1
|
Li Z, Yang W, Wang K, Jiang C, Sang X, Wang J, Lv X, Zhang H, Zhang Y. Parity-time symmetry transition and exceptional points in terahertz metal-graphene hybrid metasurface with switchable transmission and reflection characteristics. Phys Chem Chem Phys 2023; 25:6510-6518. [PMID: 36786281 DOI: 10.1039/d2cp05699b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Non-Hermitian metasurfaces provide an excellent platform for the study of parity-time (PT) symmetry transition. The exceptional point (EP) in the transition process exhibits peculiar physical phenomena and enriches the development of metasurfaces. In this study, a terahertz metal-graphene hybrid metasurface that can study PT symmetry transition and EP in transmission and reflection polarization channels is designed by using the phase transition characteristics of VO2. The tunable asymmetric loss and PT symmetry transition can be actively controlled by changing the Fermi energy of the graphene strip. Interestingly, owing to the special chirality of the structure, the original metasurface, and the mirrored metasurface degenerate into a circularly polarized state with opposite rotations at the same Fermi energy. The π-phase mutation at EP is observed following the interaction of circularly polarized waves and the metasurface and is expected to have good application prospects in environmental monitoring and gas sensing.
Collapse
Affiliation(s)
- Zhenkai Li
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao 266510, China.
| | - Weikui Yang
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao 266510, China.
| | - Kun Wang
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao 266510, China.
| | - Chunyang Jiang
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao 266510, China.
| | - Xiaotong Sang
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao 266510, China.
| | - Jian Wang
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao 266510, China.
| | - Xinyu Lv
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao 266510, China.
| | - Huiyun Zhang
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao 266510, China.
| | - Yuping Zhang
- College of Electronics and Information Engineering, Shandong University of Science and Technology, Qingdao 266510, China.
| |
Collapse
|
2
|
Ma R, Zhang LG, Zeng Y, Liu GD, Wang LL, Lin Q. Extreme enhancement of optical force via the acoustic graphene plasmon mode. OPTICS EXPRESS 2023; 31:6623-6632. [PMID: 36823914 DOI: 10.1364/oe.482723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
We have investigated the effect of enhanced optical force via the acoustic graphene plasmon (AGP) cavities with the ultra-small mode volumes. The AGP mode can generate stronger field confinement and higher momentum, which could provide giant optical force, and has no polarization preference for the optical source. We have demonstrated that the trapping potential and force applied on polystyrene nanoparticle in the AGP cavities are as high as -13.6 × 102 kBT/mW and 2.5 nN/mW, respectively. The effect of radius of rounded corners and gap distance of AGP cavities on the optical force has been studied. Compared with an ideal nanocube, nanocube with rounded corners is more in line with the actual situation of the device. These results show that the larger radius of nanocube rounded corners, the smaller trapping potential and force provided by AGP cavities. Our results pave a new idea for the investigation of optical field and optical force via acoustic plasmon mode.
Collapse
|
3
|
Li Y, Xu Y, Jiang J, Cheng S, Yi Z, Xiao G, Zhou X, Wang Z, Chen Z. Polarization-sensitive multi-frequency switches and high-performance slow light based on quadruple plasmon-induced transparency in a patterned graphene-based terahertz metamaterial. Phys Chem Chem Phys 2023; 25:3820-3833. [PMID: 36645136 DOI: 10.1039/d2cp05368c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A periodic patterned graphene-based terahertz metamaterial comprising three transverse graphene strips and one longitudinal continuous graphene ribbon is proposed to achieve a dynamically tunable quadruple plasmon-induced transparency (PIT) effect. Further analysis of the magnetic field distribution along the x-direction shows that the quadruple-PIT window can be produced by the strong destructive interference between the bright mode and the dark mode. The spectral response characteristics of the quadruple-PIT effect are numerically and theoretically investigated, and the results obtained by the finite-difference time-domain (FDTD) simulation fit well with that by the coupled mode theory (CMT) calculation. In addition, two hepta-frequency asynchronous switches are achieved by tuning the Fermi energy of the graphene, and their maximum modulation depths are 98.9% and 99.7%, corresponding to the insertion losses of 0.173 dB and 0.334 dB, respectively. Further studies show that polarization light has a significant impact on the quadruple-PIT, resulting in a polarization-sensitive switch being realized with a maximum modulation depth of 99.7% and a minimum insertion loss of 0.048 dB. In addition, when the Fermi energy is equal to 1.2 eV, the maximum time delay and group refractive index of the quadruple-PIT can be respectively as high as 1.065 ps and 3194, and the maximum delay-bandwidth product reaches 1.098, which means that excellent optical storage is achieved. Thus, our proposed quadruple-PIT system can be used to design a terahertz multi-channel switch and optical storage.
Collapse
Affiliation(s)
- Yuhui Li
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| | - Yiping Xu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| | - Jiabao Jiang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| | - Shubo Cheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| | - Zao Yi
- Joint Laboratory for Extreme Conditions Matter Properties, Southwest University of Science and Technology, Mianyang 621010, China
| | - Guohui Xiao
- Jiangxi Province Key Laboratory of Optoelectronics and Communications, Jiangxi Science and Technology Normal University, Nanchang 330038, China
| | - Xianwen Zhou
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| | - Ziyi Wang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| | - Zhanyu Chen
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, China.
| |
Collapse
|
4
|
Liu C, Lai X, Li Z, Jin D. Analogous plasmon-induced absorption based on an end-coupled MDM structure with area-cost-free cavities. APPLIED OPTICS 2022; 61:5106-5111. [PMID: 36256189 DOI: 10.1364/ao.462258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/23/2022] [Indexed: 06/16/2023]
Abstract
We theoretically investigate an end-coupled metal-dielectric-metal (MDM) structure that achieves analogous plasmon-induced absorption (APIA) in an area-cost-free manner. First, a squared ring is set to end-couple with MDM input and output waveguides, generating three Lorentzian-like peaks in the spectrum. Then, two APIA windows as well as two Fano resonances can be induced via appropriately arranging two area-free cavities. Numerous numerical results demonstrate that the proposed structure has remarkable sensing and phase characteristics. Our proposed PIA-based MDM structure is promising in potential applications of bio-chemical sensing, slow light devices, optical switching, and chip-scale plasmonic devices.
Collapse
|
5
|
Wide-Angle Absorption Based on Angle-Insensitive Light Slowing Effect in Photonic Crystal Containing Hyperbolic Metamaterials. PHOTONICS 2022. [DOI: 10.3390/photonics9030181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Light-slowing effect at band edges in photonic crystals (PCs) is widely utilized to enhance optical absorption. However, according to the Bragg scattering theory, photonic bandgaps (PBGs) in traditional all-dielectric one-dimensional (1-D) PCs shift towards shorter wavelengths as the incident angle increases. Therefore, light-slowing effect in traditional all-dielectric 1-D PCs is also angle-sensitive. Such angle-sensitive property of light-slowing effect in traditional all-dielectric 1-D PCs poses a great challenge to achieve wide-angle absorption. In this paper, we design an angle-insensitive PBG in a 1-D PC containing hyperbolic metamaterials based on the phase-variation compensation theory. Assisted by the angle-insensitive light-slowing effect at the angle-insensitive band edge, we achieve wide-angle absorption at near-infrared wavelengths. The absorptance keeps higher than 0.9 in a wide angle range from 0 to 45.5 degrees. Besides, the wide-angle absorption is robust when the phase-variation compensation condition is slightly broken. Our work not only provides a viable route to realize angle-insensitive light slowing and wide-angle light absorption, but also promotes the development of light-slowing- and absorption-based optical/optoelectronic devices.
Collapse
|
6
|
Zhang X, Liu Z, Zhang Z, Gao E, Luo X, Zhou F, Li H, Yi Z. Polarization-sensitive triple plasmon-induced transparency with synchronous and asynchronous switching based on monolayer graphene metamaterials. OPTICS EXPRESS 2020; 28:36771-36783. [PMID: 33379763 DOI: 10.1364/oe.410417] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
A monolayer graphene metamaterial comprising four graphene strips and four graphene blocks is proposed to produce triple plasmon-induced transparency (PIT) by the interaction of three bright modes and one dark mode. The response of the proposed structure is analyzed by using couple mode theory and finite-difference time-domain simulations, with the results of each method showing close agreement. A quadruple-mode on-to-off modulation based on synchronous or asynchronous switching is realized by tuning the Fermi levels in the graphene, its modulation degrees of amplitude are 77.7%, 58.9%, 75.4%, and 77.6% corresponding to 2.059 THz, 2.865 THz, 3.381 THz, and 3.878 THz, respectively. Moreover, the influence of the polarized light angle on triple-PIT is investigated in detail, demonstrating that the polarization angle affects PIT significantly. As a result, a multi-frequency polarizer is realized, its polarization extinction ratios are 4.2 dB, 7.8 dB, and 12.5 dB. Combined, the insights gained into the synchronous or asynchronous switching and the polarization sensitivity of triple-PIT provide a valuable platform and ideas to inspire the design of novel optoelectronic devices.
Collapse
|
7
|
He MJ, Qi H, Ren YT, Zhao YJ, Zhang Y, Shen JD, Antezza M. Radiative thermal switch driven by anisotropic black phosphorus plasmons. OPTICS EXPRESS 2020; 28:26922-26934. [PMID: 32906957 DOI: 10.1364/oe.402642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/06/2020] [Indexed: 06/11/2023]
Abstract
Black phosphorus (BP), as a two-dimensional material, has exhibited unique optoelectronic properties due to its anisotropic plasmons. In the present work, we theoretically propose a radiative thermal switch (RTS) composed of BP gratings in the context of near-field radiative heat transfer. The simply mechanical rotation between the gratings enables considerable modulation of radiative heat flux, especially when combined with the use of non-identical parameters, i.e., filling factors and electron densities of BP. Among all the cases including asymmetric BP gratings, symmetric BP gratings, and BP films, we find that the asymmetric BP gratings possess the most excellent switching performance. The optimized switching factors can be as high as 90% with the vacuum separation d=50 nm and higher than 70% even in the far-field regime d=1 µm. The high-performance switching is basically attributed to the rotatable-tunable anisotropic BP plasmons between the asymmetric gratings. Moreover, due to the twisting principle, the RTS can work at a wide range of temperature, which has great advantage over the phase change materials-based RTS. The proposed switching scheme has great significance for the applications in optoelectronic devices and thermal circuits.
Collapse
|
8
|
Xu H, He Z, Chen Z, Nie G, Li H. Optical Fermi level-tuned plasmonic coupling in a grating-assisted graphene nanoribbon system. OPTICS EXPRESS 2020; 28:25767-25777. [PMID: 32906861 DOI: 10.1364/oe.401694] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
A novel graphene-based grating-coupled metamaterial structure is proposed, and the optical response of this structure can be obviously controlled by the Fermi level, which is theoretically regulated by the electric field of an applied voltage. The upper graphene monolayer can be intensely excited with the aid of periodic grating and thus it can be considered a bright mode. Meanwhile, the lower graphene monolayer cannot be directly excited, but it could be indirectly activated by the help of bright mode. The plasmonic polaritons resulting from the light-graphene interaction resonance can lead to a destructive interference effect, leading to a plasmonic induced transparency. This structure has a simple construction and retains the integrity of graphene. In the meantime, it can achieve a good tuning effect by adjusting the voltage regulation of microstructure array and it can obtain an outstanding reflection efficiency. Thus, this graphene-based metamaterial structure with these properties is very suitable for the plasmonic optical reflector. In contacting with the characteristics of material, the group delay of this device can reach to 0.3ps, which can well match the slow light performance. Therefore, the device is expected to make some contribution in optical reflection and slow light devices.
Collapse
|
9
|
Guan J, Xia S, Zhang Z, Wu J, Meng H, Yue J, Zhai X, Wang L, Wen S. Correction to: Two Switchable Plasmonically Induced Transparency Effects in a System with Distinct Graphene Resonators. NANOSCALE RESEARCH LETTERS 2020; 15:159. [PMID: 32757172 PMCID: PMC7406624 DOI: 10.1186/s11671-020-03385-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An amendment to this paper has been published and can be accessed via the original article.
Collapse
Affiliation(s)
- Jingrui Guan
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Shengxuan Xia
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China.
| | - Zeyan Zhang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jing Wu
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Haiyu Meng
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jing Yue
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Xiang Zhai
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Lingling Wang
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Shuangchun Wen
- Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| |
Collapse
|