1
|
Wang XY, Zhang LN. RNA binding protein SAMD4: current knowledge and future perspectives. Cell Biosci 2023; 13:21. [PMID: 36732864 PMCID: PMC9893680 DOI: 10.1186/s13578-023-00968-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/22/2023] [Indexed: 02/04/2023] Open
Abstract
SAMD4 protein family is a class of novel RNA-binding proteins that can mediate post-transcriptional regulation and translation repression in eukaryotes, which are highly conserved from yeast to humans during evolution. In mammalian cells, SAMD4 protein family consists of two members including SAMD4A/Smaug1 and SAMD4B/Smaug2, both of which contain common SAM domain that can specifically bind to different target mRNAs through stem-loop structures, also known as Smaug recognition elements (SREs), and regulate the mRNA stability, degradation and translation. In addition, SAMD4 can form the cytoplasmic mRNA silencing foci and regulate the translation of SRE-containing mRNAs in neurons. SAMD4 also can form the cytosolic membrane-less organelles (MLOs), termed as Smaug1 bodies, and regulate mitochondrial function. Importantly, many studies have identified that SAMD4 family members are involved in various pathological processes including myopathy, bone development, neural development, and cancer occurrence and progression. In this review, we mainly summarize the structural characteristics, biological functions and molecular regulatory mechanisms of SAMD4 protein family members, which will provide a basis for further research and clinical application of SAMD4 protein family.
Collapse
Affiliation(s)
- Xin-Ya Wang
- grid.28703.3e0000 0000 9040 3743Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, 100124 Beijing, People’s Republic of China
| | - Li-Na Zhang
- grid.28703.3e0000 0000 9040 3743Beijing International Science and Technology Cooperation Base of Antivirus Drug, Faculty of Environment and Life, Beijing University of Technology, 100124 Beijing, People’s Republic of China
| |
Collapse
|
2
|
Zhong Y, Wen K, Li X, Wang S, Li S, Zeng Y, Cheng Y, Ma Q, Nian H. Identification and Mapping of QTLs for Sulfur-Containing Amino Acids in Soybean ( Glycine max L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:398-410. [PMID: 36574335 DOI: 10.1021/acs.jafc.2c05896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Soybean is a major source of high-quality protein for humans and animals. The content of sulfur-containing amino acids (SAA) in soybean is insufficient, which has become the main factor limiting soybean nutrition. In this study, we used the high-density genetic maps derived from Guizao 1 and Brazil 13 to evaluate the quantitative trait loci of cysteine (Cys), methionine (Met), SAA, glycinin (7S), β-conglycinin (11S), ratio of glycinin to β-conglycinin (RGC), and protein content (PC). In genetic map linkage analysis, the major and stable 44 QTLs were detected, which shared nine bin intervals. Among them, the bin interval (bin157-bin160) on chromosome 5 was detected in multiple environments as a stable QTL, which was linked to 11S, 7S, RGC, and SSA. Based on the analysis of bioinformatics and RNA-sequencing data, 16 differentially expressed genes (DEGs) within these QTLs were selected as candidate genes. These results will help to elucidate the genetic mechanism of soybean SAA-related traits and provide the basis for the gene mining of sulfur-containing amino acids.
Collapse
Affiliation(s)
- Yiwang Zhong
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Ke Wen
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Key Laboratory of Vegetable Biology of Hainan Province, Vegetable Research Institute of Hainan Academy of Agricultural Sciences, Haikou 570228, Hainan, People's Republic of China
- Hainan Yazhou Bay Seed Laboratory, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Sanya 572025, Hainan, People's Republic of China
| | - Xingang Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Shasha Wang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Sansan Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Yuhong Zeng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, Guangdong, People's Republic of China
- The Guangdong Subcenter of the National Center for Soybean Improvement, College of Agriculture, South China Agricultural University, Guangzhou 510642, Guangdong, People's Republic of China
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, Hainan, People's Republic of China
| |
Collapse
|
3
|
Cuthbert JM, Russell SJ, Polejaeva IA, Meng Q, White KL, Benninghoff AD. Comparing mRNA and sncRNA profiles during the maternal-to-embryonic transition in bovine IVF and scNT embryos. Biol Reprod 2021; 105:1401-1415. [PMID: 34514499 DOI: 10.1093/biolre/ioab169] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 07/09/2021] [Accepted: 09/02/2021] [Indexed: 12/14/2022] Open
Abstract
Production of embryos with high developmental competence by somatic cell nuclear transfer (scNT) is far less efficient than for in vitro fertilized (IVF) embryos, likely due to an accumulation of errors in genome reprogramming that results in aberrant expression of RNA transcripts, including messenger RNAs (mRNA) and, possibly, microRNAs (miRNA). Thus, our objectives were to use RNAseq to determine the dynamics of mRNA expression in early developing scNT and IVF embryos in the context of the maternal-to-embryonic transition (MET) and to correlate apparent transcriptional dysregulation in cloned embryos with miRNA expression profiles. Comparisons between scNT and IVF embryos indicated large scale transcriptome differences, which were most evident at the 8-cell and morula stages for genes associated with biological functions critical for the MET. For two miRNAs previously identified as differentially expressed in scNT morulae, miR-34a and miR-345, negative correlations with some predicted mRNA targets were apparent, though not widespread among the majority of predicted targets. Moreover, although large-scale aberrations in expression of mRNAs were evident during the MET in cattle scNT embryos, these changes were not consistently correlated with aberrations in miRNA expression at the same developmental stage, suggesting that other mechanisms controlling gene expression may be involved.
Collapse
Affiliation(s)
- Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Stewart J Russell
- CReATe Fertility Centre, 790 Bay St. #1100, Toronto, M5G 1N8, Canada
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
4
|
Cuthbert JM, Russell SJ, Polejaeva IA, Meng Q, White KL, Benninghoff AD. Dynamics of small non-coding RNAs in bovine scNT embryos through the maternal-to-embryonic transition. Biol Reprod 2021; 105:918-933. [PMID: 34086842 DOI: 10.1093/biolre/ioab107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/27/2021] [Indexed: 11/13/2022] Open
Abstract
The efficiency of somatic cell nuclear transfer (scNT) for production of viable offspring is relatively low as compared to in vitro fertilization (IVF), presumably due to deficiencies in epigenetic reprogramming of the donor cell genome. Such defects may also involve the population of small non-coding RNAs (sncRNAs), which are important during early embryonic development. The objective of this study was to examine dynamic changes in relative abundance of sncRNAs during the maternal-to embryonic transition (MET) in bovine embryos produced by scNT as compared to IVF by using RNA sequencing. When comparing populations of miRNA in scNT versus IVF embryos, only miR-2340, miR-345, and miR34a were differentially expressed in morulae, though many more miRNAs were differentially expressed when comparing across developmental stages. Also of interest, distinct populations of piwi-interacting like RNAs (pilRNAs) were identified in bovine embryos prior to and during embryonic genome activation (EGA) as compared bovine embryos post EGA and differentiated cells. Overall, sncRNA sequencing analysis of preimplantation embryos revealed largely similar profiles of sncRNAs for IVF and scNT embryos at the 2-cell, 8-cell, morula and blastocyst stages of development. However, these sncRNA profiles, including miRNA, piRNA and tRNA fragments, were notably distinct prior to and after completion of the MET.
Collapse
Affiliation(s)
- Jocelyn M Cuthbert
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Stewart J Russell
- CReATe Fertility Centre, 790 Bay St. #1100, Toronto, M5G 1N8, Canada
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Qinggang Meng
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| | - Abby D Benninghoff
- Department of Animal, Dairy and Veterinary Sciences, 4815 Old Main Hill, Utah State University, Logan, Utah 84322, USA
| |
Collapse
|
5
|
Bruzzone L, Argüelles C, Sanial M, Miled S, Alvisi G, Gonçalves-Antunes M, Qasrawi F, Holmgren RA, Smibert CA, Lipshitz HD, Boccaccio GL, Plessis A, Bécam I. Regulation of the RNA-binding protein Smaug by the GPCR Smoothened via the kinase Fused. EMBO Rep 2020; 21:e48425. [PMID: 32383557 DOI: 10.15252/embr.201948425] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 03/17/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
From fly to mammals, the Smaug/Samd4 family of prion-like RNA-binding proteins control gene expression by destabilizing and/or repressing the translation of numerous target transcripts. However, the regulation of its activity remains poorly understood. We show that Smaug's protein levels and mRNA repressive activity are downregulated by Hedgehog signaling in tissue culture cells. These effects rely on the interaction of Smaug with the G-protein coupled receptor Smoothened, which promotes the phosphorylation of Smaug by recruiting the kinase Fused. The activation of Fused and its binding to Smaug are sufficient to suppress its ability to form cytosolic bodies and to antagonize its negative effects on endogenous targets. Importantly, we demonstrate in vivo that HH reduces the levels of smaug mRNA and increases the level of several mRNAs downregulated by Smaug. Finally, we show that Smaug acts as a positive regulator of Hedgehog signaling during wing morphogenesis. These data constitute the first evidence for a post-translational regulation of Smaug and reveal that the fate of several mRNAs bound to Smaug is modulated by a major signaling pathway.
Collapse
Affiliation(s)
- Lucia Bruzzone
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | | | - Matthieu Sanial
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Samia Miled
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Giorgia Alvisi
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | | | - Fairouz Qasrawi
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Robert A Holmgren
- Department of Mol. Biosci., Northwestern University, Evanston, IL, USA
| | - Craig A Smibert
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Howard D Lipshitz
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Graciela L Boccaccio
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas Buenos Aires-Consejo Nacional de Investigaciones Científicas y Tecnológicas, Facultad de Ciencias Exactas y Naturales, University of Buenos Aires, Buenos Aires, Argentina
| | - Anne Plessis
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| | - Isabelle Bécam
- CNRS, Institut Jacques Monod, Université de Paris, Paris, France
| |
Collapse
|
6
|
Abstract
Since their serendipitous discovery in nematodes, microRNAs (miRNAs) have emerged as key regulators of biological processes in animals. These small RNAs form complex networks that regulate cell differentiation, development and homeostasis. Deregulation of miRNA function is associated with an increasing number of human diseases, particularly cancer. Recent discoveries have expanded our understanding of the control of miRNA function. Here, we review the mechanisms that modulate miRNA activity, stability and cellular localization through alternative processing and maturation, sequence editing, post-translational modifications of Argonaute proteins, viral factors, transport from the cytoplasm and regulation of miRNA-target interactions. We conclude by discussing intriguing, unresolved research questions.
Collapse
Affiliation(s)
- Luca F R Gebert
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Ian J MacRae
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
7
|
Liu C, Ma Y, Shang Y, Huo R, Li W. Post-translational regulation of the maternal-to-zygotic transition. Cell Mol Life Sci 2018; 75:1707-1722. [PMID: 29427077 PMCID: PMC11105290 DOI: 10.1007/s00018-018-2750-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 12/24/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023]
Abstract
The maternal-to-zygotic transition (MZT) is essential for the developmental control handed from maternal products to newly synthesized zygotic genome in the earliest stages of embryogenesis, including maternal component (mRNAs and proteins) degradation and zygotic genome activation (ZGA). Various protein post-translational modifications have been identified during the MZT, such as phosphorylation, methylation and ubiquitination. Precise post-translational regulation mechanisms are essential for the timely transition of early embryonic development. In this review, we summarize recent progress regarding the molecular mechanisms underlying post-translational regulation of maternal component degradation and ZGA during the MZT and discuss some important issues in the field.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanjie Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- Department of Animal Science and Technology, Northeast Agricultural University, Haerbin, 150030, People's Republic of China
| | - Yongliang Shang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Ran Huo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 210029, People's Republic of China.
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, People's Republic of China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
8
|
|