1
|
Wang X, Zhang L, Xiong Y, Hou M, Zhang S, Duan C, Wang S, Wang X, Lu H, Huang J, Li Y, Li Z, Dong Z, Lou X. Limbic system abnormalities in episodic cluster headache: a 7T MRI multimodal study. J Headache Pain 2025; 26:69. [PMID: 40197086 PMCID: PMC11974220 DOI: 10.1186/s10194-025-02009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Accepted: 03/20/2025] [Indexed: 04/09/2025] Open
Abstract
BACKGROUND Although the limbic system has long been thought to be involved in the pathophysiology of cluster headache, inconsistencies in imaging studies of episodic cluster headache (eCH) patients and limited understanding of the specific regions within the limbic system have prevented a full explanation of its involvement in the disease. Therefore, we performed multimodal imaging analysis using 7 T MRI with the aim of exploring structural-functional abnormalities in subregions of the limbic system and their relationship with clinical features. METHODS In this cross-sectional study, we employed 7T MRI to investigate structural (volumetric) and functional (fractional amplitude of low-frequency fluctuations (fALFF), regional homogeneity (ReHo)) alterations in limbic subregions (hypothalamus, thalamus, amygdala, hippocampus) among 69 in-bout but outside the attacks eCH patients and 63 healthy controls (HCs). Automated volumetry and resting-state functional MRI analyses were performed after adjusting for age, Generalized Anxiety Disorder scale, sex (and intracranial volume when evaluating volumetric measures). Then functional-structural coupling indices were computed to assess network-level relationships. RESULTS In eCH patients, volumes in right anterior inferior and right posterior of hypothalamus, left molecular_layer_hippocampal-head, left lateral-nucleus and left Central-nucleus on the headache side, as well as left tuberal inferior and left tuberal superior of hypothalamus, and right parasubiculum on the contralateral side were significantly altered compared with HCs (P < 0.05). Additionally, the volume of the right anterior inferior was positively correlated with the duration of last headache episode. After false discovery rate correction, widespread alterations in fALFF and ReHo values were observed among hypothalamic, thalamic, hippocampal, and amygdalar subregions, some of which correlated with clinical measures. Furthermore, the structure-function coupling indices in the right anterior inferior and the left lateral geniculate nucleus on the headache side differed significantly between eCH patients and HCs. CONCLUSIONS Our findings demonstrate that in-bout but outside the attacks eCH patients present anatomical and functional maladaptation of the limbic system. Moreover, the observed dissociation between localized abnormalities and largely preserved network coupling-except in the hypothalamus and thalamus-suggests that these two regions may be particularly susceptible to eCH-related dysfunction, while broader brain networks retain compensatory capacity in pathological states. These findings refine potential neuromodulation targets and highlight the value of ultrahigh-field imaging in eCH research.
Collapse
Affiliation(s)
- Xinyu Wang
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Luhua Zhang
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Yongqin Xiong
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Mengmeng Hou
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Shuhua Zhang
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Caohui Duan
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Song Wang
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Xiaoyu Wang
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Haoxuan Lu
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Jiayu Huang
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Yan Li
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Zhixuan Li
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China
| | - Zhao Dong
- Department of Neurology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
| | - Xin Lou
- Department of Radiology, The First Medical Center, Chinese PLA General Hospital, Fuxing Road 28, Haidian District, Beijing, 100853, China.
- School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
2
|
Bertotti G, Fernández-Ruiz V, Roldán-Ruiz A, López-Moreno M. Cluster Headache and Migraine Shared and Unique Insights: Neurophysiological Implications, Neuroimaging, and Biomarkers: A Comprehensive Review. J Clin Med 2025; 14:2160. [PMID: 40217611 PMCID: PMC11989414 DOI: 10.3390/jcm14072160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/14/2025] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
Migraine headache (MH) and cluster headache (CH) are debilitating primary headache disorders that impose a significant global burden. While they share certain clinical features, such as unilateral pain and autonomic dysfunction, their underlying pathophysiological mechanisms remain distinct. Advances in the understanding of neurophysiological features, such as neuroimaging and biomarker research, have provided critical insights into both their overlapping and divergent characteristics. Neurophysiological research has revealed differences in nociceptive processing, cortical excitability, and sensory integration, underscoring the complexity of these conditions. Neuroimaging studies reveal common activation patterns within pain-processing networks, including the trigeminal system and hypothalamus, while highlighting key differences, such as hypothalamic hyperactivity in CH and cortical alterations in MH. Additionally, biomarker research has identified shared elements, including elevated calcitonin gene-related peptide (CGRP), yet distinct variations in its regulation and genetic predispositions. Genome-wide association studies have further elucidated the genetic architecture of these disorders, uncovering susceptibility loci that reinforces their unique yet occasionally intersecting genetic foundations. These multifield advancements not only enhance the understanding of MH and CH pathophysiology but also pave the way for improved diagnostic precision, personalized therapeutic strategies, and future research.
Collapse
Affiliation(s)
- Gabriele Bertotti
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223 Madrid, Spain; (G.B.); (V.F.-R.); (M.L.-M.)
- CranioSPain Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain
| | - Vicente Fernández-Ruiz
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223 Madrid, Spain; (G.B.); (V.F.-R.); (M.L.-M.)
| | - Alberto Roldán-Ruiz
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223 Madrid, Spain; (G.B.); (V.F.-R.); (M.L.-M.)
| | - Miguel López-Moreno
- Departamento de Fisioterapia, Facultad de Ciencias de la Salud, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda Km 1,800, Pozuelo de Alarcón, 28223 Madrid, Spain; (G.B.); (V.F.-R.); (M.L.-M.)
| |
Collapse
|
3
|
Borkum JM. Cluster Headache and Hypoxia: Breathing New Life into an Old Theory, with Novel Implications. Neurol Int 2024; 16:1691-1716. [PMID: 39728749 DOI: 10.3390/neurolint16060123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 12/28/2024] Open
Abstract
Cluster headache is a severe, poorly understood disorder for which there are as yet virtually no rationally derived treatments. Here, Lee Kudrow's 1983 theory, that cluster headache is an overly zealous response to hypoxia, is updated according to current understandings of hypoxia detection, signaling, and sensitization. It is shown that the distinctive clinical characteristics of cluster headache (circadian timing of attacks and circannual patterning of bouts, autonomic symptoms, and agitation), risk factors (cigarette smoking; male gender), triggers (alcohol; nitroglycerin), genetic findings (GWAS studies), anatomical substrate (paraventricular nucleus of the hypothalamus, solitary tract nucleus/NTS, and trigeminal nucleus caudalis), neurochemical features (elevated levels of galectin-3, nitric oxide, tyramine, and tryptamine), and responsiveness to treatments (verapamil, lithium, melatonin, prednisone, oxygen, and histamine desensitization) can all be understood in terms of hypoxic signaling. Novel treatment directions are hypothesized, including repurposing pharmacological antagonists of hypoxic signaling molecules (HIF-2; P2X3) for cluster headache, breath training, physical exercise, high-dose thiamine, carnosine, and the flavonoid kaempferol. The limits of current knowledge are described, and a program of basic and translational research is proposed.
Collapse
Affiliation(s)
- Jonathan M Borkum
- Department of Psychology, University of Maine, 301 Williams Hall, Orono, ME 04469-5742, USA
| |
Collapse
|
4
|
Petersen AS, Lund N, Goadsby PJ, Belin AC, Wang SJ, Fronczek R, Burish M, Cho SJ, Peres MFP, Jensen RH. Recent advances in diagnosing, managing, and understanding the pathophysiology of cluster headache. Lancet Neurol 2024; 23:712-724. [PMID: 38876749 DOI: 10.1016/s1474-4422(24)00143-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 06/16/2024]
Abstract
Cluster headache, characterised by attacks of severe, recurrent, unilateral headache and ipsilateral cranial autonomic symptoms, remains a primary headache with an elusive pathophysiology. Recent advances have introduced effective treatments and broadened understanding of the clinical features of cluster headache. These features are similar in patients globally, but regional differences in prevalence and burden exist. International collaborations have led to identification of eight genetic loci associated with cluster headache. The pathophysiological mechanisms are still not fully understood but recent studies show that targeting the trigeminal autonomic reflex by neurostimulation, or targeting the neuropeptide calcitonin gene-related peptide (CGRP), might lessen the attack burden. The US Food and Drug Administration has approved galcanezumab, a monoclonal antibody targeting CGRP, as the first specific preventive treatment for episodic cluster headache. However, a preventive effect was not replicated in chronic cluster headache, and the European Medicines Agency did not approve galcanezumab, restricting its availability in Europe. Owing to the low prevalence of cluster headache, continued collaboration through multicentre clinical trials and data sharing will be imperative for further breakthroughs in understanding and management.
Collapse
Affiliation(s)
- Anja S Petersen
- Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nunu Lund
- Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter J Goadsby
- National Institute for Health and Care Research King's Clinical Research Facility, King's College London, London, UK; Department of Neurology, University of California, Los Angeles, CA, USA
| | - Andrea C Belin
- Centre for Cluster Headache, Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Shuu-Jiun Wang
- Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; College of Medicine and Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Centre, Leiden, Netherlands
| | - Mark Burish
- Department of Neurosurgery, McGovern Medical School at UTHealth, Houston, TX, USA
| | - Soo-Jin Cho
- Department of Neurology, Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, South Korea
| | - Mario F P Peres
- Hospital Israelita Albert Einstein, São Paulo, Brazil; Instituto de Psiquiatria, Hospital das Clínicas da Faculdade de Medicina da University of São Paulo, São Paulo, Brazil
| | - Rigmor H Jensen
- Danish Headache Center and Department of Neurology, Rigshospitalet-Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Institute of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
5
|
Bertotti G, Elizagaray-García JI, Rodríguez-Vico J, Gil-Martínez A. Hyperalgesia, Increased Temporal Summation and Impaired Inhibitory Mechanisms in Episodic and Chronic Cluster Headache: An Observational Study. Biomedicines 2024; 12:374. [PMID: 38397976 PMCID: PMC10886548 DOI: 10.3390/biomedicines12020374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/25/2024] Open
Abstract
Cluster Headache (CH) is a primary headache that causes severe pain. Some evidence suggests that central mechanisms might be involved. The objective of this study was (1) to compare hyperalgesia signs, temporal summation and conditioned pain modulation among episodic (ECH) and chronic CH (CCH) patients and controls, (2) to compare these factors between sides in the patient groups and (3) to compare the psychophysical variables between the groups. This cross-sectional study included 71 subjects divided into three groups (ECH, CCH and controls). Pressure pain thresholds, temporal summation, conditioned pain modulation and other psychosocial variables were measured. The ANOVA showed differences for all physical outcome measures (p < 0.05). Bonferroni post hoc analyses showed differences when comparing the patient groups with the healthy subjects (p < 0.05), with large effect sizes (d > 0.8). No differences between the patient groups were found for almost all the variables (p > 0.05). Significant differences for all the variables were detected when comparing the symptomatic and non-symptomatic sides in both the ECH and CCH groups (p < 0.05). The ECH and CCH groups showed mechanical hyperalgesia, increased temporal summation and impaired inhibitory mechanisms compared to the controls. Side-to-side differences were also detected within the patient groups. Patients with CCH had poorer sleep quality and quality of life than the controls.
Collapse
Affiliation(s)
- Gabriele Bertotti
- School of Physiotherapy, Faculty of Health Sciences, Universidad Francisco de Vitoria, 28223 Madrid, Spain;
- CranioSPain Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
| | - Juan Ignacio Elizagaray-García
- CranioSPain Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
| | - Jaime Rodríguez-Vico
- Headache Unit, Neurology Department, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain;
| | - Alfonso Gil-Martínez
- CranioSPain Research Group, Centro Superior de Estudios Universitarios La Salle, Universidad Autónoma de Madrid, 28023 Madrid, Spain;
- Unidad de Fisioterapia, Hospital Universitario La Paz-Carlos III, IdiPAZ (Hospital La Paz Institute for Health Research), 28029 Madrid, Spain
| |
Collapse
|