1
|
Cao B, Xu Q, Shi Y, Zhao R, Li H, Zheng J, Liu F, Wan Y, Wei B. Pathology of pain and its implications for therapeutic interventions. Signal Transduct Target Ther 2024; 9:155. [PMID: 38851750 PMCID: PMC11162504 DOI: 10.1038/s41392-024-01845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 06/10/2024] Open
Abstract
Pain is estimated to affect more than 20% of the global population, imposing incalculable health and economic burdens. Effective pain management is crucial for individuals suffering from pain. However, the current methods for pain assessment and treatment fall short of clinical needs. Benefiting from advances in neuroscience and biotechnology, the neuronal circuits and molecular mechanisms critically involved in pain modulation have been elucidated. These research achievements have incited progress in identifying new diagnostic and therapeutic targets. In this review, we first introduce fundamental knowledge about pain, setting the stage for the subsequent contents. The review next delves into the molecular mechanisms underlying pain disorders, including gene mutation, epigenetic modification, posttranslational modification, inflammasome, signaling pathways and microbiota. To better present a comprehensive view of pain research, two prominent issues, sexual dimorphism and pain comorbidities, are discussed in detail based on current findings. The status quo of pain evaluation and manipulation is summarized. A series of improved and innovative pain management strategies, such as gene therapy, monoclonal antibody, brain-computer interface and microbial intervention, are making strides towards clinical application. We highlight existing limitations and future directions for enhancing the quality of preclinical and clinical research. Efforts to decipher the complexities of pain pathology will be instrumental in translating scientific discoveries into clinical practice, thereby improving pain management from bench to bedside.
Collapse
Affiliation(s)
- Bo Cao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Qixuan Xu
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Yajiao Shi
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Ruiyang Zhao
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Hanghang Li
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Jie Zheng
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China
| | - Fengyu Liu
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - You Wan
- Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, 100191, China.
| | - Bo Wei
- Department of General Surgery, First Medical Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
2
|
Fila M, Pawlowska E, Szczepanska J, Blasiak J. Different Aspects of Aging in Migraine. Aging Dis 2023; 14:2028-2050. [PMID: 37199585 PMCID: PMC10676778 DOI: 10.14336/ad.2023.0313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 03/13/2023] [Indexed: 05/19/2023] Open
Abstract
Migraine is a common neurological disease displaying an unusual dependence on age. For most patients, the peak intensity of migraine headaches occurs in 20s and lasts until 40s, but then headache attacks become less intense, occur less frequently and the disease is more responsive to therapy. This relationship is valid in both females and males, although the prevalence of migraine in the former is 2-4 times greater than the latter. Recent concepts present migraine not only as a pathological event, but rather as a part of evolutionary adaptive response to protect organism against consequences of stress-induced brain energy deficit. However, these concepts do not fully explain that unusual dependence of migraine prevalence on age. Many aspects of aging, both molecular/cellular and social/cognitive, are interwound in migraine pathogenesis, but they neither explain why only some persons are affected by migraine, nor suggest any causal relationship. In this narrative/hypothesis review we present information on associations of migraine with chronological aging, brain aging, cellular senescence, stem cell exhaustion as well as social, cognitive, epigenetic, and metabolic aging. We also underline the role of oxidative stress in these associations. We hypothesize that migraine affects only individuals who have inborn, genetic/epigenetic, or acquired (traumas, shocks or complexes) migraine predispositions. These predispositions weakly depend on age and affected individuals are more prone to migraine triggers than others. Although the triggers can be related to many aspects of aging, social aging may play a particularly important role as the prevalence of its associated stress has a similar age-dependence as the prevalence of migraine. Moreover, social aging was shown to be associated with oxidative stress, important in many aspects of aging. In perspective, molecular mechanisms underlying social aging should be further explored and related to migraine with a closer association with migraine predisposition and difference in prevalence by sex.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Joanna Szczepanska
- Department of Pediatric Dentistry, Medical University of Lodz, 92-216 Lodz, Poland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236, Lodz, Poland.
| |
Collapse
|
3
|
Sudershan A, Pushap AC, Kumar H, Kumar P. A Comprehensive Investigation into the Association Between Mthfr C677t, A1298c, and Ace I/D Variants and Risk of Migraine: an Updated Meta-Analysis of Genetic Association Studies with Trial Sequential Analysis and Meta-Regression. J Mol Neurosci 2023; 73:884-911. [PMID: 37843720 DOI: 10.1007/s12031-023-02164-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 09/29/2023] [Indexed: 10/17/2023]
Abstract
Many homeostatic genes are thought to play a role in the susceptibility to migraine, making it a highly complex neurovascular disease. In this meta-analysis, our primary objective was to evaluate whether or not MTHFR variants (such as C677T and A1289C) and ACE I/D were associated with an increased risk of migraine. Using a PRISMA-based systematic literature-review guideline, internet sources such as PubMed and Google Scholar were searched to identify the genes of interest and migraine risk. To pool the data, odds ratios with 95% confidence intervals were calculated utilizing different genetic models. Cochran's Q Test and I2 statistics were used to access heterogeneity, while Begg's and Egger's tests were used to identify publication bias. All tests were two-sided, and a p-value of < 0.05 was regarded as statistically significant. The present meta-analysis observed that the C677T variant is significantly associated with the increased risk of migraine (allele model: OR:1.19, CI [1.07-1.33], I2 = 78%) and its clinical subtype i.e., MA (allele model: OR: 1.26, CI [1.09-1.45], I2 = 80%) in the overall population. Concerning the ACE- I/D, it significantly increased the risk of overall migraine and both clinical subtypes after utilizing the dominant genetic models (OR: 1.14, CI [1.01-1.29], I2% = 32). Concerning the MTHFR A1289C, only the codominant model (HR vs HT) and recessive model significantly increased the risk of overall migraine. Therefore, the findings of the present meta-analysis showed that MTHFR-C677T is an important risk factor for migraine and its clinical subtype.
Collapse
Affiliation(s)
- Amrit Sudershan
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, Gujarbasti, Jammu, India
- Department of Human Genetics, Sri Pratap College, Cluster University of Srinagar, Jammu and Kashmir, Kashmir, 190001, India
| | - Agar Chander Pushap
- Department of Education, Dakshina Bharat Hindi Prachar Sabha, Madras, 600017, India
| | - Hardeep Kumar
- Department of Neurology, Super Specialty Hospital, Jammu and Kashmir 180006, Jammu, India
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, Gujarbasti, Jammu, India.
- Department of Zoology, University of Jammu, Jammu and Kashmir 180006, Gujarbasti, Jammu, India.
| |
Collapse
|
4
|
Xie L, Xiao W, Fang H, Liu G. RAMP1 as a novel prognostic biomarker in pan-cancer and osteosarcoma. PLoS One 2023; 18:e0292452. [PMID: 37796823 PMCID: PMC10553254 DOI: 10.1371/journal.pone.0292452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023] Open
Abstract
Receptor activity modifying protein 1 (RAMP1) facilitates the localization of the calcitonin-like receptor (CLR) to the plasma membrane, but its role in osteosarcoma (OS) remains unclear. We evaluated the RAMP1 expression and prognostic value across different cancers, studying tumor immune infiltration. The prognostic value was analyzed using the GSE39058 and TARGET datasets. Differential gene expression was evaluated. a protein-protein interaction network was constructed, and gene set enrichment analysis was performed. The function of RAMP1 in the tumor microenvironment was analyzed, and its expression in OS cell lines was validated using quantitative real-time PCR. High RAMP1 expression correlated with poor prognosis relative to low RAMP1 expression (p < 0.05). Low RAMP1 expression correlated with an abundance of CD4+ memory-activated T cells. whereas a high expression level correlated with a high proportion of gamma-delta T cells (γδ T cells). Differentially expressed genes from TARGET was enriched in olfactory transduction pathways (normalized enrichment scores [NES] = 1.6998, p < 0.0001). RAMP1 expression negatively correlated with CD44 expression but positively correlated with TNFSF9 expression. The RAMP1 gene is substantially expressed in OS cells compared to the normal osteoblast cell line hFOB1.19. Thus, RAMP1 may be a prognostic biomarker and potential therapeutic target in OS.
Collapse
Affiliation(s)
- Long Xie
- Trauma Department of Orthopaedics, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Weiwei Xiao
- Gastroenterology Department, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Hangqi Fang
- Trauma Department of Orthopaedics, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| | - Guoqiang Liu
- Trauma Department of Orthopaedics, The Affiliated Yuebei People’s Hospital of Shantou University Medical College, Shaoguan, Guangdong Province, China
| |
Collapse
|
5
|
Zobdeh F, Eremenko II, Akan MA, Tarasov VV, Chubarev VN, Schiöth HB, Mwinyi J. The Epigenetics of Migraine. Int J Mol Sci 2023; 24:ijms24119127. [PMID: 37298078 DOI: 10.3390/ijms24119127] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 06/12/2023] Open
Abstract
Migraine is a complex neurological disorder and a major cause of disability. A wide range of different drug classes such as triptans, antidepressants, anticonvulsants, analgesics, and beta-blockers are used in acute and preventive migraine therapy. Despite a considerable progress in the development of novel and targeted therapeutic interventions during recent years, e.g., drugs that inhibit the calcitonin gene-related peptide (CGRP) pathway, therapy success rates are still unsatisfactory. The diversity of drug classes used in migraine therapy partly reflects the limited perception of migraine pathophysiology. Genetics seems to explain only to a minor extent the susceptibility and pathophysiological aspects of migraine. While the role of genetics in migraine has been extensively studied in the past, the interest in studying the role of gene regulatory mechanisms in migraine pathophysiology is recently evolving. A better understanding of the causes and consequences of migraine-associated epigenetic changes could help to better understand migraine risk, pathogenesis, development, course, diagnosis, and prognosis. Additionally, it could be a promising avenue to discover new therapeutic targets for migraine treatment and monitoring. In this review, we summarize the state of the art regarding epigenetic findings in relation to migraine pathogenesis and potential therapeutic targets, with a focus on DNA methylation, histone acetylation, and microRNA-dependent regulation. Several genes and their methylation patterns such as CALCA (migraine symptoms and age of migraine onset), RAMP1, NPTX2, and SH2D5 (migraine chronification) and microRNA molecules such as miR-34a-5p and miR-382-5p (treatment response) seem especially worthy of further study regarding their role in migraine pathogenesis, course, and therapy. Additionally, changes in genes including COMT, GIT2, ZNF234, and SOCS1 have been linked to migraine progression to medication overuse headache (MOH), and several microRNA molecules such as let-7a-5p, let-7b-5p, let-7f-5p, miR-155, miR-126, let-7g, hsa-miR-34a-5p, hsa-miR-375, miR-181a, let-7b, miR-22, and miR-155-5p have been implicated with migraine pathophysiology. Epigenetic changes could be a potential tool for a better understanding of migraine pathophysiology and the identification of new therapeutic possibilities. However, further studies with larger sample sizes are needed to verify these early findings and to be able to establish epigenetic targets as disease predictors or therapeutic targets.
Collapse
Affiliation(s)
- Farzin Zobdeh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| | - Ivan I Eremenko
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
- Advanced Molecular Technology, LLC, 354340 Moscow, Russia
| | - Mikail A Akan
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
- Advanced Molecular Technology, LLC, 354340 Moscow, Russia
| | | | | | - Helgi B Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| | - Jessica Mwinyi
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Husargatan 3, P.O. Box 593, 75124 Uppsala, Sweden
| |
Collapse
|
6
|
Sudershan A, Younis M, Sudershan S, Kumar P. Migraine as an inflammatory disorder with microglial activation as a prime candidate. Neurol Res 2023; 45:200-215. [PMID: 36197286 DOI: 10.1080/01616412.2022.2129774] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
BACKGROUND The lower threshold of neuronal hyperexcitability has been correlated with migraines for decades but as technology has progressed, it has now become conceivable to learn more about the migraine disease. Apart from the "cortical spreading depression" and "activation of the trigeminovascular system", inflammation has been increasingly recognized as a possible pathogenic process that may have the possibility to regulate the disease severity. Microglial cells, the prime candidate of the innate immune cells of central nervous tissue, has been associated with numerous diseases; including cancer, neurodegenerative disorders, and inflammatory disorders. AIM In this review, we have attempted to link the dot of various microglial activation signaling pathways to enlighten the correlation between microglial involvement and the progression of migraine conditions. METHOD A structured survey of research articles and review of the literature was done in the electronic databases of Google Scholar, PubMed, Springer, and Elsevier until 31 December 2021. RESULT & CONCLUSION Of 1136 articles found initially and screening of 1047 records, 47 studies were included for the final review. This review concluded that inflammation and microglial overexpression as the prime candidate, plays an important role in the modulation of migraine and are responsible for the progression toward chronification. Therefore, this increases the possibility of preventing migraine development and chronification by blocking microglia overexpression.
Collapse
Affiliation(s)
- Amrit Sudershan
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, India
| | - Mohd Younis
- Department of Human Genetics and Molecular Biology, Bharathair University, Coimbatore, 641046, India
| | - Srishty Sudershan
- Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
| | - Parvinder Kumar
- Institute of Human Genetics, University of Jammu, Jammu and Kashmir 180006, India.,Department of Zoology, University of Jammu, Jammu and Kashmir, 180006, India
| |
Collapse
|
7
|
Kraveishvili N, Kvaratskhelia E, Surmava S, Kvintradze M, Zarandia M, Gorgiladze T, Abzianidze E. DNA methylation status of interspersed repetitive sequences in patients with migraine. J Int Med Res 2023; 51:3000605231152109. [PMID: 36734246 PMCID: PMC9900668 DOI: 10.1177/03000605231152109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
OBJECTIVE To analyse the methylation status of the Long Interspersed Nuclear Element-1 (LINE-1) and Short Interspersed Nuclear Element Alu (Alu) of peripheral blood mononuclear cells (PBMCs) from patients with migraine compared with healthy control subjects. METHODS This case-control study recruited patients with migraine without aura and age-matched healthy control subjects. PBMCs were purified from peripheral blood samples. Methylation levels and patterns of LINE-1 and Alu sequences were evaluated using combined bisulfite restriction analysis-interspersed repetitive sequences polymerase chain reaction. RESULTS A total of 84 patients with migraine and 82 age-matched healthy controls were enrolled in the study. High levels of unmethylated cytosines in both the LINE-1 and Alu repetitive elements were observed in the migraine group compared with the control subjects. In addition, a significant difference was detected in the methylation level of LINE-1 between TT and CC genotype groups of the methylenetetrahydrofolate reductase gene. CONCLUSIONS These results suggest that analysis of epigenetic biomarkers in PBMCs may help to identify patients at a higher risk of migraine development.
Collapse
Affiliation(s)
- Nino Kraveishvili
- Department of Molecular and Medical Genetics, Tbilisi State
Medical University, Tbilisi, Georgia,Department of Neurology, Tbilisi Institute of Medicine, Tbilisi,
Georgia
| | - Eka Kvaratskhelia
- Department of Molecular and Medical Genetics, Tbilisi State
Medical University, Tbilisi, Georgia,Eka Kvaratskhelia, Department of Molecular
and Medical Genetics, Tbilisi State Medical University, 5 Khvichia str., 0160
Tbilisi, Georgia.
| | - Sandro Surmava
- Department of Molecular and Medical Genetics, Tbilisi State
Medical University, Tbilisi, Georgia
| | - Merab Kvintradze
- Department of Molecular and Medical Genetics, Tbilisi State
Medical University, Tbilisi, Georgia
| | - Maia Zarandia
- Department of Molecular and Medical Genetics, Tbilisi State
Medical University, Tbilisi, Georgia
| | - Tinatin Gorgiladze
- Department of Dentistry, Batumi Shota Rustaveli State
University, Batumi, Georgia
| | - Elene Abzianidze
- Department of Molecular and Medical Genetics, Tbilisi State
Medical University, Tbilisi, Georgia
| |
Collapse
|
8
|
Gallardo VJ, Vila-Pueyo M, Pozo-Rosich P. The impact of epigenetic mechanisms in migraine: Current knowledge and future directions. Cephalalgia 2023; 43:3331024221145916. [PMID: 36759209 DOI: 10.1177/03331024221145916] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
BACKGROUND Epigenetic mechanisms, including DNA methylation, microRNAs and histone modifications, may modulate the genetic expression in migraine and its interaction with internal and external factors, such as lifestyle and environmental changes. OBJECTIVE To summarize, contextualize and critically analyze the published literature on the current state of epigenetic mechanisms in migraine in a narrative review. FINDINGS The studies published to date have used different approaches and methodologies to determine the role of epigenetic mechanisms in migraine. Epigenetic changes seem to be involved in migraine and are increasing our knowledge of the disease. CONCLUSIONS Changes in DNA methylation, microRNA expression and histone modifications could be utilized as biomarkers that would be highly valuable for patient stratification, molecular diagnosis, and precision medicine in migraine.
Collapse
Affiliation(s)
- Víctor José Gallardo
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain
| | - Marta Vila-Pueyo
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain
| | - Patricia Pozo-Rosich
- Headache and Neurological Pain Research Group, Vall d'Hebron Institute of Research, Universitat Autònoma de Barcelona, Spain.,Headache Unit, Neurology Department, Vall d'Hebron University Hospital, Barcelona, Spain
| |
Collapse
|
9
|
Genetic overlap between temporomandibular disorders and primary headaches: A systematic review. JAPANESE DENTAL SCIENCE REVIEW 2022; 58:69-88. [PMID: 35242249 PMCID: PMC8881721 DOI: 10.1016/j.jdsr.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/18/2021] [Accepted: 02/07/2022] [Indexed: 12/14/2022] Open
Abstract
Primary headache disorders (PHD), specifically migraine, are strongly associated with temporomandibular disorders (TMD), sharing some patterns of orofacial pain. Both disorders have significant genetic contributions already studied. PRISMA guidelines were followed to conduct this systematic review, which comprehensively summarize and discuss the genetic overlap between TMD and PHD to aid future research in potential therapy targets. This review included eight original articles published between 2015 and 2020, written in English and related to either TMD and/or PHD. The genes simultaneously assessed in PHD and TMD studies were COMT, MTHFR, and ESR1. COMT was proved to play a critical role in TMD pathogenesis, as all studies have concluded about its impact on the occurrence of the disease, although no association with PHD was found. No proof on the impact of MTHFR gene regulation on either TMD or PHD was found. The most robust results are concerning the ESR1 gene, which is present in the genetic profile of both clinical conditions. This novel systematic review highlights not only the need for a clear understanding of the role of ESR1 and COMT genes in pain pathogenesis, but it also evaluates their potential as a promising therapeutic target to treat both pathologies.
Collapse
|
10
|
Chase R, de la Peña JB, Smith PR, Lawson J, Lou TF, Stanowick AD, Black BJ, Campbell ZT. Global analyses of mRNA expression in human sensory neurons reveal eIF5A as a conserved target for inflammatory pain. FASEB J 2022; 36:e22422. [PMID: 35747924 DOI: 10.1096/fj.202101933rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/28/2022] [Accepted: 06/08/2022] [Indexed: 11/11/2022]
Abstract
Nociceptors are a type of sensory neuron that are integral to most forms of pain. Targeted disruption of nociceptor sensitization affords unique opportunities to prevent pain. An emerging model for nociceptors are sensory neurons derived from human stem cells. Here, we subjected five groups to high-throughput sequencing: human induced pluripotent stem cells (hiPSCs) prior to differentiation, mature hiPSC-derived sensory neurons, mature co-cultures containing hiPSC-derived astrocytes and sensory neurons, mouse dorsal root ganglion (DRG) tissues, and mouse DRG cultures. Co-culture of nociceptors and astrocytes promotes expression of transcripts enriched in DRG tissues. Comparisons of the hiPSC models to tissue samples reveal that many key transcripts linked to pain are present. Markers indicative of a range of neuronal subtypes present in the DRG were detected in mature hiPSCs. Intriguingly, translation factors were maintained at consistently high expression levels across species and culture systems. As a proof of concept for the utility of this resource, we validated expression of eukaryotic initiation factor 5A (eIF5A) in DRG tissues and hiPSC samples. eIF5A is subject to a unique posttranslational hypusine modification required for its activity. Inhibition of hypusine biosynthesis prevented hyperalgesic priming by inflammatory mediators in vivo and diminished hiPSC activity in vitro. Collectively, our results illuminate the transcriptomes of hiPSC sensory neuron models. We provide a demonstration for this resource through our investigation of eIF5A. Our findings reveal hypusine as a potential target for inflammation associated pain in males.
Collapse
Affiliation(s)
- Rebecca Chase
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - June Bryan de la Peña
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Patrick R Smith
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Jennifer Lawson
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Tzu-Fang Lou
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Alexander D Stanowick
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Bryan J Black
- Department of Biomedical Engineering, University of Massachusetts Lowell, Lowell, Massachusetts, USA
| | - Zachary T Campbell
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA.,Center for Advanced Pain Studies, University of Texas at Dallas, Richardson, Texas, USA
| |
Collapse
|
11
|
Histone Deacetylase Inhibitors Counteract CGRP Signaling and Pronociceptive Sensitization in a Rat Model of Medication Overuse Headache. THE JOURNAL OF PAIN 2022; 23:1874-1884. [PMID: 35700873 DOI: 10.1016/j.jpain.2022.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 05/03/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022]
Abstract
Chronic triptan exposurein rodents recapitulates medication overuse headache (MOH), causing cephalic pain sensitization and trigeminal ganglion overexpression of pronociceptive proteins including CGRP. Because of these transcriptional derangements, as well as the emerging role of epigenetics in chronic pain, in the present study, we evaluated the effects of the histone deacetylase inhibitors (HDACis) panobinostat and givinostat, in rats chronically exposed to eletriptan for one month. Both panobinostat and givinostat counteracted overexpression of genes coding for CGRP and its receptor subunit RAMP1, having no effects on CLR and RCP receptor subunits in the trigeminal ganglion (TG) of eletriptan-exposed rats. Within the trigeminal nucleus caudalis (TNc), transcripts for these genes were neither upregulated by eletriptan nor altered by concomitant treatment with panobinostat or givinostat. HDACis counteracted hypersensitivity to capsaicin-induced vasodilatation in the trigeminal territory, as well as photophobic behavior and cephalic allodyniain eletriptan-exposed rats. Eletriptan did not affect CGRP, CLR, and RAMP1 expression in cultured trigeminal ganglia, whereas both inhibitors reduced transcripts for CLR and RAMP-1. The drugs, however, increased luciferase expression driven by CGRP promoter in cultured cells. Our findings provide evidence for a key role of HDACs and epigenetics in MOH pathogenesis, highlighting the therapeutic potential of HDAC inhibition in the prevention of migraine chronification.
Collapse
|
12
|
Fila M, Sobczuk A, Pawlowska E, Blasiak J. Epigenetic Connection of the Calcitonin Gene-Related Peptide and Its Potential in Migraine. Int J Mol Sci 2022; 23:ijms23116151. [PMID: 35682830 PMCID: PMC9181031 DOI: 10.3390/ijms23116151] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 02/06/2023] Open
Abstract
The calcitonin gene-related peptide (CGRP) is implicated in the pathogenesis of several pain-related syndromes, including migraine. Targeting CGRP and its receptor by their antagonists and antibodies was a breakthrough in migraine therapy, but the need to improve efficacy and limit the side effects of these drugs justify further studies on the regulation of CGRP in migraine. The expression of the CGRP encoding gene, CALCA, is modulated by epigenetic modifications, including the DNA methylation, histone modification, and effects of micro RNAs (miRNAs), circular RNAs, and long-coding RNAs (lncRNAs). On the other hand, CGRP can change the epigenetic profile of neuronal and glial cells. The promoter of the CALCA gene has two CpG islands that may be specifically methylated in migraine patients. DNA methylation and lncRNAs were shown to play a role in the cell-specific alternative splicing of the CALCA primary transcript. CGRP may be involved in changes in neural cytoarchitecture that are controlled by histone deacetylase 6 (HDAC6) and can be related to migraine. Inhibition of HDAC6 results in reduced cortical-spreading depression and a blockade of the CGRP receptor. CGRP levels are associated with the expression of several miRNAs in plasma, making them useful peripheral markers of migraine. The fundamental role of CGRP in inflammatory pain transmission may be epigenetically regulated. In conclusion, epigenetic connections of CGRP should be further explored for efficient and safe antimigraine therapy.
Collapse
Affiliation(s)
- Michal Fila
- Department of Developmental Neurology and Epileptology, Polish Mother’s Memorial Hospital Research Institute, 93-338 Lodz, Poland;
| | - Anna Sobczuk
- Department of Gynaecology and Obstetrics, Medical University of Lodz, 93-338 Lodz, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 92-217 Lodz, Poland;
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
- Correspondence:
| |
Collapse
|
13
|
A High Methylation Level of a Novel −284 bp CpG Island in the RAMP1 Gene Promoter Is Potentially Associated with Migraine in Women. Brain Sci 2022; 12:brainsci12050526. [PMID: 35624913 PMCID: PMC9139045 DOI: 10.3390/brainsci12050526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/10/2022] Open
Abstract
Migraine is a complex neurovascular disorder affecting one billion people worldwide, mainly females. It is characterized by attacks of moderate to severe headache pain, with associated symptoms. Receptor activity modifying protein (RAMP1) is part of the Calcitonin Gene-Related Peptide (CGRP) receptor, a pharmacological target for migraine. Epigenetic processes, such as DNA methylation, play a role in clinical presentation of various diseases. DNA methylation occurs mostly in the gene promoter and can control gene expression. We investigated the methylation state of the RAMP1 promoter in 104 female blood DNA samples: 54 migraineurs and 50 controls. We treated DNA with sodium bisulfite and performed PCR, Sanger Sequencing, and Epigenetic Sequencing Methylation (ESME) software analysis. We identified 51 CpG dinucleotides, and 5 showed methylation variability. Migraineurs had a higher number of individuals with all five CpG methylated when compared to controls (26% vs. 16%), although non-significant (p = 0.216). We also found that CpG −284 bp, related to the transcription start site (TSS), showed higher methylation levels in cases (p = 0.011). This CpG may potentially play a role in migraine, affecting RAMP1 transcription or receptor malfunctioning and/or altered CGRP binding. We hope to confirm this finding in a larger cohort and establish an epigenetic biomarker to predict female migraine risk.
Collapse
|
14
|
Rubino E, Boschi S, Giorgio E, Pozzi E, Marcinnò A, Gallo E, Roveta F, Grassini A, Brusco A, Rainero I. Analysis of the DNA methylation pattern of the promoter region of calcitonin gene-related peptide 1 gene in patients with episodic migraine: An exploratory case-control study. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 11:100089. [PMID: 35445161 PMCID: PMC9014443 DOI: 10.1016/j.ynpai.2022.100089] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Recent studies suggested that epigenetic mechanisms, including DNA methylation, may be involved in migraine pathogenesis. The calcitonin gene-related peptide (CGRP), encoded by calcitonin gene-related peptide 1 (CALCA) gene, plays a key role in the disease. The aim of the study was to evaluate DNA methylation of CALCA gene in patients with episodic migraine. 22 patients with episodic migraine (F/M 15/7, mean age 39.7 ± 13.4 years) and 20 controls (F/M 12/8, mean age 40.5 ± 14.8 years) were recruited. Genomic DNA was extracted from peripheral blood. Cytosine-to-thymine conversion was obtained with sodium bisulfite. The methylation pattern of two CpG islands in the promoter region of CALCA gene was analyzed. No difference of methylation of the 30 CpG sites at the distal region of CALCA promoter was observed between migraineurs and controls. Interestingly, in patients with episodic migraine the methylation level was lower in 2 CpG sites at the proximal promoter region (CpG -1461, p = 0.037, and -1415, p = 0.035, respectively). Furthermore, DNA methylation level at different CpG sites correlates with several clinical characteristics of the disease, as age at onset, presence of nausea/vomiting, depression and anxiety (p < 0.05). In conclusion, we found that DNA methylation profile in two CpG sites at the proximal promoter region of CALCA is lower in migraineurs when compared to controls. Intriguingly, the -1415 hypomethylated unit is located at the CREB binding site, a nuclear transcription factor. In addition, we found a correlation between the level of CALCA methylation and several clinical features of migraine. Further studies with larger sample size are needed to confirm these results.
Collapse
Affiliation(s)
- Elisa Rubino
- Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, Italy
| | - Silvia Boschi
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Italy
| | - Elisa Pozzi
- Department of Medical Sciences, University of Torino, Italy
| | - Andrea Marcinnò
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Italy
| | - Erica Gallo
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Italy
| | - Fausto Roveta
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Italy
| | - Alberto Grassini
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Italy
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Italy
| | - Innocenzo Rainero
- Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, Italy.,Department of Neuroscience "Rita Levi Montalcini", University of Torino, Italy
| |
Collapse
|
15
|
Cámara MS, Martín Bujanda M, Mendioroz Iriarte M. Epigenetic changes in headache. NEUROLOGÍA (ENGLISH EDITION) 2021; 36:369-376. [PMID: 34714235 DOI: 10.1016/j.nrleng.2017.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 10/26/2022] Open
Abstract
INTRODUCTION Multiple factors, including both genetic and environmental mechanisms, appear to play a role in the aetiology of headache. An interesting area of study is the possible involvement of epigenetic mechanisms in headache development and the transformation to chronic headache, and the potential role of these factors as a therapeutic target. METHODS We performed a literature review of the involvement of different epigenetic mechanisms in headache, mainly using the Medline/PubMed database. To this end, we used the following English search terms: headache, migraine, epigenetics, DNA methylation, histones, non-coding RNA, and miRNA. RESULTS A total of 15 English-language publications related to the above terms were obtained. CONCLUSION There is limited but consistent evidence of the relationship between epigenetics and headache; it is therefore essential to continue research of epigenetic changes in headache. This may help to understand the pathophysiology of headache and even to identify candidate biomarkers and new, more effective, therapeutic targets.
Collapse
Affiliation(s)
- M S Cámara
- Servicio de Neurología, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain
| | - M Martín Bujanda
- Servicio de Neurología, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain
| | - M Mendioroz Iriarte
- Servicio de Neurología, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, Spain; Laboratorio de Neuroepigenética, Navarrabiomed, IdiSNA, Pamplona, Spain.
| |
Collapse
|
16
|
Insights into the role of epigenetic mechanisms in migraine: the future perspective of disease management. THE NUCLEUS 2021. [DOI: 10.1007/s13237-021-00366-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
17
|
Scuteri D, Corasaniti MT, Tonin P, Nicotera P, Bagetta G. Role of CGRP pathway polymorphisms in migraine: a systematic review and impact on CGRP mAbs migraine therapy. J Headache Pain 2021; 22:87. [PMID: 34330208 PMCID: PMC8325208 DOI: 10.1186/s10194-021-01295-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Background the interest of clinical reaseach in polymorphisms and epigenetics in migraine has been growing over the years. Due to the new era of preventative migraine treatment opened by monoclonal antibodies (mAbs) targeting the signaling of the calcitonin-gene related peptide (CGRP), the present systematic review aims at identifying genetic variants occurring along the CGRP pathway and at verifying whether these can affect the clinical features and the course of disease and the responsiveness of patients to therapy. Methods the literature search has been conducted consulting the most relevant scientific databases, i.e. PubMed/MEDLINE, Scopus, Web of Science, the Human Genome Epidemiology (HuGE) Published Literature database (Public Health Genomics Knowledge Base) and Clinicaltrials.gov from database inception until April 1, 2021. The process of identification and selection of the studies included in the analysis has followed the PRISMA (Preferred Reporting Items for Systematic reviews and Meta-Analyses) criteria for systematic reviews and meta-analyses and the guidance from the Human Genome Epidemiology Network for reporting gene-disease associations. Results the search has retrieved 800 results, among which only 7 studies have met the eligibility criteria for inclusion in the analysis. The latter are case-control studies of genetic association and an exploratory analysis and two polymorphisms have been detected as the most recurring: the rs3781719 (T > C) of the CALC A gene encoding CGRP and the rs7590387 of the gene encoding the receptor activity-modifying protein (RAMP) 1 (C > G). Only one study assessing the methylation pattern with regard to CGRP pathway has been found from the search. No genetic association studies investigating the possible effect of genetic variants affecting CGRP signaling on the responsiveness to the most recent pharmacological approaches, i.e. anti-CGRP(R) mAbs, gepants and ditans, have been published. According to the Human Genome Epidemiology (HuGE) systematic reviews and meta-analyses risk-of-bias score for genetic association studies, the heterogeneity between and across studies and the small sample size do not allow to draw conclusions and prompt future studies. Conclusions adequately powered, good quality genetic association studies are needed to understand the impact of genetic variants affecting the pathway of CGRP on migraine susceptibility and clinical manifestation and to predict the response to therapy in terms of efficacy and safety.
Collapse
Affiliation(s)
- Damiana Scuteri
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.,Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | | | - Paolo Tonin
- Regional Center for Serious Brain Injuries, S. Anna Institute, Crotone, Italy
| | | | - Giacinto Bagetta
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036, Rende, Italy.
| |
Collapse
|
18
|
Skovbjerg G, Roostalu U, Hansen HH, Lutz TA, Le Foll C, Salinas CG, Skytte JL, Jelsing J, Vrang N, Hecksher-Sørensen J. Whole-brain mapping of amylin-induced neuronal activity in receptor activity-modifying protein 1/3 knockout mice. Eur J Neurosci 2021; 54:4154-4166. [PMID: 33905587 DOI: 10.1111/ejn.15254] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/08/2021] [Accepted: 04/16/2021] [Indexed: 09/29/2022]
Abstract
The pancreatic hormone amylin plays a central role in regulating energy homeostasis and glycaemic control by stimulating satiation and reducing food reward, making amylin receptor agonists attractive for the treatment of metabolic diseases. Amylin receptors consist of heterodimerized complexes of the calcitonin receptor and receptor-activity modifying proteins subtype 1-3 (RAMP1-3). Neuronal activation in response to amylin dosing has been well characterized, but only in selected regions expressing high levels of RAMPs. The current study identifies global brain-wide changes in response to amylin and by comparing wild type and RAMP1/3 knockout mice reveals the importance of RAMP1/3 in mediating this response. Amylin dosing resulted in neuronal activation as measured by an increase in c-Fos labelled cells in 20 brain regions, altogether making up the circuitry of neuronal appetite regulation (e.g., area postrema (AP), nucleus of the solitary tract (NTS), parabrachial nucleus (PB), and central amygdala (CEA)). c-Fos response was also detected in distinct nuclei across the brain that typically have not been linked with amylin signalling. In RAMP1/3 knockout amylin induced low-level neuronal activation in seven regions, including the AP, NTS and PB, indicating the existence of RAMP1/3-independent mechanisms of amylin response. Under basal conditions RAMP1/3 knockout mice show reduced neuronal activity in the hippocampal formation as well as reduced hippocampal volume, suggesting a role for RAMP1/3 in hippocampal physiology and maintenance. Altogether these data provide a global map of amylin response in the mouse brain and establishes the significance of RAMP1/3 receptors in relaying this response.
Collapse
Affiliation(s)
| | | | | | - Thomas A Lutz
- Institute of Veterinary Physiology, University of Zurich, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Christelle Le Foll
- Institute of Veterinary Physiology, University of Zurich, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
19
|
Cainazzo MM, Baraldi C, Ferrari A, Lo Castro F, Pani L, Guerzoni S. Erenumab for the preventive treatment of chronic migraine complicated with medication overuse headache: an observational, retrospective, 12-month real-life study. Neurol Sci 2021; 42:4193-4202. [PMID: 33547541 DOI: 10.1007/s10072-021-05105-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/30/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Erenumab is a monoclonal antibody blocking the calcitonin gene-related peptide receptor, which has been approved for the preventive treatment of chronic migraine (CM). The aim of this study was to explore the safety and effectiveness of erenumab in patients suffering from CM and medication overuse headache (MOH) in a real-life setting, up to 1 year. METHODS Data regarding 81 patients treated with erenumab were retrospectively analyzed. Every 3 months, the following variables were collected: the mean number of headache days per month (headache index (HI)), the average number of painkillers taken per month (analgesic consumption (AC)), the mean number of days with painkiller consumption (number of days on medication (NDM)), the headache intensity (numeric rating scale (NRS) score), the 6-item Headache Impact Test (HIT-6), and the Self-Reported Instrument to Assess Work-Related Difficulties in Patients With Migraine (HEADWORK) scores. RESULTS The HI, AC, and NDM and the NRS, HIT-6, and HEADWORK scores were significantly lower at every time point from the 3rd month onward compared to baseline (all P < 0.0001). No significant differences were found between patients who underwent painkiller detoxification before starting erenumab and those who did not (all P > 0.05). No significant differences were found between patients taking erenumab in combination with other preventive treatments and the ones taking it alone (all P ≥ 0.05). Five patients dropped out because of adverse events, which resolved after stopping erenumab. CONCLUSION Erenumab was safe and effective for CM complicated with MOH. Painkiller withdrawal and the association with other preventive treatment(s) seem useless.
Collapse
Affiliation(s)
- Maria Michela Cainazzo
- Medical Toxicology-Headache and Drug Abuse Research Center, Department of Specialized Medicine, AOU Policlinico di Modena, Via del Pozzo 71, 41124, Modena, Italy
| | - Carlo Baraldi
- Doctoral School of Neuroscience, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41124, Modena, Italy.
| | - Anna Ferrari
- Medical Toxicology-Headache and Drug Abuse Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41124, Modena, Italy
| | - Flavia Lo Castro
- Post-graduated School of Pharmacology and Clinical Toxicology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41124, Modena, Italy
| | - Luca Pani
- Medical Toxicology-Headache and Drug Abuse Research Center, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41124, Modena, Italy.,Pharmacology Unit, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41124, Modena, Italy.,Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, USA.,VeraSci, Durham, NC, USA
| | - Simona Guerzoni
- Medical Toxicology-Headache and Drug Abuse Research Center, Department of Specialized Medicine, AOU Policlinico di Modena, Via del Pozzo 71, 41124, Modena, Italy
| |
Collapse
|
20
|
Polli A, Godderis L, Ghosh M, Ickmans K, Nijs J. Epigenetic and miRNA Expression Changes in People with Pain: A Systematic Review. THE JOURNAL OF PAIN 2020; 21:763-780. [DOI: 10.1016/j.jpain.2019.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 01/13/2023]
|
21
|
Abstract
Migraine is characterized by recurrent attacks of disabling headaches, often accompanied by sensory and motor disturbances. Clinical manifestations of migraine are influenced by dietary behaviors and dietary elements. Several dietary triggers for migraine have been identified, leading to the definition of strategies such as elimination diets, ketogenic diets, and comprehensive diets, mainly to help prevent migraine. Although inconsistency is present in the literature and no consensus exists, the available data are promising in supporting beneficial dietary interventions for some migraine patients. Several factors influence the net outcome, including age, sex, genetics, and environmental factors. Advancement in understanding the underlying mechanisms of migraine pathogenesis and how dietary factors can interfere with those mechanisms has encouraged investigators to consider diet as a disease-modifying agent, which may also interfere with the gut–brain axis or the epigenetics of migraine. Future work holds potential for phenotyping migraine patients and offering personalized recommendations in line with biopsychosocial models for the management of migraine. Diet, as an important element of lifestyle, is a modifiable aspect that needs further attention. Well-designed, systematic, and mechanism-driven dietary research is needed to provide evidence-based dietary recommendations specific to migraine. This narrative review aims to present the current status and future perspective on diet and migraine, in order to stimulate further research and awareness.
Collapse
|
22
|
Goel D, Un Nisa K, Reza MI, Rahman Z, Aamer S. Aberrant DNA Methylation Pattern may Enhance Susceptibility to Migraine: A Novel Perspective. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2019; 18:504-515. [DOI: 10.2174/1871527318666190809162631] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 06/04/2019] [Accepted: 07/27/2019] [Indexed: 12/17/2022]
Abstract
In today’s world, migraine is one of the most frequent disorders with an estimated world prevalence of 14.7% characterized by attacks of a severe headache making people enfeebled and imposing a big socioeconomic burden. The pathophysiology of a migraine is not completely understood however there are pieces of evidence that epigenetics performs a primary role in the pathophysiology of migraine. Here, in this review, we highlight current evidence for an epigenetic link with migraine in particular DNA methylation of numerous genes involved in migraine pathogenesis. Outcomes of various studies have explained the function of DNA methylation of a several migraine related genes such as RAMP1, CALCA, NOS1, ESR1, MTHFR and NR4A3 in migraine pathogenesis. Mentioned data suggested there exist a strong association of DNA methylation of migraine-related genes in migraine. Although we now have a general understanding of the role of epigenetic modifications of a numerous migraine associated genes in migraine pathogenesis, there are many areas of active research are of key relevance to medicine. Future studies into the complexities of epigenetic modifications will bring a new understanding of the mechanisms of migraine processes and open novel approaches towards therapeutic intervention.
Collapse
Affiliation(s)
- Divya Goel
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, Guwahati, India
| | - Kaiser Un Nisa
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, SAS Nagar, India
| | - Mohammad Irshad Reza
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, SAS Nagar, India
| | - Ziaur Rahman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, SAS Nagar, India
| | - Shaikh Aamer
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education & Research, SAS Nagar, India
| |
Collapse
|
23
|
Fila M, Chojnacki C, Chojnacki J, Blasiak J. Is an "Epigenetic Diet" for Migraines Justified? The Case of Folate and DNA Methylation. Nutrients 2019; 11:E2763. [PMID: 31739474 PMCID: PMC6893742 DOI: 10.3390/nu11112763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/15/2022] Open
Abstract
Migraines are a common disease with limited treatment options and some dietary factors are recognized to trigger headaches. Although migraine pathogenesis is not completely known, aberrant DNA methylation has been reported to be associated with its occurrence. Folate, an essential micronutrient involved in one-carbon metabolism and DNA methylation, was shown to have beneficial effects on migraines. Moreover, the variability of the methylenetetrahydrofolate reductase gene, important in both folate metabolism and migraine pathogenesis, modulates the beneficial effects of folate for migraines. Therefore, migraine could be targeted by a folate-rich, DNA methylation-directed diet, but there are no data showing that beneficial effects of folate consumption result from its epigenetic action. Furthermore, contrary to epigenetic drugs, epigenetic diets contain many compounds, some yet unidentified, with poorly known or completely unknown potential to interfere with the epigenetic action of the main dietary components. The application of epigenetic diets for migraines and other diseases requires its personalization to the epigenetic profile of a patient, which is largely unknown. Results obtained so far do not warrant the recommendation of any epigenetic diet as effective in migraine prevention and therapy. Further studies including a folate-rich diet fortified with valproic acid, another modifier of epigenetic profile effective in migraine prophylaxis, may help to clarify this issue.
Collapse
Affiliation(s)
- Michal Fila
- Department of Neurology, Polish Mother Memorial Hospital, Research Institute, 93-338 Lodz, Poland;
| | - Cezary Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.); (J.C.)
| | - Jan Chojnacki
- Department of Clinical Nutrition and Gastroenterological Diagnostics, Medical University of Lodz, 90-647 Lodz, Poland; (C.C.); (J.C.)
| | - Janusz Blasiak
- Department of Molecular Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| |
Collapse
|
24
|
Polli A, Ickmans K, Godderis L, Nijs J. When Environment Meets Genetics: A Clinical Review of the Epigenetics of Pain, Psychological Factors, and Physical Activity. Arch Phys Med Rehabil 2019; 100:1153-1161. [DOI: 10.1016/j.apmr.2018.09.118] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
|
25
|
Polli A, Ickmans K, Godderis L, Nijs J. The emerging field of epigenetics and its relevance for the physiotherapy profession. J Physiother 2019; 65:1-2. [PMID: 30551954 DOI: 10.1016/j.jphys.2018.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/20/2018] [Indexed: 12/12/2022] Open
Affiliation(s)
- Andrea Polli
- Pain in Motion international research group; Department of Physiotherapy, Human Physiology and Anatomy, Free University Brussels, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; Flanders Research Foundation (FWO), Belgium.
| | - Kelly Ickmans
- Pain in Motion international research group; Department of Physiotherapy, Human Physiology and Anatomy, Free University Brussels, Belgium; Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium
| | - Lode Godderis
- Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium; External Service for Prevention and Protection at Work, IDEWE, Heverlee, Belgium
| | - Jo Nijs
- Pain in Motion international research group; Department of Physiotherapy, Human Physiology and Anatomy, Free University Brussels, Belgium; Department of Physical Medicine and Physiotherapy, University Hospital Brussels, Belgium
| |
Collapse
|
26
|
Abstract
INTRODUCTION Multiple factors, including both genetic and environmental mechanisms, appear to play a role in the aetiology of headache. An interesting area of study is the possible involvement of epigenetic mechanisms in headache development and the transformation to chronic headache, and the potential role of these factors as a therapeutic target. METHODS We performed a literature review of the involvement of different epigenetic mechanisms in headache, mainly using the Medline/PubMed database. To this end, we used the following English search terms: headache, migraine, epigenetics, DNA methylation, histones, non-coding RNA, and miRNA. RESULTS A total of 15 English-language publications related to the above terms were obtained. CONCLUSION There is limited but consistent evidence of the relationship between epigenetics and headache; it is therefore essential to continue research of epigenetic changes in headache. This may help to understand the pathophysiology of headache and even to identify candidate biomarkers and new, more effective, therapeutic targets.
Collapse
Affiliation(s)
- M S Cámara
- Servicio de Neurología, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, España
| | - M Martín Bujanda
- Servicio de Neurología, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, España
| | - M Mendioroz Iriarte
- Servicio de Neurología, Complejo Hospitalario de Navarra, IdiSNA, Pamplona, España; Laboratorio de Neuroepigenética, Navarrabiomed, IdiSNA, Pamplona, España.
| |
Collapse
|
27
|
Haplotype-based, case–control study of the receptor (calcitonin) activity-modifying protein (RAMP) 1 gene in essential hypertension. J Hum Hypertens 2017; 31:361-365. [DOI: 10.1038/jhh.2016.96] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 08/13/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022]
|
28
|
Sazci A, Sazci G, Sazci B, Ergul E, Idrisoglu HA. Nicotinamide-N-Methyltransferase gene rs694539 variant and migraine risk. J Headache Pain 2016; 17:93. [PMID: 27726107 PMCID: PMC5056911 DOI: 10.1186/s10194-016-0688-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/06/2016] [Indexed: 12/15/2022] Open
Abstract
Background Migraine is a common neurovascular disorder affecting 10 to 20 % of the world population usually subdivided into migraine with auro (MA) and migraine without auro (MO). Homocysteine is involved in the pathophysiology of a number of neurological disorders. Elevated levels of homocysteine in the plasma is produced by the MTHFR gene rs 1801133 and rs 1801131 variants as well as the NNMT gene rs 694539 variant. Methods With the polymerase chain reaction-restriction fragment length polymorphism method developed recently in our laboratory, we were able to show an association between the NNMT gene rs694539 variant and migraine for the first time. Results Here we report the association of the Nicotinamide-N-methyltransferase gene (NNMT) rs694539 variant with migraine in a case–control study of 433 patients with migraine and 229 healthy controls (χ2 = 6.076, P = 0.048). After stratification, we were able only to show an association between the NNMT gene rs694539 variant and female patients with migraine on the genotype and allelic levels. However there was no association in male patients with migraine (χ2 = 1.054, P = 0.590). Conclusions Consequently our results clearly indicate that the NNMT gene rs694539 variant is a genetic risk factor for migraine.
Collapse
Affiliation(s)
- Ali Sazci
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Kocaeli, Kocaeli, 41380, Turkey.
| | - Gensay Sazci
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Kocaeli, Kocaeli, 41380, Turkey
| | - Bilgen Sazci
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Kocaeli, Kocaeli, 41380, Turkey
| | - Emel Ergul
- Department of Medical Biology and Genetics, Faculty of Medicine, University of Kocaeli, Kocaeli, 41380, Turkey
| | - Halil Atilla Idrisoglu
- Department of Neurology, Istanbul Faculty of Medicine, University of Istanbul, Istanbul, Capa, 34290, Turkey
| |
Collapse
|
29
|
Zhang LM, Dong Z, Yu SY. Migraine in the era of precision medicine. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:105. [PMID: 27127758 DOI: 10.21037/atm.2016.03.13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Migraine is a common neurovascular disorder in the neurologic clinics whose mechanisms have been explored for several years. The aura has been considered to be attributed to cortical spreading depression (CSD) and dysfunction of the trigeminovascular system is the key factor that has been considered in the pathogenesis of migraine pain. Moreover, three genes (CACNA1A, ATP1A2, and SCN1A) have come from studies performed in individuals with familial hemiplegic migraine (FHM), a monogenic form of migraine with aura. Therapies targeting on the neuropeptids and genes may be helpful in the precision medicine of migraineurs. 5-hydroxytryptamine (5-HT) receptor agonists and calcitonin gene-related peptide (CGRP) receptor antagonists have demonstrated efficacy in the acute specific treatment of migraine attacks. Therefore, ongoing and future efforts to find new vulnerabilities of migraine, unravel the complexity of drug therapy, and perform biomarker-driven clinical trials are necessary to improve outcomes for patients with migraine.
Collapse
Affiliation(s)
- Lv-Ming Zhang
- 1 Department of Neurology, Aerospace Center Hospital/Aerospace Clinical Medical College Affiliated to Peking University, Beijing 100049, China ; 2 Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Zhao Dong
- 1 Department of Neurology, Aerospace Center Hospital/Aerospace Clinical Medical College Affiliated to Peking University, Beijing 100049, China ; 2 Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| | - Sheng-Yuan Yu
- 1 Department of Neurology, Aerospace Center Hospital/Aerospace Clinical Medical College Affiliated to Peking University, Beijing 100049, China ; 2 Department of Neurology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|