1
|
Wang X, Gao X, Ouyang X, Zhang Y, Zhang Z, Qi W, Zhao Y, Mou X, Luo X, Wang Z, Liao H, Zeng L, Li D, Zhao L. Structural and functional changes of insula subregions in migraine without aura and their relationships with pain perception. Sci Rep 2025; 15:13342. [PMID: 40247072 PMCID: PMC12006336 DOI: 10.1038/s41598-025-98193-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Migraine is a highly prevalent and disabling neurological disorder characterized by abnormal encoding of pain perception, linked to structural and functional abnormalities in the insula. Insular subregions play critical but distinct roles in this process, however, the specific patterns and mechanisms remain elusive in migraineurs. In this study, voxel-based morphometry and seed-based functional connectivity (FC) were employed to investigate structural and functional alterations in insula subdivisions in 44 patients with migraine without aura (MWoA) compared with 51 matched healthy controls. Pain perception was evaluated using the intensity, frequency, and duration of migraine. Compared with healthy controls, patients exhibited(1) reduced gray matter volume in the bilateral dorsal anterior insula (dAI);(2) increased FC between the dAI/posterior insula and bilateral precuneus, the left dAI and left middle temporal gyrus, the left ventral AI and superior/middle frontal gyrus;(3) decreased FC between the left dAI and left middle frontal gyrus, left middle occipital gyrus and right pallidum. Moreover, the left dAI was correlated with the duration and frequency of migraine, the right dAI was correlated with the intensity and duration of migraine. Our results provide novel evidence in support of the insula abnormality hypothesis in migraine and highlight the pivotal role of alterations in the dAI in pain perception in migraineurs.
Collapse
Affiliation(s)
- Xiao Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture and Moxibustion Clinical Medical Research Center of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoyu Gao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xu Ouyang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yutong Zhang
- The Third people's hospital of Chengdu, Chengdu, Sichuan, China
| | - Zhiyang Zhang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wenchuan Qi
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Acupuncture and Moxibustion Clinical Medical Research Center of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yu Zhao
- The First People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Xin Mou
- The First People's Hospital of Chengdu, Chengdu, Sichuan, China
| | - Xiangdong Luo
- Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Ziwen Wang
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Huaqiang Liao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Lichuan Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Dehua Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ling Zhao
- Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- Acupuncture and Moxibustion Clinical Medical Research Center of Sichuan Province, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China.
- Chengdu University of Traditional Chinese Medicine, No. 1166 Liutai Avenue, Chengdu, 610075, Sichuan, China.
| |
Collapse
|
2
|
Grodzka O, Dzagoevi K, Rees T, Cabral G, Chądzyński P, Di Antonio S, Sochań P, MaassenVanDenBrink A, Lampl C. Migraine with and without aura-two distinct entities? A narrative review. J Headache Pain 2025; 26:77. [PMID: 40229683 PMCID: PMC11995571 DOI: 10.1186/s10194-025-01998-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Accepted: 03/10/2025] [Indexed: 04/16/2025] Open
Abstract
Migraine is a primary headache disorder, with a prevalence estimated at approximately 15% globally. According to the International Classification of Headache Disorders, 3rd edition (ICHD3), there are three significant types of migraine: migraine without aura (MO), migraine with aura (MA), and chronic migraine (CM), the former being the most common. Migraine diagnosis is based on official criteria specific to each type. Although a lot is already known about the origin of migraine aura, its pathophysiology is still an object of research.Long-term discussions have been held about MO and MA, with some evidence for the same underlying pathogenesis of both and other arguments against it. In this narrative review, we decided to analyse multiple factors from the perspective of similarities and differences between these two types of migraine. The aim was to understand better the bases underlying both types of migraine.Aspects such as genetics, molecular bases, relation with hormones, epidemiological and clinical features, neuroimaging, neurophysiology, treatment response, and migraine complications are covered to find similarities and differences between MO and MA. Although epidemiology shares similarities for both types, there are slight alterations in sex and age distribution. Genetics and pathogenesis showed some crucial differences. Conditions, such as vestibular symptoms and depression, were found to correlate similarly with both types of migraine. For some features, including increased cardiovascular risk, the tendency appeared to be the same; however, migraine types differ in the strength of correlation. Finally, in cases such as hormones, the influence has shown opposite directions. Therefore, although migraine with and without aura are considered two types of the same disease, more research should focus on their differences, thus finally enabling better specific treatment options for both types of migraine.
Collapse
Affiliation(s)
- Olga Grodzka
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Warsaw, Poland
- Doctoral School, Medical University of Warsaw, Warsaw, Poland
| | - Ketevan Dzagoevi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Tayla Rees
- Headache Group, Wolfson Sensory Pain and Regeneration Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Goncalo Cabral
- Neurology Department, Hospital de Egas Moniz, Unidade Local de Saúde Lisboa Ocidental, Lisbon, Portugal
| | - Piotr Chądzyński
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Warsaw, Poland
| | - Stefano Di Antonio
- Department of Health Science and Technology, Center for Pain and Neuroplasticity (CNAP), SMI, School of Medicine, Aalborg University, Aalborg, Denmark
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Genoa, Italy
| | - Patryk Sochań
- Department of Neurology, Faculty of Medicine and Dentistry, Medical University of Warsaw, Warsaw, Poland
| | - Antoinette MaassenVanDenBrink
- Division of Vascular Medicine and Pharmacology, Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Christian Lampl
- Department of Neurology, Konventhospital Barmherzige Brüder, Linz, Austria.
- Headache Medical Center Linz, Linz, Austria.
| |
Collapse
|
3
|
Wang TX, Huang XB, Fu T, Gao YJ, Zhang D, Liu LD, Zhang YM, Lin H, Yuan JM, Mao CN, Wu XY. Cerebral morphometric alterations predict the outcome of migraine diagnosis and subtyping: a radiomics analysis. BMC Med Imaging 2025; 25:110. [PMID: 40197302 PMCID: PMC11978170 DOI: 10.1186/s12880-025-01645-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 03/18/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND This study aimed to identify cerebral radiomic features related to migraine diagnosis and subtyping into migraine with aura (MwA) and migraine without aura (MwoA) and to develop predictive models based on these markers. METHOD We retrospectively analyzed MR imaging from 88 migraine patients (32 MwA and 56 MwoA) and 49 healthy control subjects (HCs). Features representing the gray matter morphometry and diffusion properties were extracted from participants via histogram analysis. These features were put through an all-relevant feature selection procedure within cross-validation loops to identify features with significant discriminative power for migraine diagnosis and subtyping. Based on the selected features, the predictive ability of the random forest models constructed from the previous sample was tested in an independent sample of 30 patients (10 MwA) and 17 HCs. RESULT No overall differences in total brain volume or gray matter volume were revealed between patients and HCs, or between MwA and MwoA (all P values > 0.05). Six features significantly differed between patients and HCs for migraine diagnosis, and four features distinguished MwA from MwoA for subtyping (all P values < 0.001). Four features were significantly correlated with headache severity score (all P values < 0.01). Based on these relevant features, the random forest models achieved accuracies of 80.9% in distinguishing patients from HCs and 76.7% in differentiating MwA from MwoA in the testing cohort. CONCLUSION Our findings suggest cerebral radiomic alterations in migraine patients may potentially serve as a biomarker to assist in migraine diagnosis and subtyping, contributing to personalized treatment strategy. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Tong-Xing Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, Jiangsu Province, 210006, China
| | - Xiao-Bin Huang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, Jiangsu Province, 210006, China
| | - Tong Fu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, Jiangsu Province, 210006, China
| | - Yu-Jia Gao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, Jiangsu Province, 210006, China
| | - Di Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, Jiangsu Province, 210006, China
| | - Lin-Dong Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, Jiangsu Province, 210006, China
| | - Ya-Mei Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, Jiangsu Province, 210006, China
| | - Hai Lin
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jian-Min Yuan
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Cun-Nan Mao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, Jiangsu Province, 210006, China.
| | - Xin-Ying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No. 68, Changle Road, Nanjing, Jiangsu Province, 210006, China.
| |
Collapse
|
4
|
Lauinger AR, Sepe JJ. Vascularization, Innervation, and Inflammation: Pathways Connecting the Heart-Brain Axis and Implications in a Clinical Setting. Biomedicines 2025; 13:171. [PMID: 39857755 PMCID: PMC11762153 DOI: 10.3390/biomedicines13010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
With an aging population, the incidence of both ischemic heart disease and strokes have become the most prevalent diseases globally. These diseases have similar risk factors, such as hypertension, diabetes, and smoking. However, there is also evidence of a relationship between the heart and the brain, referred to as the heart-brain axis. In this relationship, dysfunction of either organs can lead to injury to the other. There are several proposed physiologies to explain this relationship. These theories usually involve vascular, neuromodulatory, and inflammatory processes; however, few articles have explored and compared these different mechanisms of interaction between the heart and brain. A better understanding of the heart-brain axis can inform physicians of current and future treatment and preventive care options in heart and brain pathologies. The relationship between the brain and heart depends on inflammation, vascular anatomy and function, and neuromodulation. The pathways connecting these organs often become injured or dysfunctional when a major pathology, such as a myocardial infarction or stroke, occurs. This leads to long-term impacts on the patient's overall health and risk for future disease. This study summarizes the current research involved in the heart-brain axis, relates these interactions to different diseases, and proposes future research in the field of neurocardiology. Conditions of the brain and heart are some of the most prevalent diseases. Through understanding the connection between these two organs, we can help inform patients and physicians of novel therapeutics for these pathologies.
Collapse
Affiliation(s)
- Alexa R. Lauinger
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;
| | - Joseph J. Sepe
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Raggi A, Leonardi M, Arruda M, Caponnetto V, Castaldo M, Coppola G, Della Pietra A, Fan X, Garcia-Azorin D, Gazerani P, Grangeon L, Grazzi L, Hsiao FJ, Ihara K, Labastida-Ramirez A, Lange KS, Lisicki M, Marcassoli A, Montisano DA, Onan D, Onofri A, Pellesi L, Peres M, Petrušić I, Raffaelli B, Rubio-Beltran E, Straube A, Straube S, Takizawa T, Tana C, Tinelli M, Valeriani M, Vigneri S, Vuralli D, Waliszewska-Prosół M, Wang W, Wang Y, Wells-Gatnik W, Wijeratne T, Martelletti P. Hallmarks of primary headache: part 1 - migraine. J Headache Pain 2024; 25:189. [PMID: 39482575 PMCID: PMC11529271 DOI: 10.1186/s10194-024-01889-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 10/15/2024] [Indexed: 11/03/2024] Open
Abstract
BACKGROUND AND AIM Migraine is a common disabling conditions which, globally, affects 15.2% of the population. It is the second cause of health loss in terms of years lived with disability, the first among women. Despite being so common, it is poorly recognised and too often undertreated. Specialty centres and neurologists with specific expertise on headache disorders have the knowledge to provide specific care: however, those who do not regularly treat patients with migraine will benefit from a synopsis on the most relevant and updated information about this condition. This paper presents a comprehensive view on the hallmarks of migraine, from genetics and diagnostic markers, up to treatments and societal impact, and reports the elements that identify migraine specific features. MAIN RESULTS The most relevant hallmark of migraine is that it has common and individual features together. Besides the known clinical manifestations, migraine presentation is heterogeneous with regard to frequency of attacks, presence of aura, response to therapy, associated comorbidities or other symptoms, which likely reflect migraine heterogeneous genetic and molecular basis. The amount of therapies for acute and for prophylactic treatment is really wide, and one of the difficulties is with finding the best treatment for the single patient. In addition to this, patients carry out different daily life activities, and might show lifestyle habits which are not entirely adequate to manage migraine day by day. Education will be more and more important as a strategy of brain health promotion, because this will enable reducing the amount of subjects needing specialty care, thus leaving it to those who require it in reason of refractory condition or presence of comorbidities. CONCLUSIONS Recognizing the hallmarks of migraine and the features of single patients enables prescribing specific pharmacological and non-pharmacological treatments. Medical research on headaches today particularly suffers from the syndrome of single-disease approach, but it is important to have a cross-sectional and joint vision with other close specialties, in order to treat our patients with a comprehensive approach that a heterogeneous condition like migraine requires.
Collapse
Affiliation(s)
- Alberto Raggi
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy.
| | - Matilde Leonardi
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Marco Arruda
- Department of Neuroscience, Glia Institute, Ribeirão Preto, Brazil
| | - Valeria Caponnetto
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Matteo Castaldo
- Department of Health Science and Technology, Faculty of Medicine, CNAP, Center for Sensory-Motor Interaction (SMI), Aalborg University, Gistrup, Denmark
- Department of Medicine and Surgery, Clinical Psychophysiology and Clinical Neuropsychology Labs, Parma University, Parma, Italy
| | - Gianluca Coppola
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino ICOT, Latina, Italy
| | - Adriana Della Pietra
- Dept. Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Xiangning Fan
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - David Garcia-Azorin
- Department of Medicine, Toxicology and Dermatology, Faculty of Medicine, University of Valladolid, Valladolid, Spain
- Department of Neurology, Hospital Universitario Río Hortega, Valladolid, Spain
| | - Parisa Gazerani
- Department of Health Science and Technology, Faculty of Medicine, CNAP, Center for Sensory-Motor Interaction (SMI), Aalborg University, Gistrup, Denmark
- Department of Life Sciences and Health, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway
| | - Lou Grangeon
- Neurology Department, CHU de Rouen, Rouen, France
| | - Licia Grazzi
- Neuroalgology Unit and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Fu-Jung Hsiao
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Keiko Ihara
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
- Japanese Red Cross Ashikaga Hospital, Tochigi, Japan
| | - Alejandro Labastida-Ramirez
- Division of Neuroscience, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - Kristin Sophie Lange
- Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Marco Lisicki
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Alessia Marcassoli
- Neurology, Public Health and Disability Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Celoria 11, Milan, 20133, Italy
| | - Danilo Antonio Montisano
- Neuroalgology Unit and Headache Center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Dilara Onan
- Department of Physiotherapy and Rehabilitation, Faculty of Heath Sciences, Yozgat Bozok University, Yozgat, Turkey
| | - Agnese Onofri
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Lanfranco Pellesi
- Department of Public Health Clinical Pharmacology, Pharmacy and Environmental Medicine, University of Southern Denmark, Odense, Denmark
| | - Mario Peres
- Hospital Israelita Albert Einstein, São Paulo, Brazil
- Instituto de Psiquiatria; Hospital das Clínicas da Faculdade de Medicina da USP, Sao Paulo, Brazil
| | - Igor Petrušić
- Laboratory for Advanced Analysis of Neuroimages, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Bianca Raffaelli
- Department of Neurology, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
- Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität Zu Berlin, Berlin, Germany
| | - Eloisa Rubio-Beltran
- Headache Group, Wolfson SPaRC, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Andreas Straube
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sebastian Straube
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Tsubasa Takizawa
- Department of Neurology, Keio University School of Medicine, Tokyo, Japan
| | - Claudio Tana
- Center of Excellence On Headache and Geriatrics Clinic, SS Annunziata Hospital of Chieti, Chieti, Italy
| | - Michela Tinelli
- Care Policy Evaluation Centre (CPEC), London School of Economics and Political Science, London, UK
| | - Massimiliano Valeriani
- Systems Medicine Department, University of Tor Vergata, Rome, Italy
- Developmental Neurology Unit, IRCSS Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Simone Vigneri
- Neurology and Neurophysiology Service - Pain Medicine Unit, Santa Maria Maddalena Hospital, Occhiobello, Italy
| | - Doga Vuralli
- Department of Neurology and Algology, Neuropsychiatry Center, Neuroscience and Neurotechnology Center of Excellence (NÖROM), Gazi University Faculty of Medicine, Ankara, Türkiye
| | | | - Wei Wang
- Department of Neurology, Headache Center, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
- Department of Neurology, Headache Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yonggang Wang
- Beijing Tiantan Hospital Affiliated to Capital Medical University, Beijing, China
| | | | - Tissa Wijeratne
- Department of Neurology, Sunshine Hospital, St Albans, VIC, Australia
- Australian Institute of Migraine, Pascoe Vale South, VIC, Australia
| | | |
Collapse
|
6
|
Wu CH, Lee PL, Wang YF, Lirng JF, Chen ST, Lin CJ, Wang SJ, Chou KH, Chen SP. Phasic perfusion dynamics among migraine subtypes: a multimodel arterial spin labeling investigation. J Headache Pain 2024; 25:167. [PMID: 39363159 PMCID: PMC11448297 DOI: 10.1186/s10194-024-01880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Migraine-related perfusion changes are documented but inconsistent across studies due to limited sample size and insufficient phenotyping. The phasic and spatial dynamics across migraine subtypes remains poorly characterized. This study aimed to determine spatiotemporal dynamics of gray matter (GM) perfusion in migraine. METHODS We prospectively recruited episodic (EM) and chronic migraine (CM) patients, diagnosed with the International Headache Society criteria and healthy controls (HCs) between 2021 and 2023 from the headache center in a tertiary medical center, and adjacent communities. Magnetic resonance (3-tesla) arterial spin labeling (ASL) was conducted for whole brain cerebral blood flow (CBF) in all participants. The voxel-wise and whole brain gray matter (GM) CBF were compared between subgroups. Spatial pattern analysis of CBF and its correlations with headache frequency were investigated regarding different migraine phases and subtypes. Sex- and age-adjusted voxel-wise and whole brain GM comparisons were performed between HCs and different EM and CM phases. Spatial pattern analysis was conducted by CBF clusters with phasic differences and spin permutation test. Correlations between headache frequency and CBF were investigated regarding different EM and CM phases. RESULTS Totally 344 subjects (172 EM, 120 CM, and 52 HCs) were enrolled. Higher CBF in different anatomical locations was identified in ictal EM and CM. The combined panels of the specific locations with altered CBF in ictal EM on receiver operating characteristic curve analysis demonstrated areas under curve of 0.780 (vs. HCs) and 0.811 (vs. preictal EM). The spatial distribution of ictal-interictal CBF alteration of EM and CM were not correlated with each other (p = 0.665; r = - 0.018). Positive correlations between headache frequency and CBF were noted in ictal EM and CM regarding whole GM and specific anatomical locations. CONCLUSIONS Patients with migraine exhibited unique spatiotemporal CBF dynamics across different phases and distinct between subtypes. The findings provide neurobiological insights into how selected anatomical structures engage in a migraine attack and adapt to plastic change of repeated attacks along with chronicity.
Collapse
Grants
- V113C-120, V113E004-1, V112C-113 & V112E-004-1 (to SJW); V112D67-001-MY3-2 & V113C-058 (to SPC); V112B-007 (to CHW) Taipei Veterans General Hospital
- V113C-120, V113E004-1, V112C-113 & V112E-004-1 (to SJW); V112D67-001-MY3-2 & V113C-058 (to SPC); V112B-007 (to CHW) Taipei Veterans General Hospital
- V113C-120, V113E004-1, V112C-113 & V112E-004-1 (to SJW); V112D67-001-MY3-2 & V113C-058 (to SPC); V112B-007 (to CHW) Taipei Veterans General Hospital
- CI-112-2 (to CHW) Yen Tjing Ling Medical Foundation
- N/A Professor Tsuen CHANG's Scholarship Program from Medical Scholarship Foundation In Memory Of Professor Albert Ly-Young Shen
- N/A Vivian W. Yen Neurological Foundation
- No.112-V-B-039; No. 113-V-B-020 (to CHW) Yin Shu-Tien Foundation Taipei Veterans General Hospital-National Yang Ming Chiao Tung University Excellent Physician Scientists Cultivation Program
- NSTC 108-2314-B-010-022 -MY3, 110-2326-B-A49A-501-MY3 & 112-2314-B-A49-037-MY3 (to SPC); 110-2321-B-010-005-, 111-2321-B-A49-004, 111-2321-B-A49-011, 111-2314-B-A49-069-MY3, 111-2314-B-075-086-MY3, 111-2314-B-A49-090-MY3 & 112-2321-B-075-007 (to SJW); 113-2314-B-A49-070- & 112-2314-B-A49-056- (to KHC); 111-2314-B-075-025 -MY3 & 110-2314-B-075-005 (to CHW) National Science and Technology Council
- NSTC 108-2314-B-010-022 -MY3, 110-2326-B-A49A-501-MY3 & 112-2314-B-A49-037-MY3 (to SPC); 110-2321-B-010-005-, 111-2321-B-A49-004, 111-2321-B-A49-011, 111-2314-B-A49-069-MY3, 111-2314-B-075-086-MY3, 111-2314-B-A49-090-MY3 & 112-2321-B-075-007 (to SJW); 113-2314-B-A49-070- & 112-2314-B-A49-056- (to KHC); 111-2314-B-075-025 -MY3 & 110-2314-B-075-005 (to CHW) National Science and Technology Council
- NSTC 108-2314-B-010-022 -MY3, 110-2326-B-A49A-501-MY3 & 112-2314-B-A49-037-MY3 (to SPC); 110-2321-B-010-005-, 111-2321-B-A49-004, 111-2321-B-A49-011, 111-2314-B-A49-069-MY3, 111-2314-B-075-086-MY3, 111-2314-B-A49-090-MY3 & 112-2321-B-075-007 (to SJW); 113-2314-B-A49-070- & 112-2314-B-A49-056- (to KHC); 111-2314-B-075-025 -MY3 & 110-2314-B-075-005 (to CHW) National Science and Technology Council
- NSTC 108-2314-B-010-022 -MY3, 110-2326-B-A49A-501-MY3 & 112-2314-B-A49-037-MY3 (to SPC); 110-2321-B-010-005-, 111-2321-B-A49-004, 111-2321-B-A49-011, 111-2314-B-A49-069-MY3, 111-2314-B-075-086-MY3, 111-2314-B-A49-090-MY3 & 112-2321-B-075-007 (to SJW); 113-2314-B-A49-070- & 112-2314-B-A49-056- (to KHC); 111-2314-B-075-025 -MY3 & 110-2314-B-075-005 (to CHW) National Science and Technology Council
- N/A Brain Research Center, National Yang Ming Chiao Tung University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- N/A Brain Research Center, National Yang Ming Chiao Tung University from The Featured Areas Research Center Program within the framework of the Higher Education Sprout Project by the Ministry of Education (MOE) in Taiwan
- MOHW107-TDU-B-211-123001, MOHW 108-TDU-B-211-133001 and MOHW112-TDU-B-211-144001 Ministry of Health and Welfare
- VGHUST-112-G1-2-1 (to SJW) Veterans General Hospitals and University System of Taiwan Joint Research Program
- Professor Tsuen CHANG’s Scholarship Program from Medical Scholarship Foundation In Memory Of Professor Albert Ly-Young Shen
Collapse
Affiliation(s)
- Chia-Hung Wu
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Pei-Lin Lee
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yen-Feng Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei, 11217, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St. Beitou Dist., Taipei, 112304, Taiwan
| | - Jiing-Feng Lirng
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shu-Ting Chen
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chung-Jung Lin
- Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shuu-Jiun Wang
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei, 11217, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St. Beitou Dist., Taipei, 112304, Taiwan.
| | - Kun-Hsien Chou
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St. Beitou Dist., Taipei, 112304, Taiwan.
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Shih-Pin Chen
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, No. 201, Sec. 2, Shipai Rd., Beitou District, Taipei, 11217, Taiwan.
- Brain Research Center, National Yang Ming Chiao Tung University, No. 155, Sec. 2, Linong St. Beitou Dist., Taipei, 112304, Taiwan.
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan.
| |
Collapse
|
7
|
Chen T, Bai X, Wang W, Zhang X, Pei X, Zhang X, Yuan Z, Zhao Y, Yang Q, Wang Y, Sui B. Gamma-aminobutyric acid and glutamate/glutamine levels in the dentate nucleus and periaqueductal gray in new daily persistent headache: a magnetic resonance spectroscopy study. J Headache Pain 2024; 25:142. [PMID: 39210271 PMCID: PMC11360868 DOI: 10.1186/s10194-024-01845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Magnetic resonance spectroscopy (MRS) studies have indicated that the imbalance between gamma-aminobutyric acid (GABA) and glutamate/glutamine (Glx) levels was the potential cause of migraine development. However, the changes in the GABA and Glx levels in patients with New daily persistent headache (NDPH) remain unclear. This study aimed to investigate the changes in GABA and Glx levels in the periaqueductal gray (PAG) and dentate nucleus (DN) in patients with NDPH using the MEGA-PRESS sequence. METHODS Twenty-one NDPH patients and 22 age- and sex-matched healthy controls (HCs) were included and underwent a 3.0T MRI examination, using the MEGA-PRESS sequence to analyze GABA and Glx levels of PAG and DN. The correlations between these neurotransmitter levels and clinical characteristics were also analyzed. RESULTS There were no significant differences in the GABA+/Water, GABA+/Cr, Glx/Water, and Glx/Cr levels in both PAG and DN between the two groups (all p > 0.05). Moderate-severe NDPH patients had lower levels of Glx/Water (p = 0.034) and Glx/Cr (p = 0.012) in DN than minimal-mild NDPH patients. In patients with NDPH, higher Glx/Water levels in the PAG (r=-0.471, p = 0.031, n = 21) and DN (r=-0.501, p = 0.021, n = 21) and higher Glx/Cr levels in DN (r=-0.483, p = 0.026, n = 21) were found to be correlated with lower Visual Analogue Scale scores. Additionally, a positive correlation was observed between the GABA+/Cr levels in the DN and the Generalized Anxiety Disorder-7 scores (r = 0.519, p = 0.039, n = 16). CONCLUSIONS The results of this study indicated that the GABA and Glx levels in the PAG and DN may not be the primary contributor to the development of NDPH. The correlations between certain clinical scales and the neurotransmitter levels may be derived from the NDPH related symptoms.
Collapse
Affiliation(s)
- Tong Chen
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xiaoyan Bai
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wei Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Xue Zhang
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xun Pei
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Xueyan Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ziyu Yuan
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
| | - Yuanbin Zhao
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China
- Department of Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Qi Yang
- Department of Radiology, Beijing Chaoyang Hospital, Key Lab of Medical Engineering for Cardiovascular Disease, Capital Medical University, Ministry of Education, Beijing, China
| | - Yonggang Wang
- Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
| | - Binbin Sui
- Tiantan Neuroimaging Center of Excellence, China National Clinical Research Center for Neurological Diseases, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070, China.
- Department of Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.
| |
Collapse
|
8
|
Fernandes O, Ramos LR, Acchar MC, Sanchez TA. Migraine aura discrimination using machine learning: an fMRI study during ictal and interictal periods. Med Biol Eng Comput 2024; 62:2545-2556. [PMID: 38637358 DOI: 10.1007/s11517-024-03080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Functional magnetic resonance imaging (fMRI) studies on migraine with aura are challenging due to the rarity of patients with triggered cases. This study optimized methodologies to explore differences in ictal and interictal spatiotemporal activation patterns based on visual stimuli using fMRI in two patients with unique aura triggers. Both patients underwent separate fMRI sessions during the ictal and interictal periods. The Gaussian Process Classifier (GPC) was used to differentiate these periods by employing a machine learning temporal embedding approach and spatiotemporal activation patterns based on visual stimuli. When restricted to visual and occipital regions, GPC had an improved performance, with accuracy rates for patients A and B of roughly 86-90% and 77-81%, respectively (p < 0.01). The algorithm effectively differentiated visual stimulation and rest periods and identified times when aura symptoms manifested, as evident from the varying predicted probabilities in the GPC models. These findings contribute to our understanding of the role of visual processing and brain activity patterns in migraine with aura and the significance of temporal embedding techniques in examining aura phenomena. This finding has implications for diagnostic tools and therapeutic techniques, especially for patients suffering from aura symptoms.
Collapse
Affiliation(s)
- Orlando Fernandes
- Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Laboratório de Neurofisiolgia e Comportamento, Departamento de Fisiologia e Farmacologia, Instituto Biomédico - Universidade Federal Fluminense, Nitéroi, RJ, Brazil
| | - Lucas Rego Ramos
- Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana Calixto Acchar
- Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Universidade Estacio de Sá (UNESA), Rio de Janeiro, RJ, Brazil
| | - Tiago Arruda Sanchez
- Laboratory of Neuroimaging and Psychophysiology, Instituto de Psiquiatria, Faculdade de Medicina - Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
9
|
Schramm S, Börner C, Reichert M, Hoffmann G, Kaczmarz S, Griessmair M, Jung K, Berndt MT, Zimmer C, Baum T, Heinen F, Bonfert MV, Sollmann N. Perfusion imaging by arterial spin labeling in migraine: A literature review. J Cereb Blood Flow Metab 2024; 44:1253-1270. [PMID: 38483125 PMCID: PMC11342727 DOI: 10.1177/0271678x241237733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 08/15/2024]
Abstract
Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) method for the assessment of cerebral blood flow (CBF). This review summarizes recent ASL-based investigations in adult and pediatric patients with migraine with aura, migraine without aura, and chronic migraine. A systematic search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted within PubMed and reference sections of articles identified from April 2014 to November 2022. Out of 236 initial articles, 20 remained after filtering, encompassing data from 1155 subjects in total. Cross-sectional studies in adults showed inconsistent results, while longitudinal studies demonstrated that cerebral perfusion changes over the migraine cycle can be tracked using ASL. The most consistent findings were observed in ictal states among pediatric migraine patients, where studies showed hypoperfusion matching aura symptoms during early imaging followed by hyperperfusion. Overall, ASL is a useful but currently underutilized modality for evaluating cerebral perfusion in patients with migraine. The generalizability of results is currently limited by heterogeneities regarding study design and documentation of clinical variables (e.g., relation of attacks to scanning timepoint, migraine subtypes). Future MRI studies should consider augmenting imaging protocols with ASL to further elucidate perfusion dynamics in migraine.
Collapse
Affiliation(s)
- Severin Schramm
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Corinna Börner
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Miriam Reichert
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Gabriel Hoffmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Stephan Kaczmarz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Philips GmbH Market DACH, Hamburg, Germany
| | - Michael Griessmair
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Kirsten Jung
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria T Berndt
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Thomas Baum
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Florian Heinen
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
| | - Michaela V Bonfert
- LMU Hospital, Dr. von Hauner Children’s Hospital, Department of Pediatric Neurology and Developmental Medicine, Munich, Germany
- LMU Center for Children with Medical Complexity – iSPZ Hauner, Ludwig Maximilian University, Munich, Germany
| | - Nico Sollmann
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- TUM-Neuroimaging Center, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Ulm, Ulm, Germany
| |
Collapse
|
10
|
Veréb D, Szabó N, Kincses B, Szücs-Bencze L, Faragó P, Csomós M, Antal S, Kocsis K, Tuka B, Kincses ZT. Imbalanced temporal states of cortical blood-oxygen-level-dependent signal variability during rest in episodic migraine. J Headache Pain 2024; 25:114. [PMID: 39014299 PMCID: PMC11251240 DOI: 10.1186/s10194-024-01824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Migraine has been associated with functional brain changes including altered connectivity and activity both during and between headache attacks. Recent studies established that the variability of the blood-oxygen-level-dependent (BOLD) signal is an important attribute of brain activity, which has so far been understudied in migraine. In this study, we investigate how time-varying measures of BOLD variability change interictally in episodic migraine patients. METHODS Two independent resting state functional MRI datasets acquired on 3T (discovery cohort) and 1.5T MRI scanners (replication cohort) including 99 episodic migraine patients (n3T = 42, n1.5T=57) and 78 healthy controls (n3T = 46, n1.5T=32) were analyzed in this cross-sectional study. A framework using time-varying measures of BOLD variability was applied to derive BOLD variability states. Descriptors of BOLD variability states such as dwell time and fractional occupancy were calculated, then compared between migraine patients and healthy controls using Mann-Whitney U-tests. Spearman's rank correlation was calculated to test associations with clinical parameters. RESULTS Resting-state activity was characterized by states of high and low BOLD signal variability. Migraine patients in the discovery cohort spent more time in the low variability state (mean dwell time: p = 0.014, median dwell time: p = 0.022, maximum dwell time: p = 0.013, fractional occupancy: p = 0.013) and less time in the high variability state (mean dwell time: p = 0.021, median dwell time: p = 0.021, maximum dwell time: p = 0.025, fractional occupancy: p = 0.013). Higher uptime of the low variability state was associated with greater disability as measured by MIDAS scores (maximum dwell time: R = 0.45, p = 0.007; fractional occupancy: R = 0.36, p = 0.035). Similar results were observed in the replication cohort. CONCLUSION Episodic migraine patients spend more time in a state of low BOLD variability during rest in headache-free periods, which is associated with greater disability. BOLD variability states show potential as a replicable functional imaging marker in episodic migraine.
Collapse
Affiliation(s)
- Dániel Veréb
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary.
| | - Nikoletta Szabó
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Bálint Kincses
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Medicine Essen, Essen, Germany
- Department of Neurology, Center for Translational Neuro- and Behavioural Sciences, University Medicine Essen, Essen, Germany
| | - Laura Szücs-Bencze
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Péter Faragó
- Department of Neurology, Albert Szent-Györgyi Health Centre, University of Szeged, Szeged, Hungary
| | - Máté Csomós
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Szabolcs Antal
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Krisztián Kocsis
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Bernadett Tuka
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| | - Zsigmond Tamás Kincses
- Department of Radiology, Albert Szent-Györgyi Health Centre, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary
| |
Collapse
|
11
|
Chen Z, Liu Y, Lin C, Li Z, Shan J, Duan Z, Rong L, Wei X, Xiao L, Liu H. Aberrant cerebral blood flow and functional connectivity in patients with vestibular migraine: a resting-state ASL and fMRI study. J Headache Pain 2024; 25:84. [PMID: 38773396 PMCID: PMC11107056 DOI: 10.1186/s10194-024-01792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/15/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Prior neuroimaging studies on vestibular migraine (VM) have extensively certified the functional and structural alterations in multiple brain regions and networks. However, few studies have assessed the cerebral blood flow (CBF) in VM patients using arterial spin labeling (ASL). The present study aimed to investigate CBF and functional connectivity (FC) alterations in VM patients during interictal periods. METHODS We evaluated 52 VM patients and 46 healthy controls (HC) who received resting-state pseudo-continuous ASL and functional magnetic resonance imaging (fMRI) scanning. Comparisons of voxel-based CBF and seed-based FC were performed between the two groups. Brain regions showed significant group differences in CBF analyses were chosen as seeds in FC analyses. Additionally, the associations between abnormal imaging results and clinical features were explored. RESULTS Compared with HC, VM patients showed higher normalized CBF in the right precentral gyrus (PreCG), left postcentral gyrus (PostCG), left superior frontal gyrus and bilateral insular (p < 0.05, FDR corrected). Furthermore, VM patients exhibited increased FC between the right PreCG and areas of the left PostCG, left cuneus and right lingual gyrus (p < 0.05, FDR corrected). In addition, we observed decreased FC between the left insular and regions of the left thalamus and right anterior cingulate cortex, as well as increased FC between the left insular and right fusiform gyrus in VM patients (p < 0.05, FDR corrected). Moreover, these variations in brain perfusion and FC were significantly correlated with multiple clinical features including frequency of migraine symptoms, frequency of vestibular symptoms and disease duration of VM (all p < 0.05). CONCLUSIONS Patients with VM during interictal period showed hyperperfusion and abnormal resting-state FC in brain regions potentially contributed to disrupted multi-sensory and autonomic processing, as well as impaired ocular motor control, pain modulation and emotional regulation. Our study provided novel insights into the complex neuropathology of VM from a CBF perspective.
Collapse
Affiliation(s)
- Zhengwei Chen
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Yueji Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Cunxin Lin
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Zhining Li
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Junjun Shan
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Zuowei Duan
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Liangqun Rong
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Xiue Wei
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China
| | - Lijie Xiao
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China.
| | - Haiyan Liu
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, No.32, Meijian Road, Xuzhou, Jiangsu, 221006, China.
| |
Collapse
|
12
|
Li C, Sun W, Xu L, Chen C, Fang L, Tang Y, Zhang Q, Shi H, Liu T. Cerebral blood flow changes in maintenance hemodialysis patients with restless legs syndrome and their clinical significance:a cross-sectional case-control study. BMC Neurol 2024; 24:128. [PMID: 38627680 PMCID: PMC11020200 DOI: 10.1186/s12883-024-03636-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
OBJECTIVE Restless legs syndrome (RLS) stands as a prevalent neurological complication within maintenance hemodialysis (MHD) patients. However, the alterations in cerebral blood flow (CBF) among MHD-RLS patients remain uncharted. Through the utilization of the arterial spin labeling (ASL) technique, we evaluated the fluctuations in CBF within distinct brain regions and analyzed the risk factors for the development of RLS in MHD patients in the context of the clinic. METHODS Thirty-one MHD patients with concomitant RLS (MHD-RLS group) and thirty-one non-RLS patients matched based on age, gender, as well as cognitive function (MHD-nRLS group) were included. Through image preprocessing and data analysis, the changes in CBF values in distinct brain regions were obtained, and the CBF values of brain regions with substantial differences between the two groups were correlated with the RLS scores. Furthermore, the differences in baseline data were compared, and through the utilization of multifactorial logistic regression, the independent risk factors for the development of RLS were examined. RESULTS Compared with the MHD-nRLS group, the MHD-RLS group had increased CBF in the right superior temporal gyrus, reduced CBF in the right hippocampus, left middle frontal gyrus, inferior frontal gyrus of right triangle, middle frontal gyrus of left orbit, left precentral gyrus, and left precuneus. Only left precentral gyrus CBF were negatively correlated with RLS scores after correction for dialysis duration(r = -0.436, P = 0.016). Accordingly, multifactorial regression analysis by stepwise method yielded that the left precentral gyrus CBF values(OR: 0.968, 95%CI: 0.944-0.993, P = 0.012) remained an independent risk factor for RLS in MHD patients. In addition, the results showed that hemodialysis duration (OR: 1.055, 95%CI: 1.014-1.098, P = 0.008) and serum iron levels (OR: 0.685, 95%CI: 0.551-0.852, P = 0.001) were also risk factors for the development of RLS. CONCLUSION Patients afflicted with MHD-RLS exhibit alterations in CBF across several brain regions. Notably, the left precentral gyrus might serve as a pivotal region influencing the onset of RLS among MHD patients. Furthermore, extended hemodialysis duration and a relative insufficiency in serum iron levels independently contribute as risk factors for RLS development within the MHD patient population.
Collapse
Affiliation(s)
- Chen Li
- Department of Nephrology, The Affiliated Changzhou NO.2, People's Hospital of Nanjing Medical University , Changzhou, Jiangsu, China
- Graduate College, Dalian Medical University, Dalian, China
| | - Wei Sun
- Graduate College, Dalian Medical University, Dalian, China
- Department of Radiology, The Affiliated Changzhou NO.2, People's Hospital of Nanjing Medical University , Changzhou, Jiangsu, China
| | - Linfang Xu
- Hemodialysis Center, The Affiliated Changzhou NO.2, People's Hospital of Nanjing Medical University , Changzhou, Jiangsu, China
| | - Cheng Chen
- Department of Nephrology, The Affiliated Changzhou NO.2, People's Hospital of Nanjing Medical University , Changzhou, Jiangsu, China
| | - Li Fang
- Department of Nephrology, The Affiliated Changzhou NO.2, People's Hospital of Nanjing Medical University , Changzhou, Jiangsu, China
| | - Yushang Tang
- Department of Nephrology, The Affiliated Changzhou NO.2, People's Hospital of Nanjing Medical University , Changzhou, Jiangsu, China
| | - Qiaoyang Zhang
- Department of Psychology, The Affiliated Changzhou No. 2, People's Hospital of Nanjing Medical University , Changzhou, Jiangsu, China
| | - Haifeng Shi
- Department of Radiology, The Affiliated Changzhou NO.2, People's Hospital of Nanjing Medical University , Changzhou, Jiangsu, China.
| | - Tongqiang Liu
- Department of Nephrology, The Affiliated Changzhou NO.2, People's Hospital of Nanjing Medical University , Changzhou, Jiangsu, China.
| |
Collapse
|
13
|
Shen Z, Zhang S, Yu W, Yue M, Hong C. Optical Coherence Tomography Angiography: Revolutionizing Clinical Diagnostics and Treatment in Central Nervous System Disease. Aging Dis 2024; 16:AD.2024.0112. [PMID: 38300645 PMCID: PMC11745452 DOI: 10.14336/ad.2024.0112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/12/2024] [Indexed: 02/02/2024] Open
Abstract
Optical coherence tomography angiography (OCTA), as a new generation of non-invasive and efficient fundus imaging technology, can provide non-invasive assessment of vascular lesions in the retina and choroid. In terms of anatomy and development, the retina is referred to as an extension of the central nervous system (CNS). CNS diseases are closely related to changes in fundus structure and blood vessels, and direct visualization of fundus structure and blood vessels provides an effective "window" for CNS research. This has important practical significance for identifying the characteristic changes of various CNS diseases on OCTA in the future, and plays a key role in promoting early screening, diagnosis, and monitoring of disease progression in CNS diseases. This article reviews relevant fundus studies by comparing and summarizing the unique advantages and existing limitations of OCTA in various CNS disease patients, in order to demonstrate the clinical significance of OCTA in the diagnosis and treatment of CNS diseases.
Collapse
Affiliation(s)
- Zeqi Shen
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People’s Hospital), Hangzhou, Zhejiang, China.
| | - Sheng Zhang
- Center for Rehabilitation Medicine, Department of Neurology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Weitao Yu
- The Second School of Clinical Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China.
| | - Mengmeng Yue
- Postgraduate training base Alliance of Wenzhou Medical University (Affiliated People’s Hospital), Hangzhou, Zhejiang, China.
| | - Chaoyang Hong
- Center for Rehabilitation Medicine, Department of Ophthalmology, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
14
|
Fu T, Gao Y, Huang X, Zhang D, Liu L, Wang P, Yin X, Lin H, Yuan J, Ai S, Wu X. Brain connectome-based imaging markers for identifiable signature of migraine with and without aura. Quant Imaging Med Surg 2024; 14:194-207. [PMID: 38223049 PMCID: PMC10784058 DOI: 10.21037/qims-23-827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/07/2023] [Indexed: 01/16/2024]
Abstract
Background Cortical spreading depression (CSD) has been considered the prominent theory for migraine with aura (MwA). However, it is also argued that CSD can exist in patients in a silent state, and not manifest as aura. Thus, the MwA classification based on aura may be questionable. This study aimed to capture whole-brain connectome-based imaging markers with identifiable signatures for MwA and migraine without aura (MwoA). Methods A total of 88 migraine patients (32 MwA) and 49 healthy controls (HC) underwent a diffusion tensor imaging and resting-state functional magnetic resonance imaging scan. The whole-brain structural connectivity (SC) and functional connectivity (FC) analysis was employed to extract imaging features. The extracted features were subjected to an all-relevant feature selection process within cross-validation loops to pinpoint attributes demonstrating substantial efficacy for patient categorization. Based on the identified features, the predictive ability of the random forest classifiers constructed with the 88 migraine patients' sample was tested using an independent sample of 32 migraine patients (eight MwA). Results Compared to MwoA and HC, MwA showed two reduced SC and six FC (five increased and one reduced) features [all P<0.01, after false discovery rate (FDR) correction], involving frontal areas, temporal areas, visual areas, amygdala, and thalamus. A total of four imaging features were significantly correlated with clinical rating scales in all patients (r=-0.38 to 0.47, P<0.01, after FDR correction). The predictive ability of the random forest classifiers achieved an accuracy of 78.1% in the external sample to identify MwA. Conclusions The whole-brain connectivity features in our results may serve as connectome-based imaging markers for MwA identification. The alterations of SC and FC strength provide possible evidence in further understanding the heterogeneity and mechanism of MwA which may help for patient-specific decision-making.
Collapse
Affiliation(s)
- Tong Fu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yujia Gao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xiaobin Huang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Di Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Lindong Liu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hai Lin
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Jianmin Yuan
- Central Research Institute, United Imaging Healthcare, Shanghai, China
| | - Shuyue Ai
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
15
|
Liu Z, Jie C, Wang J, Hou X, Zhang W, Wang J, Deng Y, Li Y. Retina and microvascular alterations in migraine: a systemic review and meta-analysis. Front Neurol 2023; 14:1241778. [PMID: 37840933 PMCID: PMC10568463 DOI: 10.3389/fneur.2023.1241778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Objective This study aimed to evaluate the retina and microvascular alterations with optical coherence tomography (OCT) or optical coherence tomography angiography (OCTA) in patients with migraine with aura (MA) and migraine without aura (MO). Methods PubMed, Embase, and Cochrane Library databases were searched to find relevant literature on patients with MA or MO using OCT/OCTA devices. The eligible data were analyzed by Stata Software (version 15.0). Results There were 16 studies identified, involving 379 eyes with MA, 583 eyes with MO, and 658 eyes of healthy controls. The thickness of the peripapillary retinal nerve fiber layer (pRNFL) of patients with MA decreased significantly in most regions. The foveal avascular zone (FAZ) area and perimeter in MA patients significantly enlarged, while the perfusion density (PD) in the macular deep capillary plexus (mDCP) significantly decreased in the whole image and its subregions except for the fovea, with the PD in radial peripapillary capillary (RPC) decreasing inside the disk. Patients with MO demonstrated a significantly decreased thickness of pRNFL in most regions, and the FAZ parameters were significantly enlarged. No statistical significance was observed in the retina and microvascular features of patients with MA and MO. Conclusion The eyes affected by MA and MO demonstrated significantly reduced thickness of pRNFL and enlarged FAZ. Patients with MA showed retinal microvascular impairments, including a decreased PD in mDCP. The OCT and OCTA could detect membrane morphology and circulation status in migraine and might provide the basis for the diagnosis and follow-up of patients with migraine. Systematic review registration https://www.crd.york.ac.uk/prospero/, CRD42023397653.
Collapse
Affiliation(s)
| | - Chuanhong Jie
- Eye Hospital China Academy of Chinese Medical Sciences, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Pohl H, Sandor PS, Moisa M, Ruff CC, Schoenen J, Luechinger R, O'Gorman R, Riederer F, Gantenbein AR, Michels L. Occipital transcranial direct current stimulation in episodic migraine patients: effect on cerebral perfusion. Sci Rep 2023; 13:13944. [PMID: 37626074 PMCID: PMC10457373 DOI: 10.1038/s41598-023-39659-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Cerebral blood flow differs between migraine patients and healthy controls during attack and the interictal period. This study compares the brain perfusion of episodic migraine patients and healthy controls and investigates the influence of anodal transcranial direct current stimulation (tDCS) over the occipital cortex. We included healthy adult controls and episodic migraineurs. After a 28-day baseline period and the baseline visit, migraine patients received daily active or sham anodal tDCS over the occipital lobe for 28 days. All participants underwent a MRI scan at baseline; migraineurs were also scanned shortly after the stimulation period and about five months later. At baseline, brain perfusion of migraine patients and controls differed in several areas; among the stimulated areas, perfusion was increased in the cuneus of healthy controls. At the first visit, the active tDCS group had an increased blood flow in regions processing visual stimuli and a decreased perfusion in other areas. Perfusion did not differ at the second follow-up visit. The lower perfusion level in migraineurs in the cuneus indicates a lower preactivation level. Anodal tDCS over the occipital cortex increases perfusion of several areas shortly after the stimulation period, but not 5 months later. An increase in the cortical preactivation level could mediate the transient reduction of the migraine frequency.Trial registration: NCT03237754 (registered at clincicaltrials.gov; full date of first trial registration: 03/08/2017).
Collapse
Affiliation(s)
- Heiko Pohl
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Peter S Sandor
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology and Neurorehabilitation, ZURZACH Care, Bad Zurzach, Switzerland
| | - Marius Moisa
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland
| | - Christian C Ruff
- Zurich Center for Neuroeconomics (ZNE), Department of Economics, University of Zurich, Zurich, Switzerland
| | - Jean Schoenen
- Headache Research Unit, Department of Neurology-Citadelle Hospital, University of Liège, Liège, Belgium
| | - Roger Luechinger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Ruth O'Gorman
- Center for MR-Research, University Children's Hospital, Zurich, Switzerland
- Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Franz Riederer
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology, Clinic Hietzing, Vienna, Austria
- Karl Landsteiner Institute for Epilepsy Research and Cognitive Neurology, Vienna, Austria
| | - Andreas R Gantenbein
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
- Department of Neurology and Neurorehabilitation, ZURZACH Care, Bad Zurzach, Switzerland
| | - Lars Michels
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, 8091, Zurich, Switzerland.
- Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland.
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland.
| |
Collapse
|
17
|
Karsan N, Goadsby PJ. Neuroimaging in the pre-ictal or premonitory phase of migraine: a narrative review. J Headache Pain 2023; 24:106. [PMID: 37563570 PMCID: PMC10416375 DOI: 10.1186/s10194-023-01617-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The premonitory phase, or prodrome, of migraine, provides valuable opportunities to study attack initiation and for treating the attack before headache starts. Much that has been learned about this phase in recent times has come from the outcomes of functional imaging studies. This review will summarise these studies to date and use their results to provide some feasible insights into migraine neurobiology. MAIN BODY The ability to scan repeatedly a patient without radiation and with non-invasive imaging modalities, as well as the recognition that human experimental migraine provocation compounds, such as nitroglycerin (NTG) and pituitary adenylate cyclase activating polypeptide (PACAP), can trigger typical premonitory symptoms (PS) and migraine-like headache in patients with migraine, have allowed feasible and reproducible imaging of the premonitory phase using NTG. Some studies have used serial scanning of patients with migraine to image the migraine cycle, including the 'pre-ictal' phase, defined by timing to headache onset rather than symptom phenotype. Direct observation and functional neuroimaging of triggered PS have also revealed compatible neural substrates for PS in the absence of headache. Various imaging methods including resting state functional MRI (rsfMRI), arterial spin labelling (ASL), positron emission tomography (PET) and diffusion tensor imaging (DTI) have been used. The results of imaging the spontaneous and triggered premonitory phase have been largely consistent and support a theory of central migraine attack initiation involving brain areas such as the hypothalamus, midbrain and limbic system. Early dysfunctional pain, sensory, limbic and homeostatic processing via monoaminergic and peptidergic neurotransmission likely manifests in the heterogeneous PS phenotype. CONCLUSION Advances in human migraine research, including the use of functional imaging techniques lacking radiation or radio-isotope exposure, have led to an exciting opportunity to study the premonitory phase using repeated measures imaging designs. These studies have provided novel insights into attack initiation, migraine neurochemistry and therapeutic targets. Emerging migraine-specific therapies, such as those targeting calcitonin gene-related peptide (CGRP), are showing promise acutely when taken during premonitory phase to reduce symptoms and prevent subsequent headache. Therapeutic research in this area using PS for headache onset prediction and early treatment is likely to grow in the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9PJ, UK.
| | - Peter J Goadsby
- Headache Group, NIHR King's Clinical Research Facility and SLaM Biomedical Research Centre, The Wolfson Sensory, Pain and Regeneration Research Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9PJ, UK
- Department of Neurology, University of California, Los Angeles, USA
| |
Collapse
|
18
|
Mitrović K, Petrušić I, Radojičić A, Daković M, Savić A. Migraine with aura detection and subtype classification using machine learning algorithms and morphometric magnetic resonance imaging data. Front Neurol 2023; 14:1106612. [PMID: 37441607 PMCID: PMC10333052 DOI: 10.3389/fneur.2023.1106612] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Introduction Migraine with aura (MwA) is a neurological condition manifested in moderate to severe headaches associated with transient visual and somatosensory symptoms, as well as higher cortical dysfunctions. Considering that about 5% of the world's population suffers from this condition and manifestation could be abundant and characterized by various symptoms, it is of great importance to focus on finding new and advanced techniques for the detection of different phenotypes, which in turn, can allow better diagnosis, classification, and biomarker validation, resulting in tailored treatments of MwA patients. Methods This research aimed to test different machine learning techniques to distinguish healthy people from those suffering from MwA, as well as people with simple MwA and those experiencing complex MwA. Magnetic resonance imaging (MRI) post-processed data (cortical thickness, cortical surface area, cortical volume, cortical mean Gaussian curvature, and cortical folding index) was collected from 78 subjects [46 MwA patients (22 simple MwA and 24 complex MwA) and 32 healthy controls] with 340 different features used for the algorithm training. Results The results show that an algorithm based on post-processed MRI data yields a high classification accuracy (97%) of MwA patients and precise distinction between simple MwA and complex MwA with an accuracy of 98%. Additionally, the sets of features relevant to the classification were identified. The feature importance ranking indicates the thickness of the left temporal pole, right lingual gyrus, and left pars opercularis as the most prominent markers for MwA classification, while the thickness of left pericalcarine gyrus and left pars opercularis are proposed as the two most important features for the simple and complex MwA classification. Discussion This method shows significant potential in the validation of MwA diagnosis and subtype classification, which can tackle and challenge the current treatments of MwA.
Collapse
Affiliation(s)
- Katarina Mitrović
- Department of Information Technologies, Faculty of Technical Sciences in Čačak, University of Kragujevac, Čačak, Serbia
| | - Igor Petrušić
- Laboratory for Advanced Analysis of Neuroimages, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Aleksandra Radojičić
- Headache Center, Neurology Clinic, Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Marko Daković
- Laboratory for Advanced Analysis of Neuroimages, Faculty of Physical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Andrej Savić
- Science and Research Centre, School of Electrical Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
19
|
Russo A, Silvestro M, Tessitore A, Orologio I, De Rosa AP, De Micco R, Tedeschi G, Esposito F, Cirillo M. Arterial spin labeling MRI applied to migraine: current insights and future perspectives. J Headache Pain 2023; 24:71. [PMID: 37322466 DOI: 10.1186/s10194-023-01597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION Advanced neuroimaging techniques have extensively contributed to elucidate the complex mechanisms underpinning the pathophysiology of migraine, a neurovascular disorder characterized by episodes of headache associated with a constellation of non-pain symptoms. The present manuscript, summarizing the most recent progresses of the arterial spin labelling (ASL) MRI techniques and the most significant findings from ASL studies conducted in migraine, is aimed to clarify how ASL investigations are contributing to the evolving insight on migraine pathophysiology and their putative role in migraine clinical setting. ASL techniques, allowing to quantitatively demonstrate changes in cerebral blood flow (CBF) both during the attacks and in the course of interictal period, could represent the melting point between advanced neuroimaging investigations, conducted with pure scientific purposes, and conventional neuroimaging approaches, employed in the diagnostic decision-making processes. MAIN BODY Converging ASL evidences have demonstrated that abnormal CBF, exceeding the boundaries of a single vascular territory, with biphasic trend dominated by an initial hypoperfusion (during the aura phenomenon but also in the first part of the headache phase) followed by hyperperfusion, characterizes migraine with aura attack and can represent a valuable clinical tool in the differential diagnosis from acute ischemic strokes and epileptic seizures. Studies conducted during migraine without aura attacks are converging to highlight the involvement of dorsolateral pons and hypothalamus in migraine pathophysiology, albeit not able to disentangle their role as "migraine generators" from mere attack epiphenomenon. Furthermore, ASL findings tend to support the presence of perfusion abnormalities in brain regions known to be involved in aura ignition and propagation as well as in areas involved in multisensory processing, in both patients with migraine with aura and migraine without aura. CONCLUSION Although ASL studies have dramatically clarified quality and timing of perfusion abnormalities during migraine with aura attacks, the same cannot be said for perfusion changes during migraine attacks without aura and interictal periods. Future studies with more rigorous methodological approaches in terms of study protocol, ASL technique and sample selection and size are mandatory to exploit the possibility of better understanding migraine pathophysiology and identifying neuroimaging biomarkers of each migraine phase in different migraine phenotypes.
Collapse
Affiliation(s)
- Antonio Russo
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy.
| | - Marcello Silvestro
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Tessitore
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Ilaria Orologio
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alessandro Pasquale De Rosa
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosa De Micco
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Gioacchino Tedeschi
- Headache Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Fabrizio Esposito
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Mario Cirillo
- Advanced MRI Neuroimaging Centre, Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
20
|
Karsan N, Silva E, Goadsby PJ. Evaluating migraine with typical aura with neuroimaging. Front Hum Neurosci 2023; 17:1112790. [PMID: 37025972 PMCID: PMC10070832 DOI: 10.3389/fnhum.2023.1112790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
Objective To provide an up-to-date narrative literature review of imaging in migraine with typical aura, as a means to understand better migraine subtypes and aura biology. Background Characterizing subtypes of migraine with typical aura and appreciating possible biological differences between migraine with and without aura, are important to understanding the neurobiology of aura and trying to advance personalized therapeutics in this area through imaging biomarkers. One means of doing this over recent years has been the use of increasingly advanced neuroimaging techniques. Methods We conducted a literature review of neuroimaging studies in migraine with aura, using a PubMed search for terms 'imaging migraine', 'aura imaging', 'migraine with aura imaging', 'migraine functional imaging' and 'migraine structural imaging'. We collated the findings of the main studies, excluding small case reports and series with n < 6, and have summarized these and their implications for better understanding of aura mechanisms. Results Aura is likely mediated by widespread brain dysfunction in areas involving, but not limited to, visual cortex, somatosensory and insular cortex, and thalamus. Higher brain excitability in response to sensory stimulation and altered resting-state functional connectivity in migraine sufferers with aura could have a genetic component. Pure visual aura compared to visual aura with other sensory or speech symptoms as well, may involve different functional reorganization of brain networks and additional mitochondrial dysfunction mediating more aura symptoms. Conclusion There is a suggestion of at least some distinct neurobiological differences between migraine with and without aura, despite the shared phenotypic similarity in headache and other migraine-associated symptoms. It is clear from the vast majority of aura phenotypes being visual that there is a particular predisposition of the occipital cortex to aura mechanisms. Why this is the case, along with the relationships between cortical spreading depression and headache, and the reasons why aura does not consistently present in affected individuals, are all important research questions for the future.
Collapse
Affiliation(s)
- Nazia Karsan
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- NIHR King’s Clinical Research Facility, King’s College London, London, United Kingdom
- *Correspondence: Nazia Karsan,
| | - Elisa Silva
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
| | - Peter J. Goadsby
- Headache Group, School of Neuroscience, Wolfson Centre for Age-Related Diseases, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- NIHR King’s Clinical Research Facility, King’s College London, London, United Kingdom
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Bai X, Wang W, Zhang X, Hu Z, Zhang Y, Li Z, Zhang X, Yuan Z, Tang H, Zhang Y, Yu X, Zhang P, Wang Y, Sui B. Cerebral perfusion variance in new daily persistent headache and chronic migraine: an arterial spin-labeled MR imaging study. J Headache Pain 2022; 23:156. [PMID: 36482334 PMCID: PMC9733035 DOI: 10.1186/s10194-022-01532-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND AND PURPOSE New daily persistent headache (NDPH) and chronic migraine (CM) are two different types of headaches that might involve vascular dysregulation. There is still a lack of clarity about altered brain perfusion in NDPH and CM. This study aimed to investigate the cerebral perfusion variances of NDPH and CM using multi-delay pseudo-continuous arterial spin-labeled magnetic resonance imaging (pCASL-MRI). METHODS Fifteen patients with NDPH, 18 patients with CM, and 15 age- and sex-matched healthy controls (HCs) were included. All participants underwent 3D multi-delay pCASL-MRI to obtain cerebral perfusion data, including arrival-time-corrected cerebral blood flow (CBF) and arterial cerebral blood volume (aCBV). The automated anatomical labeling atlas 3 (AAL3) was used to parcellate 170 brain regions. The CBF and aCBV values in each brain region were compared among the three groups. Correlation analyses between cerebral perfusion parameters and clinical variables were performed. RESULTS Compared with HC participants, patients with NDPH were found to have decreased CBF and aCBV values in multiple regions in the right hemisphere, including the right posterior orbital gyrus (OFCpost.R), right middle occipital gyrus (MOG.R), and ventral anterior nucleus of right thalamus (tVA.R), while patients with CM showed increased CBF and aCBV values presenting in the ventral lateral nucleus of left thalamus (tVL.L) and right thalamus (tVL.R) compared with HCs (all p < 0.05). In patients with NDPH, after age and sex adjustment, the increased aCBV values of IFGorb. R were positively correlated with GAD-7 scores; and the increased CBF and aCBV values of tVA.R were positively correlated with disease duration. CONCLUSION The multi-delay pCASL technique can detect cerebral perfusion variation in patients with NDPH and CM. The cerebral perfusion changes may suggest different variations between NDPH and CM, which might provide hemodynamic evidence of these two types of primary headaches.
Collapse
Affiliation(s)
- Xiaoyan Bai
- grid.411617.40000 0004 0642 1244Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China ,grid.411617.40000 0004 0642 1244Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Wei Wang
- grid.411617.40000 0004 0642 1244Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Xueyan Zhang
- grid.412633.10000 0004 1799 0733Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No.1 Jianshe East Road, Zhengzhou, Henan Province, 450000 China
| | - Zhangxuan Hu
- GE Healthcare, No.1 Tongji Nan Road, Beijing Economic Technological Development Area, Beijing, 100176 China
| | - Yingkui Zhang
- grid.411617.40000 0004 0642 1244Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Zhiye Li
- grid.411617.40000 0004 0642 1244Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China ,grid.411617.40000 0004 0642 1244Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Xue Zhang
- grid.411617.40000 0004 0642 1244Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China ,grid.411617.40000 0004 0642 1244Department of Radiology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Ziyu Yuan
- grid.411617.40000 0004 0642 1244Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Hefei Tang
- grid.411617.40000 0004 0642 1244Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Yaqing Zhang
- grid.411617.40000 0004 0642 1244Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Xueying Yu
- grid.411617.40000 0004 0642 1244Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Peng Zhang
- grid.411617.40000 0004 0642 1244Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Yonggang Wang
- grid.411617.40000 0004 0642 1244Headache Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| | - Binbin Sui
- grid.411617.40000 0004 0642 1244Tiantan Neuroimaging Center for Excellence, China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, No.119 South Fourth Ring West Road, Fengtai District, Beijing, 100070 China
| |
Collapse
|