1
|
Andırın A, Yaycı ND, Idikut M, Kara A, Tuncsoy M, Tuncsoy B, Ozalp P. Green synthesis of silver nanoparticles using carob leaf extract: Characterization and analysis of toxic effects in model organism Galleria mellonella L. (The greater wax moth). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57778-57788. [PMID: 39294535 DOI: 10.1007/s11356-024-34996-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Silver nanoparticles (Ag NPs) have been used in many studies due to their inhibitory properties on microorganisms such as bacteria and viruses. In recent years, due to global problems such as environmental pollution, the green synthesis (biosynthesis) method is frequently preferred because it is simple and low cost and does not require the use of toxic substances. The aim of this study is to synthesize silver nanoparticles (Ag NPs) from Ceratonia siliqua L. leaves and investigate their antioxidant and immunotoxic properties using Galleria mellonella last instar larvae. The UV spectrophotometer, TEM, XRD and FTIR measurements were used to characterize the Ag NPs. In this study, it was determined that the effects on antioxidant enzyme activities (SOD, CAT, GPx, GST), acetylcholinesterase (AChE) and total hemocyte count (THC) as well as phenoloxidase activity determine their effect on antioxidant defence and the immune system in model organism G. mellonella larvae. We observed that green synthesized Ag NPs accumulate in the midgut of the larvae and led to the increasing of CAT and SOD activities. GST and AChE activities were increased in the fat body of the larvae; otherwise, it was decreased in the midgut. Moreover, increases were found in THC and phenoloxidase activity. Consequently, green synthesized silver nanoparticles led to oxidative stress and immunotoxic effects on G. mellonella larvae.
Collapse
Affiliation(s)
- Aslıhan Andırın
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Nur Dudu Yaycı
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Murat Idikut
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Ayse Kara
- Department of Biology, Faculty of Science and Letter, Cukurova University, Adana, Turkey
| | - Mustafa Tuncsoy
- Department of Biology, Faculty of Science and Letter, Cukurova University, Adana, Turkey
| | - Benay Tuncsoy
- Department of Bioengineering, Faculty of Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey.
| | - Pınar Ozalp
- Department of Biology, Faculty of Science and Letter, Cukurova University, Adana, Turkey
| |
Collapse
|
2
|
Guo X, Xu H, Seo JE. Application of HepaRG cells for genotoxicity assessment: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:214-237. [PMID: 38566478 DOI: 10.1080/26896583.2024.2331956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
There has been growing interest in the use of human-derived metabolically competent cells for genotoxicity testing. The HepaRG cell line is considered one of the most promising cell models because it is TP53-proficient and retains many characteristics of primary human hepatocytes. In recent years, HepaRG cells, cultured in both a traditional two-dimensional (2D) format and as more advanced in-vivo-like 3D spheroids, have been employed in assays that measure different types of genetic toxicity endpoints, including DNA damage, mutations, and chromosomal damage. This review summarizes published studies that have used HepaRG cells for genotoxicity assessment, including cell model evaluation studies and risk assessment for various compounds. Both 2D and 3D HepaRG models can be adapted to several high-throughput genotoxicity assays, generating a large number of data points that facilitate quantitative benchmark concentration modeling. With further validation, HepaRG cells could serve as a unique, human-based new alternative methodology for in vitro genotoxicity testing.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
3
|
Tang X, Zhang L, Huang M, Wang F, Xie G, Huo R, Gao R. Selective enhanced cytotoxicity of amino acid deprivation for cancer therapy using thermozyme functionalized nanocatalyst. J Nanobiotechnology 2024; 22:53. [PMID: 38326899 PMCID: PMC10848425 DOI: 10.1186/s12951-024-02326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 01/30/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND Enzyme therapy based on differential metabolism of cancer cells has demonstrated promising potential as a treatment strategy. Nevertheless, the therapeutic benefit of reported enzyme drugs is compromised by their uncontrollable activity and weak stability. Additionally, thermozymes with high thermal-stability suffer from low catalytic activity at body temperature, preventing them from functioning independently. RESULTS Herein, we have developed a novel thermo-enzymatic regulation strategy for near-infrared (NIR)-triggered precise-catalyzed photothermal treatment of breast cancer. Our strategy enables efficient loading and delivery of thermozymes (newly screened therapeutic enzymes from thermophilic bacteria) via hyaluronic acid (HA)-coupled gold nanorods (GNRs). These nanocatalysts exhibit enhanced cellular endocytosis and rapid enzyme activity enhancement, while also providing biosafety with minimized toxic effects on untargeted sites due to temperature-isolated thermozyme activity. Locally-focused NIR lasers ensure effective activation of thermozymes to promote on-demand amino acid deprivation and photothermal therapy (PTT) of superficial tumors, triggering apoptosis, G1 phase cell cycle arrest, inhibiting migration and invasion, and potentiating photothermal sensitivity of malignancies. CONCLUSIONS This work establishes a precise, remotely controlled, non-invasive, efficient, and biosafe nanoplatform for accurate enzyme therapy, providing a rationale for promising personalized therapeutic strategies and offering new prospects for high-precision development of enzyme drugs.
Collapse
Affiliation(s)
- Xiuhui Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Lijuan Zhang
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Mingwang Huang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fang Wang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Guiqiu Xie
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Rui Huo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Renjun Gao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
4
|
Büssemaker H, Meinshausen AK, Bui VD, Döring J, Voropai V, Buchholz A, Mueller AJ, Harnisch K, Martin A, Berger T, Schubert A, Bertrand J. Silver-integrated EDM processing of TiAl6V4 implant material has antibacterial capacity while optimizing osseointegration. Bioact Mater 2024; 31:497-508. [PMID: 37736105 PMCID: PMC10509668 DOI: 10.1016/j.bioactmat.2023.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 04/29/2023] [Accepted: 08/24/2023] [Indexed: 09/23/2023] Open
Abstract
Periprosthetic joint infections (PJI) are a common reason for orthopedic revision surgeries. It has been shown that the silver surface modification of a titanium alloy (Ti-6Al-4V) by PMEDM (powder mixed electrical discharge machining) exhibits an antibacterial effect on Staphylococcus spp. adhesion. Whether the thickness of the silver-modified surface influences the adhesion and proliferation of bacteria as well as the ossification processes and in-vivo antibacterial capacity has not been investigated before. Therefore, the aim of this work is to investigate the antibacterial effect as well as the in vitro ossification process depending on the thickness of PMEDM silver modified surfaces. The attachment of S. aureus on the PMEDM modified surfaces was significantly lower than on comparative control samples, independently of the tested surface properties. Bacterial proliferation, however, was not affected by the silver content in the surface layer. We observed a long-term effect of antibacterial capacity in vitro, as well as in vivo. An induction of ROS, as indicator for oxidative stress, was observed in the bacteria, but not in osteoblast-like cells. No influence on the in vitro osteoblast function was observed, whereas osteoclast formation was drastically reduced on the silver surface. No changes in cell death, the metabolic activity and oxidative stress was measured in osteoblasts. We show that already small amounts of silver exhibit a significant antibacterial capacity while not influencing the osteoblast function. Therefore, PMEDM using silver nano-powder admixed to the dielectric represents a promising technology to shape and concurrently modify implant surfaces to reduce infections while at the same time optimizing bone ingrowth of endoprosthesis.
Collapse
Affiliation(s)
- Hilmar Büssemaker
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | | | - Viet Duc Bui
- Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
| | - Joachim Döring
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | - Vadym Voropai
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | - Adrian Buchholz
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
| | - Andreas J. Mueller
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Karsten Harnisch
- Institute of Materials and Joining Technology, Otto-von-Guericke University, Magdeburg, Germany
| | - André Martin
- Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
| | - Thomas Berger
- Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
| | - Andreas Schubert
- Professorship Micromanufacturing Technology, Chemnitz University of Technology, Chemnitz, Germany
- Fraunhofer Institute for Machine Tools and Forming Technology, Chemnitz, Germany
| | - Jessica Bertrand
- Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Germany
- Health Campus Immunology, Infectiology and Inflammation, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
5
|
Piñera-Avellaneda D, Buxadera-Palomero J, Ginebra MP, Calero JA, Manero JM, Rupérez E. Surface competition between osteoblasts and bacteria on silver-doped bioactive titanium implant. BIOMATERIALS ADVANCES 2023; 146:213311. [PMID: 36709627 DOI: 10.1016/j.bioadv.2023.213311] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023]
Abstract
The rapid integration in the bone tissue and the prevention of bacterial infection are key for the success of the implant. In this regard, a silver (Ag)-doped thermochemical treatment that generate an Ag-doped calcium titanate layer on titanium (Ti) implants was previously developed by our group to improve the bone-bonding ability and provide antibacterial activity. In the present study, the biological and antibacterial potential of this coating has been further studied. In order to prove that the Ag-doped layer has an antibacterial effect with no detrimental effect on the bone cells, the behavior of osteoblast-like cells in terms of cell adhesion, morphology, proliferation and differentiation was evaluated, and the biofilm inhibition capacity was assessed. Moreover, the competition by the surface between cell and bacteria was carried out in two different co-culture methods. Finally, the treatment was applied to porous Ti implants to study in vivo osteointegration. The results show that the incorporation of Ag inhibits the biofilm formation and has no effect on the performance of osteoblast-like cells. Therefore, it can be concluded that the Ag-doped surface is capable of preventing bone bacterial infection and providing suitable osseointegration.
Collapse
Affiliation(s)
- David Piñera-Avellaneda
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain.
| | - Judit Buxadera-Palomero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| | - María-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain; Institute for Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
| | - José A Calero
- AMES GROUP, 08980 Sant Feliu de Llobregat, Barcelona, Spain
| | - José María Manero
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| | - Elisa Rupérez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Technical University of Catalonia (UPC), Barcelona East School of Engineering (EEBE), 08019 Barcelona, Spain; Barcelona Research Center in Multiscale Science and Engineering, UPC, EEBE, 08019 Barcelona, Spain; Institut de Recerca Sant Joan de Déu, 08034 Barcelona, Spain
| |
Collapse
|
6
|
Guo M, Zhang W, Niu S, Shang M, Chang X, Wu T, Zhang T, Tang M, Xue Y. Adaptive regulations of Nrf2 alleviates silver nanoparticles-induced oxidative stress-related liver cells injury. Chem Biol Interact 2023; 369:110287. [PMID: 36471531 DOI: 10.1016/j.cbi.2022.110287] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/14/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Silver nanoparticles (AgNPs) are widely used in various fields such as industry, agriculture, and medical care because of their excellent broad-spectrum antibacterial activity. However, their extensive use has raised concerns about their health risks. Liver is one of the main target organs for the accumulation and action of AgNPs. Therefore, evaluating the toxic effects of AgNPs on liver cells and its mechanisms of action is crucial for the safe application of AgNPs. In the study, polyvinylpyrrolidone (PVP)-coated AgNPs were characterized. The human hepatoma cell line (HepG2) and the normal hepatic cell line (L02) were exposed to different concentrations of AgNPs (20-160 μg/mL) and pretreated with the addition of N-acetylcysteine (NAC) or by Nrf2 siRNA transfection. NAC was able to inhibit the concentration-dependent increase in the level of apoptosis induced by AgNPs in HepG2 cells and L02 cells. Interestingly, HepG2 cells were more sensitive to AgNPs than L02 cells, and this may be related to the different ROS generation and responses to AgNPs by cancer cells and normal cells. In addition, NAC also alleviated the imbalance of antioxidant system and cell cycle arrest, which may be related to AgNPs-induced DNA damage and autophagy. The knockdown of nuclear factor erythroid-derived factor 2-related factor (Nrf2) found that AgNPs-induced ROS and apoptosis levels were further upregulated, but the cell cycle arrest was alleviated. On the whole, Nrf2 exerts a protective role in AgNPs-induced hepatotoxicity. This study complements the hepatotoxicity mechanisms of AgNPs and provides data for a future exploration of AgNPs-related anti-hepatocellular carcinoma drugs.
Collapse
Affiliation(s)
- Menghao Guo
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Wenli Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Shuyan Niu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Xiaoru Chang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, PR China.
| |
Collapse
|
7
|
Wen H, Yang Y, Geng X. Market entry system considering the biosafety of nanomedical devices in China. WIRES NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1821. [DOI: 10.1002/wnan.1821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/18/2022] [Accepted: 04/12/2022] [Indexed: 11/24/2022]
Affiliation(s)
- Hairuo Wen
- National Center for Safety Evaluation of Drugs National Institutes for Food and Drug Control Beijing People's Republic of China
| | - Ying Yang
- National Center for Safety Evaluation of Drugs National Institutes for Food and Drug Control Beijing People's Republic of China
| | - Xingchao Geng
- National Center for Safety Evaluation of Drugs National Institutes for Food and Drug Control Beijing People's Republic of China
| |
Collapse
|
8
|
El-Samad LM, Bakr NR, El-Ashram S, Radwan EH, Abdul Aziz KK, Hussein HK, El Wakil A, Hassan MA. Silver nanoparticles instigate physiological, genotoxicity, and ultrastructural anomalies in midgut tissues of beetles. Chem Biol Interact 2022; 367:110166. [PMID: 36087814 DOI: 10.1016/j.cbi.2022.110166] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/13/2022] [Accepted: 09/02/2022] [Indexed: 01/01/2023]
Abstract
Silver nanoparticles (AgNPs) have long been materials of great interest in numerous fields; however, there is escalating alarm over their toxicity to public health since exposure to these particles is inevitable. This study sheds light on the deleterious impacts of AgNPs on the midgut tissues of beetles (Blaps polychresta) collected from Egypt as a biological model. The investigations were conducted on the beetles administered with a sublethal dose of AgNPs (0.03 mg/g body weight) after 30 days. Oxidative stress parameters and antioxidant enzyme activities were assessed, which exposed critical disruption in the antioxidant defense system of treated beetles. Remarkably, metallothionein (MT) gene expression was significantly increased, while reduced glutathione (GSH) level was notably decreased in midgut tissues subjected to AgNPs. These findings manifestly imply the presence of overproduction in terms of reactive oxygen species (ROS) inside the cells. Additionally, DNA impairment and apoptosis of midgut cells were appraised employing comet and flow cytometry analyses, respectively. The comet results revealed a significant increase in comet cells for the AgNPs treated beetles compared with the control group. Furthermore, the apoptosis results demonstrated a substantial diminution in viable cells with significant growth in apoptotic cells in midgut cells exposed to AgNPs, manifesting their striking correlation with comet and biochemical findings. Noticeably, the histopathological and ultrastructural inspections revealed substantial aberrations in the midgut tissues in the AgNPs treated group, substantiating the previous results. As far as we know, no research has been found that surveyed how the AgNPs at low doses affect the midgut tissues of beetles. Overall, these findings evince the aberrant influences of AgNPs on living organisms.
Collapse
Affiliation(s)
- Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Nahed R Bakr
- Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan, 528231, Guangdong Province, China; Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt
| | - Eman H Radwan
- Department of Zoology, Faculty of Science, Damanhour University, Egypt
| | | | - Hussein K Hussein
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Egypt
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt; University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany.
| |
Collapse
|
9
|
Mohamed EE, Abdel-Moneim A, Ahmed OM, Zoheir KM, Eldin ZE, El-Shahawy AA. Anticancer activity of a novel naringin‒dextrin nanoformula: Preparation, characterization, and in vitro induction of apoptosis in human hepatocellular carcinoma cells by inducing ROS generation, DNA fragmentation, and cell cycle arrest. J Drug Deliv Sci Technol 2022; 75:103677. [DOI: 10.1016/j.jddst.2022.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Jiang J, Huang Y, Wang W, Sun C, Liu Q, Chen Y, Hu T, Ma X, Peng C, Ma Y, Liu S, Rao C. Activation of ATM/Chk2 by Zanthoxylum armatum DC extract induces DNA damage and G1/S phase arrest in BRL 3A cells. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114832. [PMID: 34775036 DOI: 10.1016/j.jep.2021.114832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Zanthoxylum armatum DC is a traditional medicinal plant. It is widely used in clinical treatment and disease prevention in China, India and other regions. Modern studies have reported the phytotoxicity, cytotoxicity and the animal toxicity of Zanthoxylum armatum DC, and the damage of genetic material has been observed in plants, but the detailed mechanism has not been explored. Besides, the toxicity of normal mammalian cells has not been evaluated. AIM OF THE STUDY To evaluate the effects and underlying mechanism of genetic material damage in BRL 3A cells induced by Zanthoxylum armatum DC. MATERIALS AND METHODS Ultra-High Performance Liquid Chromatography and Orbitrap High-Resolution Mass Spectrometry was used for identification of compounds in methanol extract of Zanthoxylum armatum DC. BRL 3A cells were incubated with different concentrations of methanol extract of Zanthoxylum armatum DC (24 h). The cytotoxicity of extract was assessed with cell viability, LDH release rate, and ROS production. The damage of genetic material was assessed with OTM value of comet cells, cell cycle and the expression levels of p-ATM, p- Chk2, Cdc25A, and CDK2. RESULTS Ultra-High Performance Liquid Chromatography and Orbitrap High-Resolution Mass Spectrometry investigation revealed the presence of compounds belonging to flavonoid, fatty acid and alkaloid groups. The viability of BRL 3A cells was reduced in a time-dose dependent manner treated by methanol extract of Zanthoxylum armatum DC. It increased LDH release rate and ROS production, activated the DNA double strand damage marker of γH2AX and produced comet cells. In addition, methanol extract of Zanthoxylum armatum DC caused ATM-mediated DNA damage, further phosphorylated Chk2, inhibited cell cycle related proteins, and arrested the G1/S cycle. CONCLUSIONS Methanol extract of Zanthoxylum armatum DC induces DNA damage and further leads G1/S cell cycle arrest by triggering oxidative stress in the BRL 3A cells. This study provides some useful evidences for its development as an antitumor drug via activation of ATM/Chk2.
Collapse
Affiliation(s)
- Jialuo Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Huang
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Wenlin Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Chen Sun
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yan Chen
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Xiaoju Ma
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Cheng Peng
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Yuntong Ma
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China
| | - Shukun Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| | - Chaolong Rao
- Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China; R&D Center for Efficiency, Safety and Application in Chinese Materia Medica with Medical and Edible Values, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, China.
| |
Collapse
|
11
|
Mao BH, Luo YK, Wang BJ, Chen CW, Cheng FY, Lee YH, Yan SJ, Wang YJ. Use of an in silico knowledge discovery approach to determine mechanistic studies of silver nanoparticles-induced toxicity from in vitro to in vivo. Part Fibre Toxicol 2022; 19:6. [PMID: 35031062 PMCID: PMC8759195 DOI: 10.1186/s12989-022-00447-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 12/29/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Silver nanoparticles (AgNPs) are considered a double-edged sword that demonstrates beneficial and harmful effects depending on their dimensions and surface coating types. However, mechanistic understanding of the size- and coating-dependent effects of AgNPs in vitro and in vivo remains elusive. We adopted an in silico decision tree-based knowledge-discovery-in-databases process to prioritize the factors affecting the toxic potential of AgNPs, which included exposure dose, cell type and AgNP type (i.e., size and surface coating), and exposure time. This approach also contributed to effective knowledge integration between cell-based phenomenological observations and in vitro/in vivo mechanistic explorations. RESULTS The consolidated cell viability assessment results were used to create a tree model for generalizing cytotoxic behavior of the four AgNP types: SCS, LCS, SAS, and LAS. The model ranked the toxicity-related parameters in the following order of importance: exposure dose > cell type > particle size > exposure time ≥ surface coating. Mechanistically, larger AgNPs appeared to provoke greater levels of autophagy in vitro, which occurred during the earlier phase of both subcytotoxic and cytotoxic exposures. Furthermore, apoptosis rather than necrosis majorly accounted for compromised cell survival over the above dosage range. Intriguingly, exposure to non-cytotoxic doses of AgNPs induced G2/M cell cycle arrest and senescence instead. At the organismal level, SCS following a single intraperitoneal injection was found more toxic to BALB/c mice as compared to SAS. Both particles could be deposited in various target organs (e.g., spleen, liver, and kidneys). Morphological observation, along with serum biochemical and histological analyses, indicated that AgNPs could produce pancreatic toxicity, apart from leading to hepatic inflammation. CONCLUSIONS Our integrated in vitro, in silico, and in vivo study revealed that AgNPs exerted toxicity in dose-, cell/organ type- and particle type-dependent manners. More importantly, a single injection of lethal-dose AgNPs (i.e., SCS and SAS) could incur severe damage to pancreas and raise blood glucose levels at the early phase of exposure.
Collapse
Affiliation(s)
- Bin-Hsu Mao
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan
| | - Yi-Kai Luo
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan
| | - Bour-Jr Wang
- Department of Cosmetic Science and Institute of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan City, 71710, Taiwan
- Department of Occupational and Environmental Medicine, National Cheng Kung University Hospital, Tainan City, 70403, Taiwan
| | - Chun-Wan Chen
- Institute of Labor, Occupational Safety and Health, Ministry of Labor, No. 99, Lane 407, Hengke Road, Sijhih District, New Taipei City, 22143, Taiwan
| | - Fong-Yu Cheng
- Department of Chemistry, Chinese Culture University, No. 55, Hwa-Kang Road, Yang-Ming-Shan, Taipei City, 11114, Taiwan
| | - Yu-Hsuan Lee
- Department of Cosmeceutics, China Medical University, No. 91, Hsueh-Shih Road, Taichung City, 40402, Taiwan
| | - Shian-Jang Yan
- Department of Physiology, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan.
| | - Ying-Jan Wang
- Department of Environmental and Occupational Health, College of Medicine, National Cheng Kung University, No. 1, University Road, Tainan City, 701, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, No. 91, Hsueh-Shih Road, Taichung City, 40402, Taiwan.
| |
Collapse
|