1
|
Ding S, Liu C, Li Y, Liu H, Liu Z, Chen T, Zhang T, Shao Z, Fu R. Expression of C1q in the serum of patients with non‑severe aplastic anemia, and its association with disease severity. Mol Med Rep 2018; 19:1194-1202. [PMID: 30569170 PMCID: PMC6323203 DOI: 10.3892/mmr.2018.9754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 11/13/2018] [Indexed: 01/04/2023] Open
Abstract
A type of aplastic anemia (AA), non-severe aplastic anemia (NSAA) is defined as AA that does not meet the diagnostic criteria of severe aplastic anemia (SAA). Complement component 1q (C1q) has an important role in the pathogenesis of various autoimmune diseases; however, the role of C1q in the immune pathogenesis of NSAA is not clear. The current study aimed to determine whether C1q has an important role in the pathogenesis of NSAA. Isobaric tags for relative and absolute quantitation (iTRAQ) was used to compare the protein expression in bone marrow mononuclear cells from patients with NSAA and healthy volunteers. Pathway enrichment analysis was performed to determine the biological functions involved in NSAA. The differential expression of C1q was marked compared with other proteins. Subsequently, the concentration of C1q in serum samples was determined using ELISA and the correlation of C1q levels and NSAA severity was evaluated. The serum concentrations of C1q were significantly lower in untreated patients with newly diagnosed NSAA compared with NSAA cases in remission and normal controls. Furthermore, there was no significant difference in C1q concentration between newly diagnosed patients with NSAA and patients with autoimmune hemolytic anemia or immune thrombocytopenia. The serum concentration of C1q in newly diagnosed NSAA was significantly lower in patients with SAA (P<0.0001); whereas, there was no significant difference between the patients with SAA, patients with NSAA remission and normal controls (P>0.05). Additionally, the serum C1q concentration was significantly correlated with granulocyte counts, the level of hemoglobin, platelet counts, reticulocyte percentage and remission in patients with NSAA. The serum C1q concentration was also positively correlated with the myeloid/plasmacytoid dendritic cell ratio, and negatively correlated with the CD4(+)/CD8(+) ratio. These findings suggested that C1q may be a reliable serological marker for monitoring and evaluating disease severity in patients with NSAA. C1q may have an important role in the immune pathogenesis of NSAA.
Collapse
Affiliation(s)
- Shaoxue Ding
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunyan Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Yang Li
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Hui Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zhaoyun Liu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tong Chen
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Tian Zhang
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Zonghong Shao
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Rong Fu
- Department of Hematology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
2
|
Mass Spectrometry Analysis of Lysine Posttranslational Modifications of Tau Protein from Alzheimer's Disease Brain. Methods Mol Biol 2018; 1523:161-177. [PMID: 27975250 DOI: 10.1007/978-1-4939-6598-4_10] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent advances in mass spectrometry (MS)-based proteomics have greatly facilitated the robust identification and quantification of posttranslational modifications (PTMs), including those that are present at substoichiometric site occupancies. The abnormal posttranslational modification and accumulation of the microtubule-associated protein tau has been implicated in the pathogenesis of Alzheimer's disease (AD), and it is thought that the primary mode of regulation of tau occurs through PTMs. Several studies have been published regarding tau phosphorylation; however, other tau PTMs such as ubiquitylation, acetylation, methylation, oxidation, sumoylation, nitration, and glycosylation have not been analyzed as extensively. The comprehensive detection and delineation of these PTMs is critical for drug target discovery and validation. Lysine-directed PTMs including ubiquitylation, acetylation, and methylation play key regulatory roles with respect to the rates of tau turnover and aggregation. MS-based analytical approaches have been used to gain insight into the tau lysine-directed PTM signature that is most closely associated with neurofibrillary lesion formation. This chapter provides details pertaining to the liquid chromatography tandem mass spectrometry (LC-MS/MS)-based analysis of the lysine-directed posttranslational modification of tau.
Collapse
|
3
|
Cao T, Zhang L, Zhang Y, Yan G, Fang C, Bao H, Lu H. Site-Specific Quantification of Protein Ubiquitination on MS2 Fragment Ion Level via Isobaric Peptide Labeling. Anal Chem 2017; 89:11468-11475. [DOI: 10.1021/acs.analchem.7b02654] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Ting Cao
- Shanghai
Cancer Center and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Lei Zhang
- Institutes
of Biomedical Sciences and Key Laboratory of Glycoconjugates Research,
Ministry of Public Health, Fudan University, Shanghai 200032, P. R. China
| | - Ying Zhang
- Institutes
of Biomedical Sciences and Key Laboratory of Glycoconjugates Research,
Ministry of Public Health, Fudan University, Shanghai 200032, P. R. China
| | - Guoquan Yan
- Shanghai
Cancer Center and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
- Institutes
of Biomedical Sciences and Key Laboratory of Glycoconjugates Research,
Ministry of Public Health, Fudan University, Shanghai 200032, P. R. China
| | - Caiyun Fang
- Shanghai
Cancer Center and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Huimin Bao
- Shanghai
Cancer Center and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
| | - Haojie Lu
- Shanghai
Cancer Center and Department of Chemistry, Fudan University, Shanghai 200032, P. R. China
- Institutes
of Biomedical Sciences and Key Laboratory of Glycoconjugates Research,
Ministry of Public Health, Fudan University, Shanghai 200032, P. R. China
| |
Collapse
|
4
|
Parker J, Oh Y, Moazami Y, Pierce JG, Loziuk PL, Dean RA, Muddiman DC. Examining ubiquitinated peptide enrichment efficiency through an epitope labeled protein. Anal Biochem 2016; 512:114-119. [PMID: 27562526 DOI: 10.1016/j.ab.2016.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 07/02/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
Ubiquitination is a dynamic process that is responsible for regulation of cellular responses to stimuli in a number of biological systems. Previous efforts to study this post-translational modification have focused on protein enrichment; however, recent research utilizes the presence of the di-glycine (Gly-Gly) remnants following trypsin digestion to immuno-enrich ubiquitinated peptides. Monoclonal antibodies developed to the cleaved ubiquitin modification epitope, (tert-butoxycarbonyl) glycylglycine (Boc-Gly-Gly-NHS)(1), are used to identify the Gly-Gly signature. Here, we have successfully generated the Boc-Gly-Gly-NHS modification and showed that when conjugated to a lysine containing protein, such as lysozyme, it can be applied as a standard protein to examine ubiquitinated peptide enrichment within a complex background.
Collapse
Affiliation(s)
- J Parker
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States; W. M. Keck FTMS Laboratory for Human Health Research, North Carolina State University, Raleigh, NC, United States
| | - Y Oh
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, United States; Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - Y Moazami
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - J G Pierce
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States
| | - P L Loziuk
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States; W. M. Keck FTMS Laboratory for Human Health Research, North Carolina State University, Raleigh, NC, United States
| | - R A Dean
- Department of Plant Pathology, North Carolina State University, Raleigh, NC, United States; Center for Integrated Fungal Research, North Carolina State University, Raleigh, NC, United States
| | - D C Muddiman
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States; W. M. Keck FTMS Laboratory for Human Health Research, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
5
|
Qi W, Fu R, Wang H, Liu C, Ren Y, Shao Y, Shao Z. Comparative proteomic analysis of CD34(+) cells in bone marrow between severe aplastic anemia and normal control. Cell Immunol 2016; 304-305:9-15. [PMID: 27086042 DOI: 10.1016/j.cellimm.2016.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/14/2016] [Accepted: 04/06/2016] [Indexed: 11/16/2022]
Abstract
Severe aplastic anemia (SAA) is an autoimmune disease with destruction of hematopoietic cells by activated T lymphocytes. However, the precise mechanism of cytotoxicity T cells recognizing and attacking CD34(+) cells remains unclear. Here, we investigated the proteome of CD34(+) cells in SAA patients to further explore the pathogenesis of SAA. CD34(+) cells from 29 SAA patients and 20 health controls were isolated by magnetic activated cell sorting. The protein of CD34(+) cells were examined by iTRAQ labeling combination of multidimensional liquid chromatography and tandem mass spectrometry. A total of 156 differential expression proteins in CD34(+) cells were identified. Compared with health controls, 53 proteins were up-regulated and 103 proteins were down-regulated in SAA patients. Specifically, abnormal expression of proteasome subunits, histone variants, dolichyl-diphosphooligosaccharide-protein glycosyltransferase subunit (DAD1) and ATPase inhibitor, mitochondrial isoform 1 precursor(IF1) may relate to the hyperfunction of immune responses and excessive apoptosis of SAA CD34(+) cells.
Collapse
Affiliation(s)
- Weiwei Qi
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Rong Fu
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Huaquan Wang
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Chunyan Liu
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Yue Ren
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Yuanyuan Shao
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China
| | - Zonghong Shao
- Department of Hematology, The General Hospital of Tianjin Medical University, Tianjin 300052, PR China.
| |
Collapse
|
6
|
PENG QS, LI GP, SUN WC, YANG JB, QUAN GH, LIU N. Analysis of ISG15-Modified Proteins from A549 Cells in Response to Influenza Virus Infection by Liquid Chromatography-Tandem Mass Spectrometry. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2016. [DOI: 10.1016/s1872-2040(16)60936-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
|