1
|
IGF2BP2 promotes cancer progression by degrading the RNA transcript encoding a v-ATPase subunit. Proc Natl Acad Sci U S A 2022; 119:e2200477119. [PMID: 36322753 PMCID: PMC9659396 DOI: 10.1073/pnas.2200477119] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
IGF2BP2 binds to a number of RNA transcripts and has been suggested to function as a tumor promoter, although little is known regarding the mechanisms that regulate its roles in RNA metabolism. Here we demonstrate that IGF2BP2 binds to the 3' untranslated region of the transcript encoding ATP6V1A, a catalytic subunit of the vacuolar ATPase (v-ATPase), and serves as a substrate for the NAD+-dependent deacetylase SIRT1, which regulates how IGF2BP2 affects the stability of the ATP6V1A transcript. When sufficient levels of SIRT1 are expressed, it catalyzes the deacetylation of IGF2BP2, which can bind to the ATP6V1A transcript but does not mediate its degradation. However, when SIRT1 expression is low, the acetylated form of IGF2BP2 accumulates, and upon binding to the ATP6V1A transcript recruits the XRN2 nuclease, which catalyzes transcript degradation. Thus, the stability of the ATP6V1A transcript is significantly compromised in breast cancer cells when SIRT1 expression is low or knocked-down. This leads to a reduction in the expression of functional v-ATPase complexes in cancer cells and to an impairment in their lysosomal activity, resulting in the production of a cellular secretome consisting of increased numbers of exosomes enriched in ubiquitinated protein cargo and soluble hydrolases, including cathepsins, that together combine to promote tumor cell survival and invasiveness. These findings describe a previously unrecognized role for IGF2BP2 in mediating the degradation of a messenger RNA transcript essential for lysosomal function and highlight how its sirtuin-regulated acetylation state can have significant biological and disease consequences.
Collapse
|
2
|
Differential MicroRNA Expression in Porcine Endometrium Related to Spontaneous Embryo Loss during Early Pregnancy. Int J Mol Sci 2022; 23:ijms23158157. [PMID: 35897733 PMCID: PMC9331794 DOI: 10.3390/ijms23158157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 02/04/2023] Open
Abstract
Litter size is an important indicator to measure the production capacity of commercial pigs. Spontaneous embryo loss is an essential factor in determining sow litter size. In early pregnancy, spontaneous embryo loss in porcine is as high as 20–30% during embryo implantation. However, the specific molecular mechanism underlying spontaneous embryo loss at the end of embryo implantation remains unknown. Therefore, we comprehensively used small RNA sequencing technology, bioinformatics analysis, and molecular experiments to determine the microRNA (miRNA) expression profile in the healthy and arresting embryo implantation site of porcine endometrium on day of gestation (DG) 28. A total of 464 miRNAs were identified in arresting endometrium (AE) and healthy endometrium (HE), and 139 differentially expressed miRNAs (DEMs) were screened. We combined the mRNA sequencing dataset from the SRA database to predict the target genes of these miRNAs. A quantitative real-time PCR assay identified the expression levels of miRNAs and mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were performed on differentially expressed target genes of DEMs, mainly enriched in epithelial development and amino acids metabolism-related pathways. We performed fluorescence in situ hybridization (FISH) and the dual-luciferase report gene assay to confirm miRNA and predicted target gene binding. miR-205 may inhibit its expression by combining 3′-untranslated regions (3′ UTR) of tubulointerstitial nephritis antigen-like 1 (TINAGL1). The resulting inhibition of angiogenesis in the maternal endometrium ultimately leads to the formation of arresting embryos during the implantation period. This study provides a reference for the effect of miRNA on the successful implantation of pig embryos in early gestation.
Collapse
|
3
|
Chemerin Effect on the Endometrial Proteome of the Domestic Pig during Implantation Obtained by LC-MS/MS Analysis. Cells 2022; 11:cells11071161. [PMID: 35406725 PMCID: PMC8997736 DOI: 10.3390/cells11071161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/23/2022] [Accepted: 03/28/2022] [Indexed: 12/27/2022] Open
Abstract
Chemerin (CHEM) is a hormone mainly expressed in adipocytes involved in the regulation of energy homeostasis and inflammatory response. CHEM expression has been demonstrated in the structures of the porcine hypothalamic-pituitary-gonadal axis, as well as in the uterus, trophoblasts and conceptuses of pigs. In this study, we performed high-throughput proteomic analyses (liquid chromatography with tandem mass spectrometry, LC-MS/MS) to examine the influence of CHEM (400 ng/mL) on differentially regulated proteins (DRPs) in the porcine endometrial tissue explants during implantation (15 to 16 days of gestation). Among all 352 DRPs, 164 were up-regulated and 188 were down-regulated in CHEM-treated group. DRPs were assigned to 47 gene ontology (GO) terms (p-adjusted < 0.05). Validation of four DRPs (IFIT5, TGFβ1, ACO1 and PGRMC1) by Western blot analysis confirmed the veracity and accuracy of the LC-MS/MS method used in the present study. We suggest that CHEM, by modulating various protein expressions, takes part in the endometrial cell proliferation, migration and invasion at the time of implantation. It also regulates the endometrial immune response, sensitivity to P4 and the formation of new blood vessels. Additionally, CHEM appears to be an important factor involved in endothelial cell dysfunction during the pathogenesis of preeclampsia. The identification of a large number of DRPs under the influence of CHEM provides a valuable resource for understanding the molecular mechanisms of this hormone action during implantation, which is a prerequisite for better control of pig reproduction.
Collapse
|
4
|
Ferreira RF, Blees T, Shakeri F, Buness A, Sylvester M, Savoini G, Agazzi A, Mrljak V, Sauerwein H. Comparative proteome profiling in exosomes derived from porcine colostrum versus mature milk reveals distinct functional proteomes. J Proteomics 2021; 249:104338. [PMID: 34343709 DOI: 10.1016/j.jprot.2021.104338] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022]
Abstract
Exosomes are membranous vesicles of endocytic origin, recently been considered as major players in cell-cell communication. Milk is highly complex, and diverse biocomponents provide adequate nutrition, transfer immunity, and promote adequate neonate development. Milk exosomes are suggested to have a key role in these processes, yet to be further explored, and the alteration of the exosomes' cargo in different stages of lactation stages is important for understanding the factors relevant in nursing and also for improving milk replacer products both for humans and animals. We isolated exosomes from porcine milk in different lactation stages and analyzed their content using a TMT-based high-resolution quantitative proteomic approach. Exosomes were isolated using ultracentrifugation coupled with size exclusion chromatography to enrich milk-derived exosomes in samples obtained at day 0, 7, and 14 after parturition, and characterized by nanoparticle tracking analysis, transmission electron microscopy, and Western blotting. Quantitative proteomics analysis revealed different proteome profiles for colostrum exosomes and milk exosomes. The functional analysis highlighted pathways related to the regulation of homeostasis to be upregulated in colostrum exosomes, and pathways such as endothelial cell development and lipid metabolism to be upregulated in mature milk exosomes. This study endorses the importance of exosomes as active biocomponents of milk and provides knowledge for future studies exploring their role in the regulation of immunity and growth of the newborn. SIGNIFICANCE: The identified functional proteome and protein-protein interaction networks identified in our study help to elucidate the role of milk exosomes in different lactation periods. The results generated herein are of relevance for the basic understanding of their impact on the infant's development but also for bringing forward the manufacturing of milk replacers.
Collapse
Affiliation(s)
- Rafaela Furioso Ferreira
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany; Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia.
| | - Thomas Blees
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| | - Farhad Shakeri
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Core Unit for Bioinformatics Analysis, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Andreas Buness
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Institute for Genomic Statistics and Bioinformatics, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; Core Unit for Bioinformatics Analysis, Medical Faculty, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Marc Sylvester
- Institute of Biochemistry and Molecular Biology, Core Facility Mass Spectrometry, Medical Faculty, University of Bonn, Bonn, Germany
| | - Giovanni Savoini
- Department of Health, Animal Science and Food Safety 'Carlo Cantoni' (VESPA), Università degli Studi di Milano, Lodi, Italy
| | - Alessandro Agazzi
- Department of Health, Animal Science and Food Safety 'Carlo Cantoni' (VESPA), Università degli Studi di Milano, Lodi, Italy
| | - Vladimir Mrljak
- Faculty of Veterinary Medicine, University of Zagreb, Zagreb, Croatia
| | - Helga Sauerwein
- Institute of Animal Science, Physiology Unit, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Musetti SN, Huang L. Tinagl1 Gene Therapy Suppresses Growth and Remodels the Microenvironment of Triple Negative Breast Cancer. Mol Pharm 2021; 18:2032-2038. [PMID: 33877834 DOI: 10.1021/acs.molpharmaceut.1c00008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Triple negative breast cancer (TNBC) remains one of the most challenging subtypes of breast cancer to treat and is responsible for approximately 12% of breast cancer cases in the US per year. In 2019, the protein Tinagl1 was identified as a key factor for improved prognoses in certain TNBC patients. While the intracellular mechanism of action has been thoroughly studied, little is known about the role of Tinagl1 in the tumor microenvironment. In this study, we developed a lipid nanoparticle-based gene therapy to directly target the expression of Tinagl1 in tumor cells for localized expression. Additionally, we sought to characterize the changes to the tumor microenvironment induced by Tinagl1 treatment, with the goal of informing future choices for combination therapies including Tinagl1. We found that Tinagl1 gene therapy was able to slow tumor growth from the first dose and that the effects held steady for nearly a week following the final dose. No toxicity was found with this treatment. Additionally, the use of Tinagl1 increases the tumor vasculature by 3-fold but does not increase the tumor permeability or risk of metastasis. However, the increase in vasculature arising from Tinagl1 therapy reduced the expression of Hif1a significantly (p < 0.01), which may decrease the risk of drug resistance.
Collapse
Affiliation(s)
- Sara N Musetti
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
6
|
Rousseaux S, Seyve E, Chuffart F, Bourova-Flin E, Benmerad M, Charles MA, Forhan A, Heude B, Siroux V, Slama R, Tost J, Vaiman D, Khochbin S, Lepeule J. Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Med 2020; 18:306. [PMID: 33023569 PMCID: PMC7542140 DOI: 10.1186/s12916-020-01736-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although exposure to cigarette smoking during pregnancy has been associated with alterations of DNA methylation in the cord blood or placental cells, whether such exposure before pregnancy could induce epigenetic alterations in the placenta of former smokers has never been investigated. METHODS Our approach combined the analysis of placenta epigenomic (ENCODE) data with newly generated DNA methylation data obtained from 568 pregnant women, the largest cohort to date, either actively smoking during their pregnancy or formerly exposed to tobacco smoking. RESULTS This strategy resulted in several major findings. First, among the 203 differentially methylated regions (DMRs) identified by the epigenome-wide association study, 152 showed "reversible" alterations of DNA methylation, only present in the placenta of current smokers, whereas 26 were also found altered in former smokers, whose placenta had not been exposed directly to cigarette smoking. Although the absolute methylation changes were smaller than those observed in other contexts, such as in some congenital diseases, the observed alterations were consistent within each DMR. This observation was further supported by a demethylation of LINE-1 sequences in the placentas of both current (beta-coefficient (β) (95% confidence interval (CI)), - 0.004 (- 0.008; 0.001)) and former smokers (β (95% CI), - 0.006 (- 0.011; - 0.001)) compared to nonsmokers. Second, the 203 DMRs were enriched in epigenetic marks corresponding to enhancer regions, including monomethylation of lysine 4 and acetylation of lysine 27 of histone H3 (respectively H3K4me1 and H3K27ac). Third, smoking-associated DMRs were also found near and/or overlapping 10 imprinted genes containing regions (corresponding to 16 genes), notably including the NNAT, SGCE/PEG10, and H19/MIR675 loci. CONCLUSIONS Our results pointing towards genomic regions containing the imprinted genes as well as enhancers as preferential targets suggest mechanisms by which tobacco could directly impact the fetus and future child. The persistence of significant DNA methylation changes in the placenta of former smokers supports the hypothesis of an "epigenetic memory" of exposure to cigarette smoking before pregnancy. This observation not only is conceptually revolutionary, but these results also bring crucial information in terms of public health concerning potential long-term detrimental effects of smoking in women.
Collapse
Affiliation(s)
- Sophie Rousseaux
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Emie Seyve
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Florent Chuffart
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | | | - Meriem Benmerad
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Marie-Aline Charles
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Anne Forhan
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Barbara Heude
- Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Valérie Siroux
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Remy Slama
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Jorg Tost
- Laboratory for Epigenetics and Environment, Centre National de Recherche en Génomique Humaine, CEA - Institut de Biologie François Jacob, Evry, France
| | - Daniel Vaiman
- Genomics, Epigenetics and Physiopathology of Reproduction, Institut Cochin, U1016 Inserm - UMR 8104 CNRS - Paris-Descartes University, Paris, France
| | - Saadi Khochbin
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France
| | - Johanna Lepeule
- Université Grenoble Alpes, Inserm, CNRS, IAB, 38000, Grenoble, France.
| | | |
Collapse
|
7
|
Taunk K, Kalita B, Kale V, Chanukuppa V, Naiya T, Zingde SM, Rapole S. The development and clinical applications of proteomics: an Indian perspective. Expert Rev Proteomics 2020; 17:433-451. [PMID: 32576061 DOI: 10.1080/14789450.2020.1787157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Proteomic research has been extensively used to identify potential biomarkers or targets for various diseases. Advances in mass spectrometry along with data analytics have led proteomics to become a powerful tool for exploring the critical molecular players associated with diseases, thereby, playing a significant role in the development of proteomic applications for the clinic. AREAS COVERED This review presents recent advances in the development and clinical applications of proteomics in India toward understanding various diseases including cancer, metabolic diseases, and reproductive diseases. Keywords combined with 'clinical proteomics in India' 'proteomic research in India' and 'mass spectrometry' were used to search PubMed. EXPERT OPINION The past decade has seen a significant increase in research in clinical proteomics in India. This approach has resulted in the development of proteomics-based marker technologies for disease management in the country. The majority of these investigations are still in the discovery phase and efforts have to be made to address the intended clinical use so that the identified potential biomarkers reach the clinic. To move toward this necessity, there is a pressing need to establish some key infrastructure requirements and meaningful collaborations between the clinicians and scientists which will enable more effective solutions to address health issues specific to India.
Collapse
Affiliation(s)
- Khushman Taunk
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India.,Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Bhargab Kalita
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | - Vaikhari Kale
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| | | | - Tufan Naiya
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, West Bengal , Haringhata, West Bengal, India
| | - Surekha M Zingde
- CH3-53, Kendriya Vihar, Sector 11, Kharghar , Navi Mumbai, Maharashtra, India
| | - Srikanth Rapole
- Proteomics Lab, National Centre for Cell Science , Pune, Maharashtra, India
| |
Collapse
|
8
|
Abstract
Preeclampsia is a medical condition affecting 5-10% of pregnancies. It has serious effects on the health of the pregnant mother and developing fetus. While possible causes of preeclampsia are speculated, there is no consensus on its etiology. The advancement of big data and high-throughput technologies enables to study preeclampsia at the new and systematic level. In this review, we first highlight the recent progress made in the field of preeclampsia research using various omics technology platforms, including epigenetics, genome-wide association studies (GWAS), transcriptomics, proteomics and metabolomics. Next, we integrate the results in individual omic level studies, and show that despite the lack of coherent biomarkers in all omics studies, inhibin is a potential preeclamptic biomarker supported by GWAS, transcriptomics and DNA methylation evidence. Using network analysis on the biomarkers of all the literature reviewed here, we identify four striking sub-networks with clear biological functions supported by previous molecular-biology and clinical observations. In summary, omics integration approach offers the promise to understand molecular mechanisms in preeclampsia.
Collapse
|
9
|
Sun L, Dong Z, Gu H, Guo Z, Yu Z. TINAGL1 promotes hepatocellular carcinogenesis through the activation of TGF-β signaling-medicated VEGF expression. Cancer Manag Res 2019; 11:767-775. [PMID: 30697069 PMCID: PMC6339651 DOI: 10.2147/cmar.s190390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background and purpose Tubulointerstitial nephritis antigen-like 1 (TINAGL1) is an extracellular matrix protein that plays an important role in cell adhesion and therefore modulates cell proliferation, migration, and differentiation. In addition, it is frequently upregulated in highly metastatic tumors. The aim of our study was to determine the role of TINAGL1 in the progression and metastasis of hepatocellular carcinoma (HCC). Materials and methods TINAGL1 mRNA levels were analyzed in HCC and adjacent non-tumorous samples by reverse transcription polymerase chain reaction (RT-PCR). Human HCC cell lines were transfected with lentiviral plasmids expressing either si-TINAGL1 or TINAGL1 and subjected to CCK-8, colony forming, transwell migration, Annexin V/propidium iodide, and 5-ethynyl-2′-deoxyuridine uptake assays. Suitably transfected HCC cells were injected into athymic nude mice to establish xenograft tumors that were imaged and measured on a weekly basis. Mediators of the TGF-β signaling pathway were analyzed by Western blot. Results TINAGL1 was upregulated in human HCC tissues and associated with poor prognosis. TINAGL1 knockdown suppressed HCC cell growth, proliferation, and migration and induced apoptosis in HCC cells, whereas TINAGL1 overexpression had opposite effects. In addition, inhibition of TINAGL1 retarded xenograft tumor growth in a nude mouse model. Mechanistically, TINAGL1 activated the TGF-β signaling pathway and increased VEGF secretion. Conclusion TINAGL1 promotes hepatocellular carcinogenesis and metastasis via the TGF-β/Smad3/VEGF axis and is a potential new biomarker of HCC.
Collapse
Affiliation(s)
- Lu Sun
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.,Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | - Zihui Dong
- Department of Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongli Gu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | - Zhixian Guo
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| | - Zujiang Yu
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China,
| |
Collapse
|
10
|
Mary S, Kulkarni MJ, Mehendale SS, Joshi SR, Giri AP. Differential accumulation of vimentin fragments in preeclamptic placenta. Cytoskeleton (Hoboken) 2017; 74:420-425. [PMID: 28752964 DOI: 10.1002/cm.21390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/02/2017] [Accepted: 07/26/2017] [Indexed: 12/20/2022]
Abstract
Preeclampsia is a pregnancy complication that is the result of abnormal placentation because of inadequate trophoblast invasion into spiral arteries that prevent normal blood flow to the placenta. We report the alteration in vimentin protein proteolysis in placenta of normotensive and preeclamptic women, which is known to have a role in many physiological functions other than its major function in the structural integrity of the cell. Placental proteome from normotensive (n = 25) and preeclamptic pregnancies (n = 25) showed eight differentially accumulated protein spots of vimentin (proteolytic fragments) by two-dimensional electrophoresis. Immunoblots of normotensive and preeclamptic placenta revealed a difference in proteolytic processing of vimentin. In particular, lower molecular weight vimentin fragments of 32 and 20 kDa were 3.3 and 2.6-fold (p < 0.0001) higher, respectively, in preeclampsia compared with normotensive placenta.
Collapse
Affiliation(s)
- Sheon Mary
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
| | - Mahesh J Kulkarni
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
| | - Savita S Mehendale
- Department of Gynecology, Bharati Vidyapeeth Medical College, Pune, Maharashtra, 411043, India
| | - Sadhana R Joshi
- Department of Nutritional Medicine, Interactive Research School for Health Affairs, Bharati Vidyapeeth University, Pune, Maharashtra, 411043, India
| | - Ashok P Giri
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, Maharashtra, 411008, India
| |
Collapse
|
11
|
Matsumoto H. Molecular and cellular events during blastocyst implantation in the receptive uterus: clues from mouse models. J Reprod Dev 2017. [PMID: 28638003 PMCID: PMC5649093 DOI: 10.1262/jrd.2017-047] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The success of implantation is an interactive process between the blastocyst and the uterus. Synchronized development of embryos with uterine differentiation to a receptive state is necessary to complete pregnancy. The period of uterine receptivity for implantation is limited and referred to as the “implantation window”, which is regulated by ovarian steroid hormones. Implantation process is complicated due to the many signaling molecules in the hierarchical mechanisms with the embryo-uterine dialogue. The mouse is widely used in animal research, and is uniquely suited for reproductive studies, i.e., having a large litter size and brief estrous cycles. This review first describes why the mouse is the preferred model for implantation studies, focusing on uterine morphology and physiological traits, and then highlights the knowledge on uterine receptivity and the hormonal regulation of blastocyst implantation in mice. Our recent study revealed that selective proteolysis in the activated blastocyst is associated with the completion of blastocyst implantation after embryo transfer. Furthermore, in the context of blastocyst implantation in the mouse, this review discusses the window of uterine receptivity, hormonal regulation, uterine vascular permeability and angiogenesis, the delayed-implantation mouse model, morphogens, adhesion molecules, crosslinker proteins, extracellular matrix, and matricellular proteins. A better understanding of uterine and blastocyst biology during the peri-implantation period should facilitate further development of reproductive technology.
Collapse
Affiliation(s)
- Hiromichi Matsumoto
- Laboratory of Animal Breeding and Reproduction, Division of Animal Science, Department of Agrobiology and Bioresources, School of Agriculture, Utsunomiya University, Tochigi 321-8505, Japan.,Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| |
Collapse
|