolic cooperation in natural ecosystems, especially in sediments and microbial mats. Also, not only the symbiogenetic origin of mitochondria and chloroplasts has been clearly demonstrated, but improvement in phylogenomic methods combined with recent discoveries of archaeal lineages more closely related to eukaryotes further support the symbiogenetic origin of the eukaryotic cell. Margulis left us in legacy the idea of 'eukaryogenesis by symbiogenesis'. Although this has been largely verified, when, where, and specifically how eukaryotic cells evolved are yet unclear. Here, we shortly review current knowledge about symbiotic interactions in the microbial world and their evolutionary impact, the status of eukaryogenetic models and the current challenges and perspectives ahead to reconstruct the evolutionary path to eukaryotes.
Collapse
Affiliation(s)
- Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France.
| | - Laura Eme
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada NS B3H 4R2
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, 91400 Orsay, France
| |
Collapse
|
20
|
The hologenome concept: we need to incorporate function. Theory Biosci 2016; 136:89-98. [DOI: 10.1007/s12064-016-0240-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023]
|
21
|
Genome Sequence of Prosthecochloris sp. Strain CIB 2401 of the Phylum Chlorobi. GENOME ANNOUNCEMENTS 2016; 4:4/6/e01222-16. [PMID: 27811102 PMCID: PMC5095472 DOI: 10.1128/genomea.01222-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To date, only 13 genomes of green sulfur bacteria (family Chlorobiaceae) have been sequenced. The sequenced strains do not cover the full phylogenetic diversity of the family. We determined the complete genome sequence of Prosthecochloris sp. strain CIB 2401, thereby increasing the genome information for the poorly represented marine Chlorobiaceae.
Collapse
|
22
|
Better together: engineering and application of microbial symbioses. Curr Opin Biotechnol 2015; 36:40-9. [DOI: 10.1016/j.copbio.2015.08.008] [Citation(s) in RCA: 187] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 07/28/2015] [Accepted: 08/09/2015] [Indexed: 12/26/2022]
|
23
|
Sayavedra L, Kleiner M, Ponnudurai R, Wetzel S, Pelletier E, Barbe V, Satoh N, Shoguchi E, Fink D, Breusing C, Reusch TBH, Rosenstiel P, Schilhabel MB, Becher D, Schweder T, Markert S, Dubilier N, Petersen JM. Abundant toxin-related genes in the genomes of beneficial symbionts from deep-sea hydrothermal vent mussels. eLife 2015; 4:e07966. [PMID: 26371554 PMCID: PMC4612132 DOI: 10.7554/elife.07966] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 09/14/2015] [Indexed: 01/06/2023] Open
Abstract
Bathymodiolus mussels live in symbiosis with intracellular sulfur-oxidizing (SOX) bacteria that provide them with nutrition. We sequenced the SOX symbiont genomes from two Bathymodiolus species. Comparison of these symbiont genomes with those of their closest relatives revealed that the symbionts have undergone genome rearrangements, and up to 35% of their genes may have been acquired by horizontal gene transfer. Many of the genes specific to the symbionts were homologs of virulence genes. We discovered an abundant and diverse array of genes similar to insecticidal toxins of nematode and aphid symbionts, and toxins of pathogens such as Yersinia and Vibrio. Transcriptomics and proteomics revealed that the SOX symbionts express the toxin-related genes (TRGs) in their hosts. We hypothesize that the symbionts use these TRGs in beneficial interactions with their host, including protection against parasites. This would explain why a mutualistic symbiont would contain such a remarkable 'arsenal' of TRGs.
Collapse
Affiliation(s)
| | - Manuel Kleiner
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Ruby Ponnudurai
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Silke Wetzel
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Eric Pelletier
- Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
- Metabolic Genomics Group, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
- University of Évry-Val d'Essonne, Evry, France
| | - Valerie Barbe
- Genoscope - Centre National de Séquençage, Commissariat à l'énergie atomique et aux énergies alternatives, Evry, France
| | - Nori Satoh
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Eiichi Shoguchi
- Marine Genomics Unit, Okinawa Institute of Science and Technology, Onna, Japan
| | - Dennis Fink
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Corinna Breusing
- Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Thorsten BH Reusch
- Evolutionary Ecology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | | | | | - Dörte Becher
- Institute of Marine Biotechnology, Greifswald, Germany
- Institute of Microbiology, Ernst-Moritz-Arndt-University, Greifswald, Germany
| | - Thomas Schweder
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Stephanie Markert
- Institute of Pharmacy, Ernst-Moritz-Arndt-University, Greifswald, Germany
- Institute of Marine Biotechnology, Greifswald, Germany
| | - Nicole Dubilier
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- University of Bremen, Bremen, Germany
| | | |
Collapse
|
24
|
Hiras J, Wu YW, Eichorst SA, Simmons BA, Singer SW. Refining the phylum Chlorobi by resolving the phylogeny and metabolic potential of the representative of a deeply branching, uncultivated lineage. ISME JOURNAL 2015; 10:833-45. [PMID: 26325358 DOI: 10.1038/ismej.2015.158] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 07/22/2015] [Accepted: 07/28/2015] [Indexed: 01/29/2023]
Abstract
Recent studies have expanded the phylum Chlorobi, demonstrating that the green sulfur bacteria (GSB), the original cultured representatives of the phylum, are a part of a broader lineage whose members have more diverse metabolic capabilities that overlap with members of the phylum Bacteroidetes. The 16S rRNA gene of an uncultivated clone, OPB56, distantly related to the phyla Chlorobi and Bacteroidetes, was recovered from Obsidian Pool in Yellowstone National Park; however, the detailed phylogeny and function of OPB56 and related clones have remained unknown. Culturing of thermophilic bacterial consortia from compost by adaptation to grow on ionic-liquid pretreated switchgrass provided a consortium in which one of the most abundant members, NICIL-2, clustered with OPB56-related clones. Phylogenetic analysis using the full-length 16S rRNA gene from NICIL-2 demonstrated that it was part of a monophyletic clade, referred to as OPB56, distinct from the Bacteroidetes and Chlorobi. A near complete draft genome (>95% complete) was recovered from metagenomic data from the culture adapted to grow on ionic-liquid pretreated switchgrass using an automated binning algorithm, and this genome was used for marker gene-based phylogenetic analysis and metabolic reconstruction. Six additional genomes related to NICIL-2 were reconstructed from metagenomic data sets obtained from thermal springs at Yellowstone National Park and Nevada Great Boiling Spring. In contrast to the 16S rRNA gene phylogenetic analysis, protein phylogenetic analysis was most consistent with the clustering of the Chlorobea, Ignavibacteria and OPB56 into a single phylum level clade. Metabolic reconstruction of NICIL-2 demonstrated a close linkage with the class Ignavibacteria and the family Rhodothermaceae, a deeply branching Bacteroidetes lineage. The combined phylogenetic and functional analysis of the NICIL-2 genome has refined the membership in the phylum Chlorobi and emphasized the close evolutionary and metabolic relationship between the phyla Chlorobi and the Bacteroidetes.
Collapse
Affiliation(s)
- Jennifer Hiras
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yu-Wei Wu
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Stephanie A Eichorst
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Division of Microbial Ecology, University of Vienna, Vienna, Austria
| | - Blake A Simmons
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Sandia National Laboratories, Biofuels and Biomaterials Science and Technology Department, Livermore, CA, USA
| | - Steven W Singer
- Deconstruction Division, Joint BioEnergy Institute, Emeryville, CA, USA.,Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
25
|
Nelson WC, Stegen JC. The reduced genomes of Parcubacteria (OD1) contain signatures of a symbiotic lifestyle. Front Microbiol 2015; 6:713. [PMID: 26257709 PMCID: PMC4508563 DOI: 10.3389/fmicb.2015.00713] [Citation(s) in RCA: 188] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 06/29/2015] [Indexed: 11/21/2022] Open
Abstract
Candidate phylum OD1 bacteria (also referred to as Parcubacteria) have been identified in a broad range of anoxic environments through community survey analysis. Although none of these species have been isolated in the laboratory, several genome sequences have been reconstructed from metagenomic sequence data and single-cell sequencing. The organisms have small (generally <1 Mb) genomes with severely reduced metabolic capabilities. We have reconstructed 8 partial to near-complete OD1 genomes from oxic groundwater samples, and compared them against existing genomic data. The conserved core gene set comprises 202 genes, or ~28% of the genomic complement. “Housekeeping” genes and genes for biosynthesis of peptidoglycan and Type IV pilus production are conserved. Gene sets for biosynthesis of cofactors, amino acids, nucleotides, and fatty acids are absent entirely or greatly reduced. The only aspects of energy metabolism conserved are the non-oxidative branch of the pentose-phosphate shunt and central glycolysis. These organisms also lack some activities conserved in almost all other known bacterial genomes, including signal recognition particle, pseudouridine synthase A, and FAD synthase. Pan-genome analysis indicates a broad genotypic diversity and perhaps a highly fluid gene complement, indicating historical adaptation to a wide range of growth environments and a high degree of specialization. The genomes were examined for signatures suggesting either a free-living, streamlined lifestyle, or a symbiotic lifestyle. The lack of biosynthetic capabilities and DNA repair, along with the presence of potential attachment and adhesion proteins suggest that the Parcubacteria are ectosymbionts or parasites of other organisms. The wide diversity of genes that potentially mediate cell-cell contact suggests a broad range of partner/prey organisms across the phylum.
Collapse
Affiliation(s)
- William C Nelson
- Microbiology, Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| | - James C Stegen
- Microbiology, Biological Sciences Division, Pacific Northwest National Laboratory Richland, WA, USA
| |
Collapse
|
26
|
Abstract
Eukaryogenesis is widely viewed as an improbable evolutionary transition uniquely affecting the evolution of life on this planet. However, scientific and popular rhetoric extolling this event as a singularity lacks rigorous evidential and statistical support. Here, we question several of the usual claims about the specialness of eukaryogenesis, focusing on both eukaryogenesis as a process and its outcome, the eukaryotic cell. We argue in favor of four ideas. First, the criteria by which we judge eukaryogenesis to have required a genuinely unlikely series of events 2 billion years in the making are being eroded by discoveries that fill in the gaps of the prokaryote:eukaryote "discontinuity." Second, eukaryogenesis confronts evolutionary theory in ways not different from other evolutionary transitions in individuality; parallel systems can be found at several hierarchical levels. Third, identifying which of several complex cellular features confer on eukaryotes a putative richer evolutionary potential remains an area of speculation: various keys to success have been proposed and rejected over the five-decade history of research in this area. Fourth, and perhaps most importantly, it is difficult and may be impossible to eliminate eukaryocentric bias from the measures by which eukaryotes as a whole are judged to have achieved greater success than prokaryotes as a whole. Overall, we question whether premises of existing theories about the uniqueness of eukaryogenesis and the greater evolutionary potential of eukaryotes have been objectively formulated and whether, despite widespread acceptance that eukaryogenesis was "special," any such notion has more than rhetorical value.
Collapse
|
27
|
Huber KT, Van Iersel L, Moulton V, Wu T. How much information is needed to infer reticulate evolutionary histories? Syst Biol 2014; 64:102-11. [PMID: 25236959 PMCID: PMC4265143 DOI: 10.1093/sysbio/syu076] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phylogenetic networks are a generalization of evolutionary trees and are an important tool for analyzing reticulate evolutionary histories. Recently, there has been great interest in developing new methods to construct rooted phylogenetic networks, that is, networks whose internal vertices correspond to hypothetical ancestors, whose leaves correspond to sampled taxa, and in which vertices with more than one parent correspond to taxa formed by reticulate evolutionary events such as recombination or hybridization. Several methods for constructing evolutionary trees use the strategy of building up a tree from simpler building blocks (such as triplets or clusters), and so it is natural to look for ways to construct networks from smaller networks. In this article, we shall demonstrate a fundamental issue with this approach. Namely, we show that even if we are given all of the subnetworks induced on all proper subsets of the leaves of some rooted phylogenetic network, we still do not have all of the information required to completely determine that network. This implies that even if all of the building blocks for some reticulate evolutionary history were to be taken as the input for any given network building method, the method might still output an incorrect history. We also discuss some potential consequences of this result for constructing phylogenetic networks.
Collapse
Affiliation(s)
- Katharina T Huber
- School of Computing Sciences, University of East Anglia, Norwich, UK, and Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
| | - Leo Van Iersel
- School of Computing Sciences, University of East Anglia, Norwich, UK, and Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
| | - Vincent Moulton
- School of Computing Sciences, University of East Anglia, Norwich, UK, and Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
| | - Taoyang Wu
- School of Computing Sciences, University of East Anglia, Norwich, UK, and Centrum Wiskunde & Informatica (CWI), Amsterdam, Netherlands
| |
Collapse
|