1
|
Xu R, Li D, Yang W, Wang G, Li Y. Improving ncRNA family prediction using multi-modal contrastive learning of sequence and structure. Bioinformatics 2024; 40:btae640. [PMID: 39460948 PMCID: PMC11639665 DOI: 10.1093/bioinformatics/btae640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/15/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024] Open
Abstract
MOTIVATION Recent advancements in high-throughput sequencing technology have significantly increased the focus on non-coding RNA (ncRNA) research within the life sciences. Despite this, the functions of many ncRNAs remain poorly understood. Research suggests that ncRNAs within the same family typically share similar functions, underlining the importance of understanding their roles. There are two primary methods for predicting ncRNA families: biological and computational. Traditional biological methods are not suitable for large-scale data prediction due to the significant human and resource requirements. Concurrently, most existing computational methods either rely solely on ncRNA sequence data or are exclusively based on the secondary structure of ncRNA molecules. These methods fail to fully utilize the rich multimodal information available from ncRNAs, thereby preventing them from learning more comprehensive and in-depth feature representations. RESULTS To tackle these problems, we proposed MM-ncRNAFP, a multi-modal contrastive learning framework for ncRNA family prediction. We first used a pre-trained language model to encode the primary sequences of a large mammalian ncRNA dataset. Then, we adopted a contrastive learning framework with an attention mechanism to fuse the secondary structure information obtained by graph neural networks. The MM-ncRNAFP method can effectively fuse multi-modal information. Experimental comparisons with several competitive baselines demonstrated that MM-ncRNAFP can achieve more comprehensive representations of ncRNA features by integrating both sequence and structural information. This integration significantly enhances the performance of ncRNA family prediction. Ablation experiments and qualitative analyses were performed to verify the effectiveness of each component in our model. Moreover, since our model is pre-trained on a large amount of ncRNA data, it has the potential to bring significant improvements to other ncRNA-related tasks. AVAILABILITY AND IMPLEMENTATION MM-ncRNAFP and the datasets are available at https://github.com/xuruiting2/MM-ncRNAFP.
Collapse
Affiliation(s)
- Ruiting Xu
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Dan Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Wen Yang
- International Medical Center, Shenzhen University General Hospital, SZU 518055, China
| | - Guohua Wang
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| | - Yang Li
- College of Computer and Control Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
2
|
Diener C, Thüre K, Engel A, Hart M, Keller A, Meese E, Fischer U. Paving the way to a neural fate - RNA signatures in naive and trans-differentiating mesenchymal stem cells. Eur J Cell Biol 2024; 103:151458. [PMID: 39341198 DOI: 10.1016/j.ejcb.2024.151458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 09/30/2024] Open
Abstract
Mesenchymal Stem Cells (MSCs) derived from the embryonic mesoderm persist as a viable source of multipotent cells in adults and have a crucial role in tissue repair. One of the most promising aspects of MSCs is their ability to trans-differentiate into cell types outside of the mesodermal lineage, such as neurons. This characteristic positions MSCs as potential therapeutic tools for neurological disorders. However, the definition of a clear MSC signature is an ongoing topic of debate. Likewise, there is still a significant knowledge gap about functional alterations of MSCs during their transition to a neural fate. In this study, our focus is on the dynamic expression of RNA in MSCs as they undergo trans-differentiation compared to undifferentiated MSCs. To track and correlate changes in cellular signaling, we conducted high-throughput RNA expression profiling during the early time-course of human MSC neurogenic trans-differentiation. The expression of synapse maturation markers, including NLGN2 and NPTX1, increased during the first 24 h. The expression of neuron differentiation markers, such as GAP43 strongly increased during 48 h of trans-differentiation. Neural stem cell marker NES and neuron differentiation marker, including TUBB3 and ENO1, were highly expressed in mesenchymal stem cells and remained so during trans-differentiation. Pathways analyses revealed early changes in MSCs signaling that can be linked to the acquisition of neuronal features. Furthermore, we identified microRNAs (miRNAs) as potential drivers of the cellular trans-differentiation process. We also determined potential risk factors related to the neural trans-differentiation process. These factors include the persistence of stemness features and the expression of factors involved in neurofunctional abnormalities and tumorigenic processes. In conclusion, our findings contribute valuable insights into the intricate landscape of MSCs during neural trans-differentiation. These insights can pave the way for the development of safer treatments of neurological disorders.
Collapse
Affiliation(s)
- Caroline Diener
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Konstantin Thüre
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Annika Engel
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Martin Hart
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Andreas Keller
- Saarland University (USAAR), Chair for Clinical Bioinformatics, Saarbrücken 66123, Germany; Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University Campus, Saarbrücken 66123, Germany
| | - Eckart Meese
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany
| | - Ulrike Fischer
- Saarland University (USAAR), Institute of Human Genetics, Homburg 66421, Germany.
| |
Collapse
|
3
|
Chen K, Zhu X, Wang J, Zhao Z, Hao L, Guo X, Liu Y. MFPred: prediction of ncRNA families based on multi-feature fusion. Brief Bioinform 2023; 24:bbad303. [PMID: 37615358 DOI: 10.1093/bib/bbad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/25/2023] Open
Abstract
Non-coding RNA (ncRNA) plays a critical role in biology. ncRNAs from the same family usually have similar functions, as a result, it is essential to predict ncRNA families before identifying their functions. There are two primary methods for predicting ncRNA families, namely, traditional biological methods and computational methods. In traditional biological methods, a lot of manpower and resources are required to predict ncRNA families. Therefore, this paper proposed a new ncRNA family prediction method called MFPred based on computational methods. MFPred identified ncRNA families by extracting sequence features of ncRNAs, and it possessed three primary modules, including (1) four ncRNA sequences encoding and feature extraction module, which encoded ncRNA sequences and extracted four different features of ncRNA sequences, (2) dynamic Bi_GRU and feature fusion module, which extracted contextual information features of the ncRNA sequence and (3) ResNet_SE module that extracted local information features of the ncRNA sequence. In this study, MFPred was compared with the previously proposed ncRNA family prediction methods using two frequently used public ncRNA datasets, NCY and nRC. The results showed that MFPred outperformed other prediction methods in the two datasets.
Collapse
Affiliation(s)
- Kai Chen
- College of Software, jilin University, Changchun, 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, jilin University, Changchun, 130012, China
| | - Xiaodong Zhu
- College of Software, jilin University, Changchun, 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, jilin University, Changchun, 130012, China
- College of Computer Science and Technology, jilin University, Changchun, 130012, China
| | - Jiahao Wang
- College of Software, jilin University, Changchun, 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, jilin University, Changchun, 130012, China
| | - Ziqi Zhao
- College of Software, jilin University, Changchun, 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, jilin University, Changchun, 130012, China
| | - Lei Hao
- College of Software, jilin University, Changchun, 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, jilin University, Changchun, 130012, China
| | - Xinsheng Guo
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, jilin University, Changchun, 130012, China
- College of Computer Science and Technology, jilin University, Changchun, 130012, China
| | - Yuanning Liu
- College of Software, jilin University, Changchun, 130012, China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, jilin University, Changchun, 130012, China
- College of Computer Science and Technology, jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Alahdal M, Elkord E. Non-coding RNAs in cancer immunotherapy: Predictive biomarkers and targets. Clin Transl Med 2023; 13:e1425. [PMID: 37735815 PMCID: PMC10514379 DOI: 10.1002/ctm2.1425] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/06/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND To date, standardising clinical predictive biomarkers for assessing the response to immunotherapy remains challenging due to variations in personal genetic signatures, tumour microenvironment complexities and epigenetic onco-mechanisms. MAIN BODY Early monitoring of key non-coding RNA (ncRNA) biomarkers may help in predicting the clinical efficacy of cancer immunotherapy and come up with standard predictive ncRNA biomarkers. For instance, reduced miR-125b-5p level in the plasma of non-small cell lung cancer patients treated with anti-PD-1 predicts a positive outcome. The level of miR-153 in the plasma of colorectal cancer patients treated with chimeric antigen receptor T lymphocyte (CAR-T) cell therapy may indicate the activation of T-cell killing activity. miR-148a-3p and miR-375 levels may forecast favourable responses to CAR-T-cell therapy in B-cell acute lymphoblastic leukaemia. In cancer patients treated with the GPC3 peptide vaccine, serum levels of miR-1228-5p, miR-193a-5p and miR-375-3p were reported as predictive biomarkers of good response and improved overall survival. Therefore, there is a critical need for further studies to elaborate on the key ncRNA biomarkers that have the potential to predict early clinical responses to immunotherapy. CONCLUSION This review summarises important predictive ncRNA biomarkers that were reported in cancer patients treated with different immunotherapeutic modalities, including monoclonal antibodies, small molecule inhibitors, cancer vaccines and CAR-T cells. In addition, a concise discussion on forthcoming perspectives is provided, outlining technical approaches for the optimal utilisation of immunomodulatory ncRNA biomarkers as predictive tools and therapeutic targets.
Collapse
Affiliation(s)
- Murad Alahdal
- Johns Hopkins All Children's Hospital, StPetersburgFloridaUSA
- Department of OncologySydney Kimmel Cancer CenterSchool of MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Eyad Elkord
- Department of Applied BiologyCollege of ScienceUniversity of SharjahUniversity CitySharjahUnited Arab Emirates
- Biomedical Research CenterSchool of ScienceEngineering and EnvironmentUniversity of SalfordManchesterUK
| |
Collapse
|
5
|
Bartoszewska S, Sławski J, Collawn JF, Bartoszewski R. HIF-1-Induced hsa-miR-429: Understanding Its Direct Targets as the Key to Developing Cancer Diagnostics and Therapies. Cancers (Basel) 2023; 15:cancers15112903. [PMID: 37296866 DOI: 10.3390/cancers15112903] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/21/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
MicroRNAs (miRNAs) play a critical role in the regulation of mRNA stability and translation. In spite of our present knowledge on the mechanisms of mRNA regulation by miRNAs, the utilization and translation of these ncRNAs into clinical applications have been problematic. Using hsa-miR-429 as an example, we discuss the limitations encountered in the development of efficient miRNA-related therapies and diagnostic approaches. The miR-200 family members, which include hsa-miR-429, have been shown to be dysregulated in different types of cancer. Although these miR-200 family members have been shown to function in suppressing epithelial-to-mesenchymal transition, tumor metastasis, and chemoresistance, the experimental results have often been contradictory. These complications involve not only the complex networks involving these noncoding RNAs, but also the problem of identifying false positives. To overcome these limitations, a more comprehensive research strategy is needed to increase our understanding of the mechanisms underlying their biological role in mRNA regulation. Here, we provide a literature analysis of the verified hsa-miR-429 targets in various human research models. A meta-analysis of this work is presented to provide better insights into the role of hsa-miR-429 in cancer diagnosis and any potential therapeutic approach.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - Jakub Sławski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
| |
Collapse
|
6
|
Jaśkiewicz M, Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. EPAS1 resistance to miRNA-based regulation contributes to prolonged expression of HIF-2 during hypoxia in human endothelial cells. Gene 2023; 868:147376. [PMID: 36934786 DOI: 10.1016/j.gene.2023.147376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
The cellular adaptation to hypoxia is regulated by hypoxia inducible factors: HIF-1 and HIF-2. HIF-1 mediates response to acute hypoxia, whereas HIF-2 allows adaptation to chronic oxygen deprivation. The hypoxic transition from HIF-1 to HIF-2 is possible due to the low stability of HIF-1α subunit transcript (HIF1A) and the stable mRNA of HIF-2α (EPAS1). Notably, although many micro-RNAs (miRNAs) that regulate endothelial HIF-1 levels during hypoxia have been identified, in case of HIF-2, no analogous ones have been found so far. In this work, using different methods, we tested 23 microRNA that were predicted to interact with the EPAS1 transcript (18 of which were induced during prolonged hypoxia), and we demonstrated that none of them were functional in vitro. This suggests that HIF-2α transcript is much less prone to miRNA-related destabilization during hypoxia.
Collapse
Affiliation(s)
- Maciej Jaśkiewicz
- International Research Agenda 3P- Medicine Laboratory, Medical University of Gdansk, Gdansk, Poland.
| | | | - Magdalena Gebert
- Department of Medical Laboratory Diagnostics - Fahrenheit Biobank BBMRI.pl, Medical University of Gdansk, Gdansk, Poland.
| | - James F Collawn
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States.
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland.
| |
Collapse
|
7
|
Li Y, Xu J, Guo X, Li Z, Cao L, Liu S, Guo Y, Wang G, Luo Y, Zhang Z, Wei X, Zhao Y, Liu T, Wang X, Xia H, Kuang M, Guo Q, Li J, Chen L, Wang Y, Li Q, Wang F, Liu Q, You F. The collateral activity of RfxCas13d can induce lethality in a RfxCas13d knock-in mouse model. Genome Biol 2023; 24:20. [PMID: 36726140 PMCID: PMC9893547 DOI: 10.1186/s13059-023-02860-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND The CRISPR-Cas13 system is an RNA-guided RNA-targeting system and has been widely used in transcriptome engineering with potentially important clinical applications. However, it is still controversial whether Cas13 exhibits collateral activity in mammalian cells. RESULTS Here, we find that knocking down gene expression using RfxCas13d in the adult brain neurons caused death of mice, which may result from the collateral activity of RfxCas13d rather than the loss of target gene function or off-target effects. Mechanistically, we show that RfxCas13d exhibits collateral activity in mammalian cells, which is positively correlated with the abundance of target RNA. The collateral activity of RfxCas13d could cleave 28s rRNA into two fragments, leading to translation attenuation and activation of the ZAKα-JNK/p38-immediate early gene pathway. CONCLUSIONS These findings provide new mechanistic insights into the collateral activity of RfxCas13d in mammalian cells and warn that the biosafety of the CRISPR-Cas13 system needs further evaluation before application to clinical treatments.
Collapse
Affiliation(s)
- Yunfei Li
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China.
| | - Junjie Xu
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Xuefei Guo
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China
| | - Zhiwei Li
- School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, 071002, Hebei, China
| | - Lili Cao
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengde Liu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Ying Guo
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Guodong Wang
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Yujie Luo
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China
| | - Zeming Zhang
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xuemei Wei
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China
| | - Yingchi Zhao
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China
| | - Tongtong Liu
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xiao Wang
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China
| | - Huawei Xia
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China
| | - Ming Kuang
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China
| | - Qirui Guo
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China
| | - Junhong Li
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China
| | - Luoying Chen
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China
| | - Yibing Wang
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Qi Li
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Fengchao Wang
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
| | - Qinghua Liu
- National Institute of Biological Sciences, Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
| | - Fuping You
- Department of Immunology, School of Basic Medical Sciences, Beijing Key Laboratory of Tumor Systems Biology, Institute of Systems Biomedicine, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
8
|
Ju C, Ma Y, Zuo X, Wang X, Song Z, Zhang Z, Zhu Z, Li X, Liang Z, Ding T, Hu X, Wang Z. Photobiomodulation promotes spinal cord injury repair by inhibiting macrophage polarization through lncRNA TUG1-miR-1192/TLR3 axis. Cell Mol Biol Lett 2023; 28:5. [PMID: 36658478 PMCID: PMC9854040 DOI: 10.1186/s11658-023-00417-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Secondary spinal cord injury (SCI) often causes the aggravation of inflammatory reaction and nerve injury, which affects the recovery of motor function. Bone-marrow-derived macrophages (BMDMs) were recruited to the injured area after SCI, and the M1 polarization is the key process for inducing inflammatory response and neuronal apoptosis. We previously showed that photobiomodulation (PBM) can inhibit the polarization of M1 phenotype of BMDMs and reduce inflammation, but the underlying mechanisms are unclear. The purpose of this study is to explore the potential target and mechanism of PBM in treating SCI. METHODS Transcriptome sequencing and bioinformatics analysis showed that long noncoding RNA taurine upregulated gene 1 (lncRNA TUG1) was a potential target of PBM. The expression and specific mechanism of lncRNA TUG1 were detected by qPCR, immunofluorescence, flow cytometry, western blotting, fluorescence in situ hybridization, and luciferase assay. The Basso mouse scale (BMS) and gait analysis were used to evaluate the recovery of motor function in mice. RESULTS Results showed that lncRNA TUG1 may be a potential target of PBM, regulating the polarization of BMDMs, inflammatory response, and the axial growth of DRG. Mechanistically, TUG1 competed with TLR3 for binding to miR-1192 and attenuated the inhibitory effect of miR-1192 on TLR3. This effect protected TLR3 from degradation, enabling the high expression of TLR3, which promoted the activation of downstream NF-κB signal and the release of inflammatory cytokines. In vivo, PBM treatment could reduce the expression of TUG1, TLR3, and inflammatory cytokines and promoted nerve survival and motor function recovery in SCI mice. CONCLUSIONS Our study clarified that the lncRNA TUG1/miR-1192/TLR3 axis is an important pathway for PBM to inhibit M1 macrophage polarization and inflammation, which provides theoretical support for its clinical application in patients with SCI.
Collapse
Affiliation(s)
- Cheng Ju
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Yangguang Ma
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xiaoshuang Zuo
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xuankang Wang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhiwen Song
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhihao Zhang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhijie Zhu
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xin Li
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhuowen Liang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Tan Ding
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Xueyu Hu
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| | - Zhe Wang
- grid.233520.50000 0004 1761 4404Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Changle West Road No. 127, Xi’an, 710032 Shaanxi China
| |
Collapse
|
9
|
Jia Y, Zhao J, Yu T, Zhang X, Qi X, Hao T, Jin Z, Zhao X. PSMC3 promotes RNAi by maintaining AGO2 stability through USP14. Cell Mol Biol Lett 2022; 27:111. [PMID: 36528617 PMCID: PMC9759854 DOI: 10.1186/s11658-022-00411-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Argonaute 2 (AGO2), the only protein with catalytic activity in the human Argonaute family, is considered as a key component of RNA interference (RNAi) pathway. Here we performed a yeast two-hybrid screen using the human Argonaute 2 PIWI domain as bait to screen for new AGO2-interacting proteins and explored the specific mechanism through a series of molecular biology and biochemistry experiments. METHODS The yeast two-hybrid system was used to screen for AGO2-interacting proteins. Co-immunoprecipitation and immunofluorescence assays were used to further determine interactions and co-localization. Truncated plasmids were constructed to clarify the interaction domain. EGFP fluorescence assay was performed to determine the effect of PSMC3 on RNAi. Regulation of AGO2 protein expression and ubiquitination by PSMC3 and USP14 was examined by western blotting. RT-qPCR assays were applied to assess the level of AGO2 mRNA. Rescue assays were also performed. RESULTS We identified PSMC3 (proteasome 26S subunit, ATPase, 3) as a novel AGO2 binding partner. Biochemical and bioinformatic analysis demonstrates that this interaction is performed in an RNA-independent manner and the N-terminal coiled-coil motif of PSMC3 is required. Depletion of PSMC3 impairs the activity of the targeted cleavage mediated by small RNAs. Further studies showed that depletion of PSMC3 decreased AGO2 protein amount, whereas PSMC3 overexpression increased the expression of AGO2 at a post-translational level. Cycloheximide treatment indicated that PSMC3 depletion resulted in a decrease in cytoplasmic AGO2 amount due to an increase in AGO2 protein turnover. The absence of PSMC3 promoted ubiquitination of AGO2, resulting in its degradation by the 26S proteasome. Mechanistically, PSMC3 assists in the interaction of AGO2 with the deubiquitylase USP14(ubiquitin specific peptidase 14) and facilitates USP14-mediated deubiquitination of AGO2. As a result, AGO2 is stabilized, which then promotes RNAi. CONCLUSION Our findings demonstrate that PSMC3 plays an essential role in regulating the stability of AGO2 and thus in maintaining effective RNAi.
Collapse
Affiliation(s)
- Yan Jia
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Jianing Zhao
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Tao Yu
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Xue Zhang
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Xiaozhen Qi
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Tongxin Hao
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Zeyuan Jin
- grid.265021.20000 0000 9792 1228Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qi-Xiang- Tai Road, Tianjin, 300070 China
| | - Xiaoqing Zhao
- grid.452704.00000 0004 7475 0672Department of Clinical Laboratory, The Second Hospital of Shandong University, Jinan, Shandong China
| |
Collapse
|
10
|
Bogusławska DM, Skulski M, Bartoszewski R, Machnicka B, Heger E, Kuliczkowski K, Sikorski AF. A rare mutation (p.F149del) of the NT5C3A gene is associated with pyrimidine 5'-nucleotidase deficiency. Cell Mol Biol Lett 2022; 27:104. [PMID: 36434495 PMCID: PMC9700897 DOI: 10.1186/s11658-022-00405-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/04/2022] [Indexed: 11/27/2022] Open
Abstract
Pyrimidine 5'-nucleotidase deficiency is a rare erythrocyte enzymopathy. Here we report two cases of hemolytic anemia in brothers of Polish origin that are associated with a very rare mutation. Heterozygous deletion in the NT5C3A gene (c.444_446delGTT), inherited most likely from their asymptomatic mother, resulted in a single amino acid residue deletion (p.F149del) in cytosolic pyrimidine 5'-nucleotidase. However, only the mutated transcript was present in the reticulocyte transcriptome of both patients. Only residual activity of pyrimidine 5'-nucleotidase in the brothers' erythrocytes could be observed when compared with the controls, including their asymptomatic father and sister. Western blot showed no sign of the presence of 5'-nucleotidase protein in the erythrocytes of both studied patients. The 2.5-fold reduction of the purine/pyrimidine ratio observed only in the brothers' erythrocytes confirms the correlation of the results of molecular analysis, including whole-exome sequencing, with the phenotype of the pyrimidine 5'-nucleotidase deficiency. Altogether, our results may substantiate the hypothesis of the heterogeneity of the molecular basis of the defect involving both the mutation presented here and negative regulation of expression of the "normal" allele.
Collapse
Affiliation(s)
- Dżamila M. Bogusławska
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1 St., 65-516 Zielona Góra, Poland
| | - Michał Skulski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a St., 50-383 Wrocław, Poland
| | - Rafał Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wrocław, F. Joliot-Curie 14a St., 50-383 Wrocław, Poland
| | - Beata Machnicka
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1 St., 65-516 Zielona Góra, Poland
| | - Elżbieta Heger
- Department of Biotechnology, Institute of Biological Sciences, University of Zielona Góra, Prof. Z. Szafrana 1 St., 65-516 Zielona Góra, Poland
| | - Kazimierz Kuliczkowski
- Silesian Park of Medical Technology Kardio-Med Silesia, M. Curie-Skłodowskiej 10C St., 41-800 Zabrze, Poland
| | - Aleksander F. Sikorski
- Research and Development Centre, Regional Specialist Hospital, Kamieńskiego 73a St., 51-154 Wrocław, Poland
| |
Collapse
|
11
|
Bartoszewska S, Collawn JF, Bartoszewski R. The Role of the Hypoxia-Related Unfolded Protein Response (UPR) in the Tumor Microenvironment. Cancers (Basel) 2022; 14:4870. [PMID: 36230792 PMCID: PMC9562011 DOI: 10.3390/cancers14194870] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/19/2022] Open
Abstract
Despite our understanding of the unfolded protein response (UPR) pathways, the crosstalk between the UPR and the complex signaling networks that different cancers utilize for cell survival remains to be, in most cases, a difficult research barrier. A major problem is the constant variability of different cancer types and the different stages of cancer as well as the complexity of the tumor microenvironments (TME). This complexity often leads to apparently contradictory results. Furthermore, the majority of the studies that have been conducted have utilized two-dimensional in vitro cultures of cancer cells that were exposed to continuous hypoxia, and this approach may not mimic the dynamic and cyclic conditions that are found in solid tumors. Here, we discuss the role of intermittent hypoxia, one of inducers of the UPR in the cellular component of TME, and the way in which intermittent hypoxia induces high levels of reactive oxygen species, the activation of the UPR, and the way in which cancer cells modulate the UPR to aid in their survival. Although the past decade has resulted in defining the complex, novel non-coding RNA-based regulatory networks that modulate the means by which hypoxia influences the UPR, we are now just to beginning to understand some of the connections between hypoxia, the UPR, and the TME.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, 80-416 Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Rafal Bartoszewski
- Department of Biophysics, Faculty of Biotechnology, University of Wroclaw, F. Joliot-Curie 14a Street, 50-383 Wroclaw, Poland
| |
Collapse
|
12
|
Dai YZ, Liu YD, Li J, Chen MT, Huang M, Wang F, Yang QS, Yuan JH, Sun SH. METTL16 promotes hepatocellular carcinoma progression through downregulating RAB11B-AS1 in an m 6A-dependent manner. Cell Mol Biol Lett 2022; 27:41. [PMID: 35596159 PMCID: PMC9123709 DOI: 10.1186/s11658-022-00342-8] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/04/2022] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The molecular mechanisms driving hepatocellular carcinoma (HCC) remain largely unclear. As one of the major epitranscriptomic modifications, N6-methyladenosine (m6A) plays key roles in HCC. The aim of this study was to investigate the expression, roles, and mechanisms of action of the RNA methyltransferase methyltransferase-like protein 16 (METTL16) in HCC. METHODS The expression of METTL16 and RAB11B-AS1 was determined by RT-qPCR. The regulation of RAB11B-AS1 by METTL16 was investigated by RNA immunoprecipitation (RIP), methylated RIP (MeRIP), and RNA stability assays. In vitro and in vivo gain- and loss-of-function assays were performed to investigate the roles of METTL16 and RAB11B-AS1. RESULTS METTL16 was upregulated in HCC, and its increased expression was correlated with poor prognosis of HCC patients. METTL16 promoted HCC cellular proliferation, migration, and invasion, repressed HCC cellular apoptosis, and promoted HCC tumoral growth in vivo. METTL16 directly bound long noncoding RNA (lncRNA) RAB11B-AS1, induced m6A modification of RAB11B-AS1, and decreased the stability of RAB11B-AS1 transcript, leading to the downregulation of RAB11B-AS1. Conversely to METTL16, RAB11B-AS1 is downregulated in HCC, and its decreased expression was correlated with poor prognosis of patients with HCC. Furthermore, the expression of RAB11B-AS1 was negatively correlated with METTL16 in HCC tissues. RAB11B-AS1 repressed HCC cellular proliferation, migration, and invasion, promoted HCC cellular apoptosis, and inhibited HCC tumoral growth in vivo. Functional rescue assays revealed that overexpression of RAB11B-AS1 reversed the oncogenic roles of METTL16 in HCC. CONCLUSIONS This study identified the METTL16/RAB11B-AS1 regulatory axis in HCC, which represented novel targets for HCC prognosis and treatment.
Collapse
Affiliation(s)
- Yun-Zhang Dai
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Yong-da Liu
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Jie Li
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Mei-Ting Chen
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Mei Huang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Fang Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China
| | - Qing-Song Yang
- Department of Interventional Radiology, Changhai Hospital, Naval Medical University, Shanghai, 20043, China.
| | - Ji-Hang Yuan
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
| | - Shu-Han Sun
- Department of Medical Genetics, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
13
|
Expression of microRNA-223 and microRNA-146b in serum and liver tissue of mice infected with Schistosoma mansoni. Parasitol Res 2022; 121:1963-1972. [PMID: 35576078 PMCID: PMC9192441 DOI: 10.1007/s00436-022-07542-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/03/2022] [Indexed: 11/21/2022]
Abstract
MicroRNAs (miRNAs) play regulatory roles in several diseases. In schistosomiasis, the main pathological changes are caused by the granulomatous reaction induced by egg deposition. We aimed to study the changes in host miRNA-223 and miRNA-146b expression in relation to egg deposition and development of hepatic pathology in murine schistosomiasis mansoni. Blood and liver tissue samples were collected from non-infected mice (group I), S. mansoni–infected mice at the 4th, 8th, and 12th weeks post-infection (p.i.) (groups II–IV), and 4 weeks after praziquantel treatment (group V). The collected samples were processed for RNA extraction, reverse transcription, and real-time PCR analysis of miRNA-223 and miRNA-146b. miRNAs’ relative expression was estimated by the ΔΔCt method. Liver tissue samples were examined for egg count estimation and histopathological evaluation. Results revealed that miRNA-223 was significantly downregulated in liver tissues 8 and 12 weeks p.i., whereas miRNA-146b expression increased gradually with the progression of infection with a significantly higher level at week 12 p.i. compared to week 4 p.i. Serum expression levels nearly followed the same pattern as the tissue levels. The dysregulated expression of miRNAs correlated with liver egg counts and was more obvious with the demonstration of chronic granulomas, fibrous transformation, and distorted hepatic architecture 12 weeks p.i. Restoration of normal expression levels was observed 4 weeks after treatment. Collectively, these findings provide new insights for in-depth understanding of host-parasite interaction in schistosomiasis and pave a new way for monitoring the progress of hepatic pathology before and after treatment.
Collapse
|
14
|
Hicks SD, Confair A, Warren K, Chandran D. Levels of Breast Milk MicroRNAs and Other Non-Coding RNAs Are Impacted by Milk Maturity and Maternal Diet. Front Immunol 2022; 12:785217. [PMID: 35095859 PMCID: PMC8796169 DOI: 10.3389/fimmu.2021.785217] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022] Open
Abstract
There is emerging evidence that non-coding RNAs (ncRNAs) within maternal breast milk (MBM) impart unique metabolic and immunologic effects on developing infants. Most studies examining ncRNAs in MBM have focused on microRNAs. It remains unclear whether microRNA levels are related to other ncRNAs, or whether they are impacted by maternal characteristics. This longitudinal cohort study examined 503 MBM samples from 192 mothers to: 1) identify the most abundant ncRNAs in MBM; 2) examine the impact of milk maturity on ncRNAs; and 3) determine whether maternal characteristics affect ncRNAs. MBM was collected at 0, 1, and 4 months post-delivery. High throughput sequencing quantified ncRNAs within the lipid fraction. There were 3069 ncRNAs and 238 microRNAs with consistent MBM presence (≥10 reads in ≥10% samples). Levels of 17 ncRNAs and 11 microRNAs accounted for 80% of the total RNA content. Most abundant microRNAs displayed relationships ([R]>0.2, adj p< 0.05) with abundant ncRNAs. A large proportion of ncRNAs (1269/3069; 41%) and microRNAs (206/238; 86%) were affected by MBM maturity. The majority of microRNAs (111/206; 54%) increased from 0-4 months. Few ncRNAs and microRNAs were affected (adj p < 0.05) by maternal age, race, parity, body mass index, gestational diabetes, or collection time. However, nearly half of abundant microRNAs (4/11) were impacted by diet. To our knowledge this is the largest study of MBM ncRNAs, and the first to demonstrate a relationship between MBM microRNAs and maternal diet. Such knowledge could guide nutritional interventions aimed at optimizing metabolic and immunologic microRNA profiles within MBM.
Collapse
Affiliation(s)
- Steven D Hicks
- Division of Academic General Pediatrics, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| | - Alexandra Confair
- Division of Academic General Pediatrics, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| | - Kaitlyn Warren
- Division of Academic General Pediatrics, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| | - Desirae Chandran
- Division of Academic General Pediatrics, Department of Pediatrics, Penn State College of Medicine, Hershey, PA, United States
| |
Collapse
|
15
|
Pan X, Guo J, Liu C, Pan Z, Yang Z, Yao X, Yuan J. LncRNA HCG18 promotes osteosarcoma growth by enhanced aerobic glycolysis via the miR-365a-3p/PGK1 axis. Cell Mol Biol Lett 2022; 27:5. [PMID: 34991445 PMCID: PMC8903679 DOI: 10.1186/s11658-021-00304-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 12/24/2021] [Indexed: 12/15/2022] Open
Abstract
Background Osteosarcoma (OS) is a common primary bone malignancy. Long noncoding RNA HCG18 is known to play an important role in a variety of cancers. However, its role in OS and relevant molecular mechanisms are unclear. Methods Real-time quantitative PCR was performed to determine the expression of target genes. Function experiments showed the effects of HCG18 and miR-365a-3p on OS cell growth. Results HCG18 expression was increased in OS cell lines. Moreover, in vitro and in vivo experiments demonstrated that HCG18 knockdown inhibited OS cell proliferation. Mechanistically, HCG18 was defined as a competing endogenous RNA by sponging miR-365a-3p, thus elevating phosphoglycerate kinase 1 (PGK1) expression by directly targeting its 3ʹUTR to increase aerobic glycolysis. Conclusion HCG18 promoted OS cell proliferation via enhancing aerobic glycolysis by regulating the miR-365a-3p/PGK1 axis. Therefore, HCG18 may be a potential target for OS treatment. Supplementary Information The online version contains supplementary material available at 10.1186/s11658-021-00304-6.
Collapse
Affiliation(s)
- Xiaohui Pan
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Jin Guo
- Department of Orthopedics, Zhenjiang First People's Hospital Branch, Zhenjiang, People's Republic of China
| | - Canjun Liu
- Department of Respiratory Therapy, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Zhanpeng Pan
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China
| | - Zhicheng Yang
- Department of Orthopedics, Changzhou No. 2 People's Hospital, The Affiliated Hospital of Nanjing Medical University, Changzhou, China.
| | - Xiang Yao
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
| | - Jishan Yuan
- Department of Orthopedics, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, 212002, Jiangsu, China.
| |
Collapse
|
16
|
Evaluation of potential sponge effects of SARS genomes in human. Noncoding RNA Res 2022; 7:48-53. [PMID: 35075440 PMCID: PMC8769905 DOI: 10.1016/j.ncrna.2022.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/15/2022] [Accepted: 01/15/2022] [Indexed: 12/15/2022] Open
Abstract
To date the coronavirus family is composed of seven different viruses which were commonly known as cold viruses until the appearance of the severe acute respiratory coronavirus (SARS-CoV) in 2002, the middle east respiratory syndrome coronavirus (MERS) in 2012 and the severe acute respiratory coronavirus 2 (SARS-CoV-2) which caused the COVID-19 global pandemic in 2019. Using bioinformatic approaches we tested the potential interactions of human miRNAs, expressed in pulmonary epithelial cells, with the available coronavirus genomes. Putative miRNA binding sites were then compared between pathogenic and non pathogenic virus groups. The pathogenic group shares 6 miRNA binding sites that can be potentially involved in the sequestration of miRNAs already known to be associated with deep vein thrombosis. We then analysed ∼100k SARS-CoV-2 variant genomes for their potential interaction with human miRNAs and this study highlighted a group of 97 miRNA binding sites which is present in all the analysed genomes. Among these, we identified 6 miRNA binding sites specific for SARS-CoV-2 and the other two pathogenic viruses whose down-regulation has been seen associated with deep vein thrombosis and cardiovascular diseases. Interestingly, one of these miRNAs, namely miR-20a-5p, whose expression decreases with advancing age, is involved in cytokine signaling, cell differentiation and/or proliferation. We hypothesize that depletion of poorly expressed miRNA could be related with disease severity.
Collapse
|
17
|
Khalili-Tanha G, Moghbeli M. Long non-coding RNAs as the critical regulators of doxorubicin resistance in tumor cells. Cell Mol Biol Lett 2021; 26:39. [PMID: 34425750 PMCID: PMC8381522 DOI: 10.1186/s11658-021-00282-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/17/2021] [Indexed: 12/16/2022] Open
Abstract
Resistance against conventional chemotherapeutic agents is one of the main reasons for tumor relapse and poor clinical outcomes in cancer patients. Various mechanisms are associated with drug resistance, including drug efflux, cell cycle, DNA repair and apoptosis. Doxorubicin (DOX) is a widely used first-line anti-cancer drug that functions as a DNA topoisomerase II inhibitor. However, DOX resistance has emerged as a large hurdle in efficient tumor therapy. Furthermore, despite its wide clinical application, DOX is a double-edged sword: it can damage normal tissues and affect the quality of patients’ lives during and after treatment. It is essential to clarify the molecular basis of DOX resistance to support the development of novel therapeutic modalities with fewer and/or lower-impact side effects in cancer patients. Long non-coding RNAs (lncRNAs) have critical roles in the drug resistance of various tumors. In this review, we summarize the state of knowledge on all the lncRNAs associated with DOX resistance. The majority are involved in promoting DOX resistance. This review paves the way to introducing an lncRNA panel marker for the prediction of the DOX response and clinical outcomes for cancer patients.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Liu Z, Ai L, Li R, Yang Y, Chen K, He C, Li Y. Analysis of miRNA expression profile in lung tissues of an intermittent hypoxia rat model. Respir Physiol Neurobiol 2021; 294:103741. [PMID: 34273552 DOI: 10.1016/j.resp.2021.103741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/21/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
We screened key miRNAs in an intermittent hypoxia rat model and explored the biological roles of downstream target genes and related regulatory pathways. We analyzed the expression profile of miRNAs in the lung tissues of rats in the 5 % (IH1), 7.5 % (IH2), 10 % (IH3), 12.5 % (IH4) oxygen concentration and negative control (NC) groups and identified common miRNAs. Multiple differentially expressed miRNAs were detected, and intersection of their expression profiles yielded 10 common miRNAs with 929 target genes mainly distributed in the nucleus. Molecular functions pertained mainly to the activation of transcription factors, while biological processes focused on cell interaction and signal transduction. Among signaling pathways, the top 5 included the LKB1 signaling, nectin adhesion, and S1P pathways. 8 of 10 common miRNAs had excellent diagnostic value for detecting intermittent hypoxia. The miRNAs binds to the target gene might play a key role in the pathophysiological process of OSA through the LKB1/AMPK and S1P/Akt/eNOS signaling pathways.
Collapse
Affiliation(s)
- Zhijuan Liu
- Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Li Ai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Ran Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Yuan Yang
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Keli Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China
| | - Chunxia He
- Kunming Medical University, Kunming, Yunnan, 650500, China
| | - Yongxia Li
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650101, China.
| |
Collapse
|
19
|
Chen Q, Wang W, Chen S, Chen X, Lin Y. miR-29a sensitizes the response of glioma cells to temozolomide by modulating the P53/MDM2 feedback loop. Cell Mol Biol Lett 2021; 26:21. [PMID: 34044759 PMCID: PMC8161631 DOI: 10.1186/s11658-021-00266-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/18/2021] [Indexed: 02/07/2023] Open
Abstract
Recently, pivotal functions of miRNAs in regulating common tumorigenic processes and manipulating signaling pathways in brain tumors have been recognized; notably, miR‐29a is closely associated with p53 signaling, contributing to the development of glioma. However, the molecular mechanism of the interaction between miR-29a and p53 signaling is still to be revealed. Herein, a total of 30 glioma tissues and 10 non-cancerous tissues were used to investigate the expression of miR‐29a. CCK-8 assay and Transwell assay were applied to identify the effects of miR-29a altered expression on the malignant biological behaviors of glioma cells in vitro, including proliferation, apoptosis, migration and invasion. A dual-luciferase reporter assay was used to further validate the regulatory effect of p53 or miR-29a on miR-29a or MDM2, respectively, at the transcriptional level. The results showed that miR-29a expression negatively correlated with tumor grade of human gliomas; at the same time it inhibited cell proliferation, migration, and invasion and promoted apoptosis of glioma cells in vitro. Mechanistically, miR-29a expression was induced by p53, leading to aberrant expression of MDM2 targeted by miR-29a, and finally imbalanced the activity of the p53-miR-29a-MDM2 feedback loop. Moreover, miR-29a regulating p53/MDM2 signaling sensitized the response of glioma cells to temozolomide treatment. Altogether, the study demonstrated a potential molecular mechanism in the tumorigenesis of glioma, while offering a possible target for treating human glioma in the future.
Collapse
Affiliation(s)
- Qiudan Chen
- The Department of Central Laboratory, Clinical Laboratory, Jing'an District Center Hospital of Shanghai, Fudan University, Shanghai, 200040, China
| | - Weifeng Wang
- Department of Central Laboratory, Clinical Medicine Scientific and Technical Innovation Park, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200435, China
| | - Shuying Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 20040, China
| | - Xiaotong Chen
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 20040, China
| | - Yong Lin
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, 20040, China.
| |
Collapse
|
20
|
Kattan SW, Hobani YH, Shaheen S, Mokhtar SH, Hussein MH, Toraih EA, Fawzy MS, Abdalla HA. Association of cyclin-dependent kinase inhibitor 2B antisense RNA 1 gene expression and rs2383207 variant with breast cancer risk and survival. Cell Mol Biol Lett 2021; 26:14. [PMID: 33849428 PMCID: PMC8045214 DOI: 10.1186/s11658-021-00258-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/03/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND The expression signature of deregulated long non-coding RNAs (lncRNAs) and related genetic variants is implicated in every stage of tumorigenesis, progression, and recurrence. This study aimed to explore the association of lncRNA cyclin-dependent kinase inhibitor 2B antisense RNA 1 (CDKN2B-AS1) gene expression and the rs2383207A>G intronic variant with breast cancer (BC) risk and prognosis and to verify the molecular role and networks of this lncRNA in BC by bioinformatics gene analysis. METHODS Serum CDKN2B-AS1 relative expression and rs2383207 genotypes were determined in 214 unrelated women (104 primary BC and 110 controls) using real-time PCR. Sixteen BC studies from The Cancer Genome Atlas (TCGA) including 8925 patients were also retrieved for validation of results. RESULTS CDKN2B-AS1 serum levels were upregulated in the BC patients relative to controls. A/A genotype carriers were three times more likely to develop BC under homozygous (OR = 3.27, 95% CI 1.20-8.88, P = 0.044) and recessive (OR = 3.17, 95% CI 1.20-8.34, P = 0.013) models. G/G homozygous patients had a higher expression level [median and quartile values were 3.14 (1.52-4.25)] than A/G [1.42 (0.93-2.35)] and A/A [1.62 (1.33-2.51)] cohorts (P = 0.006). The Kaplan-Meier curve also revealed a higher mean survival duration of G/G cohorts (20.6 months) compared to their counterparts (A/A: 15.8 and A/G: 17.2 months) (P < 0.001). Consistently, BC data sets revealed better survival in cohorts with high expression levels (P = 0.003). Principal component analysis (PCA) showed a deviation of patients who had shorter survival towards A/A and A/G genotypes, multiple lesions, advanced stage, lymphovascular invasion, and HER2+ receptor staining. Ingenuity Pathway Analysis (IPA) showed key genes highly enriched in BC with CDKN2B-AS1. CONCLUSIONS The findings support the putative role of CDKN2B-AS1 as an epigenetic marker in BC and open a new avenue for its potential use as a therapeutic molecular target in this type of cancer.
Collapse
Affiliation(s)
- Shahad W Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu, Saudi Arabia
| | - Yahya H Hobani
- Department of Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan, Kingdom of Saudi Arabia
| | - Sameerah Shaheen
- Anatomy Department and Stem Cell Unit, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Sara H Mokhtar
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mohammad H Hussein
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA, USA
| | - Eman A Toraih
- Department of Surgery, Tulane University, School of Medicine, New Orleans, LA, USA
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Manal S Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
- Department of Biochemistry, College of Medicine, Northern Border University, Arar, Saudi Arabia.
| | - Hussein Abdelaziz Abdalla
- Department of Medical Biochemistry, Faculty of Medicine, Taibah University, Medina, Saudi Arabia
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
21
|
Moghbeli M. Molecular interactions of miR-338 during tumor progression and metastasis. Cell Mol Biol Lett 2021; 26:13. [PMID: 33827418 PMCID: PMC8028791 DOI: 10.1186/s11658-021-00257-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 02/08/2023] Open
Abstract
Background Cancer, as one of the main causes of human deaths, is currently a significant global health challenge. Since the majority of cancer-related deaths are associated with late diagnosis, it is necessary to develop minimally invasive early detection markers to manage and reduce mortality rates. MicroRNAs (miRNAs), as highly conserved non-coding RNAs, target the specific mRNAs which are involved in regulation of various fundamental cellular processes such as cell proliferation, death, and signaling pathways. MiRNAs can also be regulated by long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). They are highly stable in body fluids and have tumor-specific expression profiles, which suggest their suitability as efficient non-invasive diagnostic and prognostic tumor markers. Aberrant expression of miR-338 has been widely reported in different cancers. It regulates cell proliferation, migration, angiogenesis, and apoptosis in tumor cells. Main body In the present review, we have summarized all miR-338 interactions with other non-coding RNAs (ncRNAs) and associated signaling pathways to clarify the role of miR-338 during tumor progression. Conclusions It was concluded that miR-338 mainly functions as a tumor suppressor in different cancers. There were also significant associations between miR-338 and other ncRNAs in tumor cells. Moreover, miR-338 has a pivotal role during tumor progression using the regulation of WNT, MAPK, and PI3K/AKT signaling pathways. This review highlights miR-338 as a pivotal ncRNA in biology of tumor cells.
Collapse
Affiliation(s)
- Meysam Moghbeli
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
22
|
Cong S, Li J, Zhang J, Feng J, Zhang A, Pan L, Ma J. Construction of circRNA-miRNA-mRNA Network for Exploring Underlying Mechanisms of Lubrication Disorder. Front Cell Dev Biol 2021; 9:580834. [PMID: 33777926 PMCID: PMC7991743 DOI: 10.3389/fcell.2021.580834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/17/2021] [Indexed: 12/13/2022] Open
Abstract
Lubrication disorder is a common health issue that manifests as insufficient sexual arousal at the beginning of sex. It often causes physical and psychological distress. However, there are few studies on lubrication disorder, and the complexity of circular RNA (circRNA) and the related competing endogenous RNA (ceRNA) network in lubrication disorder is still poorly known. Therefore, this study aims to build a regulatory circRNA-micro (mi)RNA-mRNA network and explore potential molecular markers of lubrication disorder. In the study, 12 subjects were recruited, including 6 in the lubrication disorder group and 6 in the normal control group. RNA sequencing was exploited to identify the expression profiles of circRNA, miRNA and mRNA between two groups, and then to construct the circRNA-miRNA-mRNA networks. The enrichment analyses of the differentially expressed (DE)-mRNAs were examined via Gene Set Enrichment Analysis (GSEA). Furthermore, the expression level and interactions among circRNA, miRNA, and mRNA were validated using real-time quantitative polymerase chain reaction (RT-qPCR) and dual-luciferase reporter assays. In the results, 73 circRNAs, 287 miRNAs, and 354 target mRNAs were differentially expressed between two groups when taking | Log2 (fold change)| > 1 and P-value < 0.05 as criteria, and then the results of GSEA revealed that DE-mRNAs were linked with "vascular smooth muscle contraction," "aldosterone regulated sodium reabsorption," "calcium signaling pathway," etc. 19 target relationships among 5 circRNAs, 4 miRNAs, and 7 mRNAs were found and constructed the ceRNA network. Among them, hsa-miR-212-5p and hsa-miR-874-3p were demonstrated to be related to the occurrence of lubrication disorder. Eventually, consistent with sequencing, RT-qPCR showed that hsa_circ_0026782 and ASB2 were upregulated while hsa-miR-874-3p was downregulated, and dual-luciferase reporter assays confirmed the interactions among them. In summary, the findings indicate that the circRNA-miRNA-mRNA regulatory network is presented in lubrication disorder, and ulteriorly provide a deeper understanding of the specific regulatory mechanism of lubrication disorder from the perspective of the circRNA-miRNA-mRNA network.
Collapse
Affiliation(s)
- Shengnan Cong
- School of Nursing, Nanjing Medical University, Jiangsu, China
| | - Jinlong Li
- Department of Laboratory Medicine, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jingjing Zhang
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jingyi Feng
- High School Affiliated To Nanjing Normal University International Department, Nanjing, China
| | - Aixia Zhang
- School of Nursing, Nanjing Medical University, Jiangsu, China.,Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Lianjun Pan
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Jiehua Ma
- Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| |
Collapse
|
23
|
Role of Selected miRNAs as Diagnostic and Prognostic Biomarkers in Cardiovascular Diseases, Including Coronary Artery Disease, Myocardial Infarction and Atherosclerosis. J Cardiovasc Dev Dis 2021; 8:jcdd8020022. [PMID: 33669699 PMCID: PMC7923109 DOI: 10.3390/jcdd8020022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/13/2021] [Accepted: 02/15/2021] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular diseases are the leading cause of death worldwide in different cohorts. It is well known that miRNAs have a crucial role in regulating the development of cardiovascular physiology, thus impacting the pathophysiology of heart diseases. MiRNAs also have been reported to be associated with cardiac reactions, leading to myocardial infarction (MCI) and ultimately heart failure (HF). To prevent these heart diseases, proper and timely diagnosis of cardiac dysfunction is pivotal. Though there are many symptoms associated with an irregular heart condition and though there are some biomarkers available that may indicate heart disease, authentic, specific and sensitive markers are the need of the hour. In recent times, miRNAs have proven to be promising candidates in this regard. They are potent biomarkers as they can be easily detected in body fluids (blood, urine, etc.) due to their remarkable stability and presence in apoptotic bodies and exosomes. Existing studies suggest the role of miRNAs as valuable biomarkers. A single biomarker may be insufficient to diagnose coronary artery disease (CAD) or acute myocardial infarction (AMI); thus, a combination of different miRNAs may prove fruitful. Therefore, this review aims to highlight the role of circulating miRNA as diagnostic and prognostic biomarkers in cardiovascular diseases such as coronary artery disease (CAD), myocardial infarction (MI) and atherosclerosis.
Collapse
|
24
|
Shi Y, Qi W, Xu Q, Wang Z, Cao X, Zhou L, Ye L. The role of epigenetics in the reproductive toxicity of environmental endocrine disruptors. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:78-88. [PMID: 33217042 DOI: 10.1002/em.22414] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Environmental endocrine disruptors (EEDs) seriously endanger human health by interfering with the normal function of reproductive systems. In males, EEDs can affect sperm formation and semen quality as well spermatogenesis, ultimately reducing fertility. In females, EEDs can affect uterine development and the expression levels of reproduction-related genes, ultimately reducing female fertility and the normal development of the fetus. There are a large number of putative mechanisms by which EEDs can induce reproductive toxicity, and many studies have shown the involvement of epigenetics. In this review, we summarize the role of DNA methylation, noncoding RNAs, genomic imprinting, chromatin remodeling and histone modification in the reproductive toxicity of EEDs.
Collapse
Affiliation(s)
- Yanbin Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Wen Qi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Qi Xu
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zheng Wang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Xiaolian Cao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Liting Zhou
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
25
|
Ravi P, Singh SP, Kang JW, Tran S, Dasari RR, So PTC, Liepmann D, Katti K, Katti D, Renugopalakrishnan V, Paulmurugan R. Spectrochemical Probing of MicroRNA Duplex Using Spontaneous Raman Spectroscopy for Biosensing Applications. Anal Chem 2020; 92:14423-14431. [PMID: 32985868 DOI: 10.1021/acs.analchem.0c02401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MicroRNAs are emerging as both diagnostic and therapeutic targets in different human pathologies. An accurate understanding of the structural dependency of microRNAs for their biological functions is essential for designing synthetic oligos with various base and linkage modifications that can transform into highly sensitive diagnostic devices and therapeutic molecules. In this proof-of-principle study, we have utilized label-free spontaneous Raman spectroscopy to understand the structural differences in sense and antisense microRNA-21 by hybridizing them with complementary RNA and DNA oligos. Overall, the results suggest that the changes in the Raman band at 785 cm-1 originating from the phosphodiester bond of the nucleic acid backbone, linking 5' phosphate of the nucleic acid with 3' OH of the other nucleotide, can serve as a marker to identify these structural variations. Our results support the application of Raman spectroscopy in discerning intramolecular (ssRNA and ssDNA) and intermolecular (RNA-RNA, RNA-DNA, and DNA-DNA hybrids) interactions of nucleic acids. This is potentially useful for developing biosensors to quantify microRNAs in clinical samples and to design therapeutic microRNAs with robust functionality.
Collapse
Affiliation(s)
- Preetham Ravi
- Center for Engineered Cancer Testbeds, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States.,Department of Chemistry, Northeastern University, Boston, Massachusetts 02115, United States.,Boston Children's Hospital, Boston, Massachusetts 02115, United States.,Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Surya Pratap Singh
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Biosciences and Bioengineering, Indian Institute of Technology Dharwad, Dharwad, Karnataka 580011, India
| | - Jeon Woong Kang
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sarah Tran
- Cellular Pathway Imaging Laboratory (CPIL), Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, California 94304, United States
| | - Ramachandra R Dasari
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Peter T C So
- Laser Biomedical Research Center, G. R. Harrison Spectroscopy Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dorian Liepmann
- Department of Bioengineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Kalpana Katti
- Center for Engineered Cancer Testbeds, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Dinesh Katti
- Center for Engineered Cancer Testbeds, and Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Venkatesan Renugopalakrishnan
- Department of Chemistry, Northeastern University, Boston, Massachusetts 02115, United States.,Boston Children's Hospital, Boston, Massachusetts 02115, United States.,Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Ramasamy Paulmurugan
- Cellular Pathway Imaging Laboratory (CPIL), Department of Radiology, Stanford University School of Medicine, 3155 Porter Drive, Suite 2236, Palo Alto, California 94304, United States
| |
Collapse
|
26
|
Gebert M, Jaśkiewicz M, Moszyńska A, Collawn JF, Bartoszewski R. The Effects of Single Nucleotide Polymorphisms in Cancer RNAi Therapies. Cancers (Basel) 2020; 12:E3119. [PMID: 33113880 PMCID: PMC7694039 DOI: 10.3390/cancers12113119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Tremendous progress in RNAi delivery methods and design has allowed for the effective development of siRNA-based therapeutics that are currently under clinical investigation for various cancer treatments. This approach has the potential to revolutionize cancer therapy by providing the ability to specifically downregulate or upregulate the mRNA of any protein of interest. This exquisite specificity, unfortunately, also has a downside. Genetic variations in the human population are common because of the presence of single nucleotide polymorphisms (SNPs). SNPs lead to synonymous and non-synonymous changes and they occur once in every 300 base pairs in both coding and non-coding regions in the human genome. Much less common are the somatic mosaicism variations associated with genetically distinct populations of cells within an individual that is derived from postzygotic mutations. These heterogeneities in the population can affect the RNAi's efficacy or more problematically, which can lead to unpredictable and sometimes adverse side effects. From a more positive viewpoint, both SNPs and somatic mosaicisms have also been implicated in human diseases, including cancer, and these specific changes could offer the ability to effectively and, more importantly, selectively target the cancer cells. In this review, we discuss how SNPs in the human population can influence the development and success of novel anticancer RNAi therapies and the importance of why SNPs should be carefully considered.
Collapse
Affiliation(s)
- Magdalena Gebert
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Maciej Jaśkiewicz
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - Adrianna Moszyńska
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
| | - Rafał Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, 80-416 Gdańsk, Poland; (M.G.); (M.J.); (A.M.)
| |
Collapse
|
27
|
Rosani U, Abbadi M, Green T, Bai CM, Turolla E, Arcangeli G, Wegner KM, Venier P. Parallel analysis of miRNAs and mRNAs suggests distinct regulatory networks in Crassostrea gigas infected by Ostreid herpesvirus 1. BMC Genomics 2020; 21:620. [PMID: 32912133 PMCID: PMC7488030 DOI: 10.1186/s12864-020-07026-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background Since 2008, the aquaculture production of Crassostrea gigas was heavily affected by mass mortalities associated to Ostreid herpesvirus 1 (OsHV-1) microvariants worldwide. Transcriptomic studies revealed the major antiviral pathways of the oyster immune response while other findings suggested that also small non-coding RNAs (sncRNA) such as microRNAs might act as key regulators of the oyster response against OsHV-1. To explore the explicit connection between small non-coding and protein-coding transcripts, we performed paired whole transcriptome analysis of sncRNA and messenger RNA (mRNA) in six oysters selected for different intensities of OsHV-1 infection. Results The mRNA profiles of the naturally infected oysters were mostly governed by the transcriptional activity of OsHV-1, with several differentially expressed genes mapping to the interferon, toll, apoptosis, and pro-PO pathways. In contrast, miRNA profiles suggested more complex regulatory mechanisms, with 15 differentially expressed miRNAs (DE-miRNA) pointing to a possible modulation of the host response during OsHV-1 infection. We predicted 68 interactions between DE-miRNAs and oyster 3′-UTRs, but only few of them involved antiviral genes. The sncRNA reads assigned to OsHV-1 rather resembled mRNA degradation products, suggesting the absence of genuine viral miRNAs. Conclusions We provided data describing the miRNAome during OsHV-1 infection in C. gigas. This information can be used to understand the role of miRNAs in healthy and diseased oysters, to identify new targets for functional studies and, eventually to disentangle cause and effect relationships during viral infections in marine mollusks.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, 35121, Padova, Italy. .,Coastal Ecology Section, AWI - Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, 25992, List, Germany.
| | - Miriam Abbadi
- Istituto Zooprofilattico delle Venezie, Legnaro, Italy
| | - Timothy Green
- Centre for Shellfish Research & Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
| | - Chang-Ming Bai
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | | | | | - K Mathias Wegner
- Coastal Ecology Section, AWI - Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, 25992, List, Germany
| | - Paola Venier
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
28
|
Bartoszewski R, Dabrowski M, Jakiela B, Matalon S, Harrod KS, Sanak M, Collawn JF. SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs. Am J Physiol Lung Cell Mol Physiol 2020; 319:L444-L455. [PMID: 32755307 DOI: 10.1152/ajplung.00252.2020] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cold viruses have generally been considered fairly innocuous until the appearance of the severe acute respiratory coronavirus 2 (SARS-CoV-2) in 2019, which caused the coronavirus disease 2019 (COVID-19) global pandemic. Two previous viruses foreshadowed that a coronavirus could potentially have devastating consequences in 2002 [severe acute respiratory coronavirus (SARS-CoV)] and in 2012 [Middle East respiratory syndrome coronavirus (MERS-CoV)]. The question that arises is why these viruses are so different from the relatively harmless cold viruses. On the basis of an analysis of the current literature and using bioinformatic approaches, we examined the potential human miRNA interactions with the SARS-CoV-2's genome and compared the miRNA target sites in seven coronavirus genomes that include SARS-CoV-2, MERS-CoV, SARS-CoV, and four nonpathogenic coronaviruses. Here, we discuss the possibility that pathogenic human coronaviruses, including SARS-CoV-2, could modulate host miRNA levels by acting as miRNA sponges to facilitate viral replication and/or to avoid immune responses.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Michal Dabrowski
- Laboratory of Bioinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bogdan Jakiela
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Sadis Matalon
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Kevin S Harrod
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Marek Sanak
- Department of Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - James F Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
29
|
Lack of association of metastasis-associated lung adenocarcinoma transcript 1 variants with melanoma skin cancer risk. Melanoma Res 2020; 29:660-663. [PMID: 30870271 DOI: 10.1097/cmr.0000000000000605] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) has been implicated in melanoma. Polymorphisms in MALAT1 may play a vital role in the progress of melanoma by its regulative function. However, potential genetic variants in MALAT1 affecting the risk of melanoma onset have not been explored. In this study, two single nucleotide polymorphisms (rs3200401 and rs619586) in MALAT1 were selected for genotyping of 334 melanoma patients and 291 cancer-free controls in an Italian population. The results showed that MALAT1 rs3200401 and rs619586 were not associated with melanoma risk. A further breakdown analysis by sex stratification also indicated a lack of association between these polymorphisms and melanoma. In addition, we tested 450 bp of the proximal 5´ flanking region of the gene for the presence of polymorphisms that could be associated with melanoma risk and found no variants in 96 melanoma patients. In conclusion, our results suggest that there is no contribution of MALAT1 rs3200401 and rs619586 polymorphisms or polymorphisms in the core promoter that could be associated with the risk of melanoma skin cancer in this specific study setting. Further validation will be required in larger studies involving different settings/larger populations in order to reach conclusive results.
Collapse
|
30
|
Chen S, Zhu J, Li P, Xia Z, Tu M, Lin Z, Xu B, Fu X. 3'UTRs Regulate Mouse Ntrk2 mRNA Distribution in Cortical Neurons. J Mol Neurosci 2020; 70:1858-1870. [PMID: 32430868 PMCID: PMC7561570 DOI: 10.1007/s12031-020-01579-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/01/2020] [Indexed: 12/01/2022]
Abstract
There are two major isoforms of NTRK2 (neurotrophic receptor tyrosine kinase 2, or TrkB), full-length isoform with tyrosine kinase (TK) domain intact (+) and spliced isoform without tyrosine kinase domain (TK(−)). Within each isoform, there exist subtypes with minor modifications of the protein sequences. In human, the NTRK2 mRNA transcripts encoding TK(+) have same 3′UTRs, while the transcripts encoding subtypes of NTRK2 TK(−) have two completely different 3′UTRs. In mouse, the mRNA transcripts encoding same NTRK2 protein sequence for either TK(+) or TK(−) have long or short 3′UTRs, respectively. The physiological functions of these different 3′UTRs are still unknown. Pilocarpine stimulation increased Ntrk2 mRNA levels in soma, while the increase in synaptosome was smaller. FISH results further showed that mouse Ntrk2 transcripts with different 3′UTRs were distributed differently in cultured cortical neurons. The transcripts with long 3′UTR were distributed more in apical dendrites compared with transcripts with short 3′UTR. Our results provide evidence of non-coding 3′UTR function in regulating mRNA distribution in neurons.
Collapse
Affiliation(s)
- Shangqin Chen
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Jinjin Zhu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Peijun Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhaonan Xia
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Mengjing Tu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhenlang Lin
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Baoji Xu
- Department of Neuroscience, The Scripps Research Institute, 130 Scripps Way, Jupiter, FL, 33458, USA
| | - Xiaoqin Fu
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
31
|
Bartoszewska S, Collawn JF. Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell Mol Biol Lett 2020; 25:18. [PMID: 32190062 PMCID: PMC7071609 DOI: 10.1186/s11658-020-00212-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
During hypoxic conditions, cells undergo critical adaptive responses that include the up-regulation of hypoxia-inducible proteins (HIFs) and the induction of the unfolded protein response (UPR). While their induced signaling pathways have many distinct targets, there are some important connections as well. Despite the extensive studies on both of these signaling pathways, the exact mechanisms involved that determine survival versus apoptosis remain largely unexplained and therefore beyond therapeutic control. Here we discuss the complex relationship between the HIF and UPR signaling pathways and the importance of understanding how these pathways differ between normal and cancer cell models.
Collapse
Affiliation(s)
- Sylwia Bartoszewska
- Department of Inorganic Chemistry, Medical University of Gdansk, Gdansk, Poland
| | - James F. Collawn
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, USA
| |
Collapse
|
32
|
Bartoszewski R, Sikorski AF. Editorial focus: understanding off-target effects as the key to successful RNAi therapy. Cell Mol Biol Lett 2019; 24:69. [PMID: 31867046 PMCID: PMC6902517 DOI: 10.1186/s11658-019-0196-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/03/2019] [Indexed: 12/21/2022] Open
Abstract
With the first RNA interference (RNAi) drug (ONPATTRO (patisiran)) on the market, we witness the RNAi therapy field reaching a critical turning point, when further improvements in drug candidate design and delivery pipelines should enable fast delivery of novel life changing treatments to patients. Nevertheless, ignoring parallel development of RNAi dedicated in vitro pharmacological profiling aiming to identify undesirable off-target activity may slow down or halt progress in the RNAi field. Since academic research is currently fueling the RNAi development pipeline with new therapeutic options, the objective of this article is to briefly summarize the basics of RNAi therapy, as well as to discuss how to translate basic research into better understanding of related drug candidate safety profiles early in the process.
Collapse
Affiliation(s)
- Rafal Bartoszewski
- Department of Biology and Pharmaceutical Botany, Medical University of Gdansk, Gdansk, Poland
| | - Aleksander F. Sikorski
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
33
|
Zhao Y, Wang Z, Zhang W, Zhang L. Non-coding RNAs regulate autophagy process via influencing the expression of associated protein. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 151:32-39. [PMID: 31786247 DOI: 10.1016/j.pbiomolbio.2019.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/17/2019] [Accepted: 11/26/2019] [Indexed: 02/07/2023]
Abstract
Autophagy is a tightly-regulated multi-step process involving the lysosomal degradation of proteins and cytoplasmic organelles. Central to this process is the formation of the autophagosome, a double membrane-bound vesicle, which is fuse with lysosomes or endosomes, and then deliver its cytoplasmic cargo to the lysosomes. Here, we summarize the recent process of autophagy, focusing on protein molecules, their complexes, and its essential roles of autophagy in various phases. Emerging evidence has revealed that miRNAs, lncRNAs, and circRNAs play an indispensable role in autophagy regulation by modulating targeting gene expression. This review we will summarize the main features of ncRNAs and point to gaps in our current knowledge of the connection between ncRNAs and autophagy, as well as their potential utilization in various disease phenotypes. Also, we highlight recent advances in ncRNAs and autophagy-associated protein interaction and how they regulate the autophagy process.
Collapse
Affiliation(s)
- Yunyi Zhao
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Ze Wang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China
| | - Wenhui Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China.
| | - Linbo Zhang
- Laboratory of Pathogenic Microbiology and Immunology, College of Life Science, Jilin Agricultural University, Changchun, China; Ministry of Education, Engineering Research Center for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, China
| |
Collapse
|
34
|
Zhang L, Jia X. Down-regulation of miR-30b-5p protects cardiomyocytes against hypoxia-induced injury by targeting Aven. Cell Mol Biol Lett 2019; 24:61. [PMID: 31768184 PMCID: PMC6873433 DOI: 10.1186/s11658-019-0187-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 11/05/2019] [Indexed: 12/30/2022] Open
Abstract
Background Ischemia/hypoxia-induced cardiomyocyte apoptosis has been considered as a main cause of myocardial infarction. Here, we aimed to investigate the functional role of miR-30b-5p in hypoxic cardiomyocytes. Methods AC16 human cardiomyocytes were cultured under hypoxia to simulate myocardial infarction. A qRT-PCR assay was performed to determine miR-30b-5p expression in hypoxic cardiomyocytes. Cell survival, injury and apoptosis were assessed by MTT, lactate dehydrogenase (LDH) release, and flow cytometry assays, respectively. The target gene of miR-30b-5p in hypoxic cardiomyocytes was validated by luciferase reporter assay and Western blotting. Results MiR-30b-5p expression was found to be significantly upregulated in hypoxic AC16 cells. The in vitro experiments showed that downregulation of miR-30b-5p effectively alleviated hypoxia-induced cardiomyocyte injury. Furthermore, Aven is a potential target gene of miR-30b-5p and its downregulation could partially reverse the influence of miR-30b-5p knockdown on AC16 cells under hypoxia. Conclusions Inhibition of miR-30b-5p could protect cardiomyocytes against hypoxia-induced injury by targeting Aven.
Collapse
Affiliation(s)
- Lanfang Zhang
- Department of Cardiology, Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Baoding, 071000 Hebei People's Republic of China
| | - Xinwei Jia
- Department of Cardiology, Affiliated Hospital of Hebei University, No. 212 Yuhua East Road, Baoding, 071000 Hebei People's Republic of China
| |
Collapse
|
35
|
Identification of stably expressed housekeeping miRNAs in endothelial cells and macrophages in an inflammatory setting. Sci Rep 2019; 9:12786. [PMID: 31484960 PMCID: PMC6726651 DOI: 10.1038/s41598-019-49241-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Reliable quantification of miRNA expression by qRT-PCR crucially depends on validated housekeepers for data normalization. Here we present thoroughly tested miRNAs eligible as references in immunological studies utilizing endothelial cells and macrophages, respectively. Endothelial cells (cell line: TIME) and macrophages (cell line: RAW264.7) were treated with various pro- and anti-inflammatory mediators (cytokines, LPS, unsaturated fatty acids) given as either single substances or in combination. Isolated RNA was screened for stably expressed miRNAs by next generation sequencing. Housekeeper candidates were thereafter validated by means of two independent quantification techniques: qRT-PCR for relative quantification and ddPCR for absolute quantification. Both methods consistently confirmed the suitability of let-7g-5p, let-7i-5p, miR-127-3p and miR-151a-5p in cytokine/fatty acid-treated TIME and miR-16-5p, miR-27b-3p, miR-103a-3p and miR-423-3p in LPS/fatty acid-treated RAW264.7, respectively as housekeeping miRNAs. With respect to abundancy and over all expression stability the miRNAs miR-151a-5p (cell line: TIME) as well as miR-27b-3p and miR-103a-3p (cell line: RAW264.7) can be particularly recommended for normalization of qRT-PCR data.
Collapse
|