1
|
Chand R, Karmakar A, Kundu S, Neogi S. Heterobimetallic Synergism in Triple-Redox 2D Framework for Largely Boosted Water Oxidation and Flanked Carboxylic-Acid-Triggered Unconventional Tandem Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404085. [PMID: 39032141 DOI: 10.1002/smll.202404085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/01/2024] [Indexed: 07/22/2024]
Abstract
A fish-bone-shaped and thermochemically stable 2D metal-organic framework (MOF) with multimodal active center-decked pore-wall is devised. Redox-active [Co2(COO)4] node and thiazolo[5,4-d]thiazole functionalization benefit this mixed-ligand MOF exhibiting electrochemical water oxidation with 375 mV overpotential at 10 mA cm-2 current density and 78 mV per dec Tafel slope in alkaline medium. Pair of oppositely oriented carboxylic acids aids postmetalation with transition metal ions to engineer heterobimetallic materials. Notably, overpotential of Ni2+ grafted triple-redox composite reduces to 270 mV with twofold declined Tafel slope than the parent MOF, ranking among the best-reported values, and outperforming majority of related catalysts. Significantly, turnover frequency and charge transfer resistance display 35.5 and 1.4-fold upsurge, respectively, with much uplifted chronopotentiometric stability and increase active surface area owing to synergistic Co(II)-Ni(II) coupling. The simultaneous presence of ─COOH and nitrogen-rich moieties renders this hydrogen-bonded MOF as acid-base synergistic catalyst for recyclable deacetalization-Knoevenagel reaction with >99% product yield under solvent-free mild condition. Besides control experiments, unique role of ─COOH as hydrogen-bond donor site in substrate activation is validated from comparing the performances of molecular-shearing approach-derived structurally similar unfunctionalized MOF, and the heterobimetallic composite. To the best of tandem Knoevenagel condensation, larger-sized acetal exhibits poor yield of α,β-unsaturated dicyanides, and demonstrates pore-fitting-mediated size-selectivity.
Collapse
Affiliation(s)
- Rudra Chand
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Subhadip Neogi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Inorganic Materials & Catalysis Division, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India
| |
Collapse
|
2
|
Farhan A, Qayyum W, Fatima U, Nawaz S, Balčiūnaitė A, Kim TH, Srivastava V, Vakros J, Frontistis Z, Boczkaj G. Powering the Future by Iron Sulfide Type Material (Fe xS y) Based Electrochemical Materials for Water Splitting and Energy Storage Applications: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402015. [PMID: 38597684 DOI: 10.1002/smll.202402015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Water electrolysis is among the recent alternatives for generating clean fuels (hydrogen). It is an efficient way to produce pure hydrogen at a rapid pace with no unwanted by-products. Effective and cheap water-splitting electrocatalysts with enhanced activity, specificity, and stability are currently widely studied. In this regard, noble metal-free transition metal-based catalysts are of high interest. Iron sulfide (FeS) is one of the essential electrocatalysts for water splitting because of its unique structural and electrochemical features. This article discusses the significance of FeS and its nanocomposites as efficient electrocatalysts for oxygen evolution reaction (OER), hydrogen evolution reaction (HER), oxygen reduction reaction (ORR), and overall water splitting. FeS and its nanocomposites have been studied also for energy storage in the form of electrode materials in supercapacitors and lithium- (LIBs) and sodium-ion batteries (SIBs). The structural and electrochemical characteristics of FeS and its nanocomposites, as well as the synthesis processes, are discussed in this work. This discussion correlates these features with the requirements for electrocatalysts in overall water splitting and its associated reactions. As a result, this study provides a road map for researchers seeking economically viable, environmentally friendly, and efficient electrochemical materials in the fields of green energy production and storage.
Collapse
Affiliation(s)
- Ahmad Farhan
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Wajeeha Qayyum
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Urooj Fatima
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Shahid Nawaz
- Department of Catalysis, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, LT-10257, Lithuania
| | - Aldona Balčiūnaitė
- Department of Catalysis, Center for Physical Sciences and Technology, Sauletekio av. 3, Vilnius, LT-10257, Lithuania
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Varsha Srivastava
- Research Unit of Sustainable Chemistry, Faculty of Technology, University of Oulu, Oulu, FI-90014, Finland
| | - John Vakros
- Department of Chemical Engineering, University of Patras, Caratheodory 1, University Campus, Patras, GR 265 04, Greece
| | - Zacharias Frontistis
- Department of Chemical Engineering, University of Western Macedonia, Kozani, GR-50132, Greece
| | - Grzegorz Boczkaj
- Department of Sanitary Engineering, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, 11/12 Narutowicza Str., Gdańsk, 80-233, Poland
- EkoTech Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdansk, 80-233, Poland
| |
Collapse
|