1
|
Feely S, Rios Rodriguez M, Shannon A, Young S, Rosales JP, Kaur G. A Dive Into Cerebellar Dysfunction, Motor Deficits and GABAergic Signaling in Down Syndrome. Cureus 2025; 17:e79623. [PMID: 40151699 PMCID: PMC11949090 DOI: 10.7759/cureus.79623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/29/2025] Open
Abstract
Down syndrome (DS) mouse models and DS human fetus studies clearly indicate severe neurogenesis impairment in the cerebellum. Clinical features of DS include motor dysfunction and cerebellar hypotrophy, with a particularly marked decrease in the number of granule cells (GCs). GCs are crucial for managing sensory communication within the cerebellum via mossy fibers and their interactions with Purkinje cells (PCs) and inhibitory interneurons. The current review discusses cerebellar alterations in DS and its impact on GABAergic transmission, bringing to light the impact on GABAergic signaling and its role in motor coordination dysfunction observed in individuals with DS. The findings highlight the significance of GABAergic transmission in the pathophysiology of DS and its potential as a target for therapeutic innervation. Moreover, understanding the disruptions in GABAergic signaling may provide insights into developing novel treatment strategies.
Collapse
Affiliation(s)
- Shannon Feely
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Misleydi Rios Rodriguez
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Alyssa Shannon
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Serena Young
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Justin Peter Rosales
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| | - Gurjinder Kaur
- Department of Basic Biomedical Sciences, Touro College of Osteopathic Medicine, Middletown, USA
| |
Collapse
|
2
|
Klein JA, Haydar TF. Neurodevelopment in Down syndrome: Concordance in humans and models. Front Cell Neurosci 2022; 16:941855. [PMID: 35910249 PMCID: PMC9334873 DOI: 10.3389/fncel.2022.941855] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Great strides have been made over the past 30 years in understanding the neurodevelopmental changes underlying the intellectual disability (ID) in Down syndrome (DS). Detailed studies of human tissue coupled with findings from rodent and induced pluripotent stem cells (iPSCs) model systems have uncovered the changes in neurogenesis, synaptic connectivity, and myelination that drive the anatomical and physiological changes resulting in the disability. However, there remain significant conflicting data between human studies and the models. To fully understand the development of ID in DS, these inconsistencies need to be reconciled. Here, we review the well documented neurodevelopmental phenotypes found in individuals with DS and examine the degree to which widely used models recapitulate these phenotypes. Resolving these areas of discord will further research on the molecular underpinnings and identify potential treatments to improve the independence and quality of life of people with DS.
Collapse
Affiliation(s)
- Jenny A. Klein
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Tarik F. Haydar
- Children’s National Hospital, Center for Neuroscience Research, Washington, DC, United States
- Departments of Pediatrics, Physiology and Pharmacology, School of Medicine and Health Sciences, George Washington University, Washington, DC, United States
| |
Collapse
|
3
|
Abnormal mitochondria in Down syndrome iPSC-derived GABAergic interneurons and organoids. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166388. [DOI: 10.1016/j.bbadis.2022.166388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 02/21/2022] [Accepted: 03/08/2022] [Indexed: 12/22/2022]
|
4
|
Signalling pathways contributing to learning and memory deficits in the Ts65Dn mouse model of Down syndrome. Neuronal Signal 2021; 5:NS20200011. [PMID: 33763235 PMCID: PMC7955101 DOI: 10.1042/ns20200011] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 01/30/2023] Open
Abstract
Down syndrome (DS) is a genetic trisomic disorder that produces life-long changes in physiology and cognition. Many of the changes in learning and memory seen in DS are reminiscent of disorders involving the hippocampal/entorhinal circuit. Mouse models of DS typically involve trisomy of murine chromosome 16 is homologous for many of the genes triplicated in human trisomy 21, and provide us with good models of changes in, and potential pharmacotherapy for, human DS. Recent careful dissection of the Ts65Dn mouse model of DS has revealed differences in key signalling pathways from the basal forebrain to the hippocampus and associated rhinal cortices, as well as changes in the microstructure of the hippocampus itself. In vivo behavioural and electrophysiological studies have shown that Ts65Dn animals have difficulties in spatial memory that mirror hippocampal deficits, and have changes in hippocampal electrophysiological phenomenology that may explain these differences, and align with expectations generated from in vitro exploration of this model. Finally, given the existing data, we will examine the possibility for pharmacotherapy for DS, and outline the work that remains to be done to fully understand this system.
Collapse
|
5
|
Klein JA, Li Z, Rampam S, Cardini J, Ayoub A, Shaw P, Rachubinski AL, Espinosa JM, Zeldich E, Haydar TF. Sonic Hedgehog Pathway Modulation Normalizes Expression of Olig2 in Rostrally Patterned NPCs With Trisomy 21. Front Cell Neurosci 2021; 15:794675. [PMID: 35058753 PMCID: PMC8763807 DOI: 10.3389/fncel.2021.794675] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
The intellectual disability found in people with Down syndrome is associated with numerous changes in early brain development, including the proliferation and differentiation of neural progenitor cells (NPCs) and the formation and maintenance of myelin in the brain. To study how early neural precursors are affected by trisomy 21, we differentiated two isogenic lines of induced pluripotent stem cells derived from people with Down syndrome into brain-like and spinal cord-like NPCs and promoted a transition towards oligodendroglial fate by activating the Sonic hedgehog (SHH) pathway. In the spinal cord-like trisomic cells, we found no difference in expression of OLIG2 or NKX2.2, two transcription factors essential for commitment to the oligodendrocyte lineage. However, in the brain-like trisomic NPCs, OLIG2 is significantly upregulated and is associated with reduced expression of NKX2.2. We found that this gene dysregulation and block in NPC transition can be normalized by increasing the concentration of a SHH pathway agonist (SAG) during differentiation. These results underscore the importance of regional and cell type differences in gene expression in Down syndrome and demonstrate that modulation of SHH signaling in trisomic cells can rescue an early perturbed step in neural lineage specification.
Collapse
Affiliation(s)
- Jenny A. Klein
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
| | - Zhen Li
- Children’s National Medical Center, Center for Neuroscience Research, Washington, DC, United States
| | - Sanjeev Rampam
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Jack Cardini
- Department of Biomedical Engineering, Boston University, Boston, MA, United States
| | - Amara Ayoub
- Children’s National Medical Center, Center for Neuroscience Research, Washington, DC, United States
| | - Patricia Shaw
- Graduate Program for Neuroscience, Boston University, Boston, MA, United States
| | - Angela L. Rachubinski
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Joaquin M. Espinosa
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pharmocology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ella Zeldich
- Department of Anatomy and Neurobiology, Boston University, Boston, MA, United States
- *Correspondence: Tarik F. Haydar Ella Zeldich
| | - Tarik F. Haydar
- Children’s National Medical Center, Center for Neuroscience Research, Washington, DC, United States
- *Correspondence: Tarik F. Haydar Ella Zeldich
| |
Collapse
|
6
|
Shaw PR, Klein JA, Aziz NM, Haydar TF. Longitudinal neuroanatomical and behavioral analyses show phenotypic drift and variability in the Ts65Dn mouse model of Down syndrome. Dis Model Mech 2020; 13:dmm046243. [PMID: 32817053 PMCID: PMC7522024 DOI: 10.1242/dmm.046243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022] Open
Abstract
Mouse models of Down syndrome (DS) have been invaluable tools for advancing knowledge of the underlying mechanisms of intellectual disability in people with DS. The Ts(1716)65Dn (Ts65Dn) mouse is one of the most commonly used models as it recapitulates many of the phenotypes seen in individuals with DS, including neuroanatomical changes and impaired learning and memory. In this study, we use rigorous metrics to evaluate multiple cohorts of Ts65Dn ranging from 2014 to the present, including a stock of animals recovered from embryos frozen within ten generations after the colony was first created in 2010. Through quantification of prenatal and postnatal brain development and several behavioral tasks, our results provide a comprehensive comparison of Ts65Dn across time and show a significant amount of variability both across cohorts as well as within cohorts. The inconsistent phenotypes in Ts65Dn mice highlight specific cautions and caveats for use of this model. We outline important steps for ensuring responsible use of Ts65Dn in future research.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Patricia R Shaw
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jenny A Klein
- Graduate Program in Neuroscience, Boston University School of Medicine, Boston, MA 02118, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Nadine M Aziz
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
| | - Tarik F Haydar
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA 02118, USA
- Center for Neuroscience Research, Children's National Hospital, Washington, DC 20010, USA
| |
Collapse
|
7
|
Hazlett HC, Gallo V. White matter and neurodevelopmental disorders: honoring Jean De Vellis through the work of the NICHD-funded intellectual and developmental disabilities research centers. J Neurodev Disord 2019; 11:38. [PMID: 31839009 PMCID: PMC6912932 DOI: 10.1186/s11689-019-9299-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/13/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Heather Cody Hazlett
- Department of Psychiatry, School of Medicine, UNC-Chapel Hill and Carolina Institute for Developmental Disabilities, Chapel Hill, NC, USA.
| | - Vittorio Gallo
- Center for Neuroscience Research, Children's National Research Institute, Children's National Hospital, Washington, DC, USA
| |
Collapse
|