1
|
Kumar G, Gurao A, Vasisth R, Chitkara M, Singh R, Ranganatha Sriranga K, Shivanand Dige M, Mukesh M, Singh P, Singh Kataria R. Genome-wide 5'-C-phosphate-G-3' methylation patterns reveal the effect of heat stress on the altered semen quality in Bubalus bubalis. Gene 2024; 906:148233. [PMID: 38331117 DOI: 10.1016/j.gene.2024.148233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/10/2024]
Abstract
Semen production and quality are closely correlated with different environmental factors in bovines, particularly for the buffalo (Bubalus bubalis) bulls reared under tropical and sub-tropical conditions. Factors including DNA methylation patterns, an intricate process in sperm cells, have an impact on the production of quality semen in buffalo bulls under abiotic stress conditions. The present study was conducted to identify DNA methylome signatures for semen quality in Murrah buffalo bulls, acclaimed as a major dairy breed globally, under summer heat stress. Based on semen quality parameters that significantly varied between the two groups over the seasons, the breeding bulls were classified into seasonally affected (SA = 6) and seasonally non-affected (SNA = 6) categories. DNA was isolated from purified sperm cells and sequenced using the RRBS (Reduced Representation Bisulfite Sequencing) technique for genome-wide methylome data generation. During the hot summer months, the physiological parameters such as scrotal surface temperature, rectal temperature, and respiration rate for both the SA and SNA bulls were significantly higher in the afternoon than in the morning. Whereas, the global CpG% of SA bulls was positively correlated with the afternoon's scrotal surface and rectal temperature. The RRBS results conveyed differentially methylated cytosines in the promoter region of the genes encoding the channels responsible for Ca2+ exchange, NPTN, Ca2+ activated chloride channels, ANO1, and a few structure-related units such as septins (SEPT4 and SEPT6), SPATA, etc. Additionally, the hypermethylated set of genes in SA was significantly enriched for pathways such as the FOXO signaling pathway and oocyte meiosis. The methylation patterns suggest promoter methylation in the genes regulating the sperm structure as well as surface transporters, which could contribute to the reduced semen quality in the Murrah buffalo bulls during the season-related heat stress.
Collapse
Affiliation(s)
- Gautam Kumar
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Ankita Gurao
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Rashi Vasisth
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Meenakshi Chitkara
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Ravinder Singh
- ICAR-National Dairy Research Institute, Karnal (Haryana), India
| | | | | | - Manishi Mukesh
- ICAR-National Bureau of Animal Genetic Resources, Karnal (Haryana), India
| | - Pawan Singh
- ICAR-National Dairy Research Institute, Karnal (Haryana), India
| | | |
Collapse
|
2
|
Corda PO, Moreira J, Howl J, Oliveira PF, Fardilha M, Silva JV. Differential Proteomic Analysis of Human Sperm: A Systematic Review to Identify Candidate Targets to Monitor Sperm Quality. World J Mens Health 2024; 42:71-91. [PMID: 37118964 PMCID: PMC10782124 DOI: 10.5534/wjmh.220262] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/24/2023] [Accepted: 02/05/2023] [Indexed: 04/30/2023] Open
Abstract
PURPOSE The advent of proteomics provides new opportunities to investigate the molecular mechanisms underlying male infertility. The selection of relevant targets based on a single analysis is not always feasible, due to the growing number of proteomic studies with conflicting results. Thus, this study aimed to systematically review investigations comparing the sperm proteome of normozoospermic and infertile men to define a panel of proteins with the potential to be used to evaluate sperm quality. MATERIALS AND METHODS A literature search was conducted on PubMed, Web of Science, and Scopus databases following the PRISMA guidelines. To identify proteins systematically reported, first the studies were divided by condition into four groups (asthenozoospermia, low motility, unexplained infertility, and infertility related to risk factors) and then, all studies were analysed simultaneously (poor sperm quality). To gain molecular insights regarding identified proteins, additional searches were performed within the Human Protein Atlas, Mouse Genome Informatics, UniProt, and PubMed databases. RESULTS Thirty-two studies were included and divided into 4 sub-analysis groups. A total of 2752 proteins were collected, of which 38, 1, 3 and 2 were indicated as potential markers for asthenozoospermia, low motility, unexplained infertility and infertility related to risk factors, respectively, and 58 for poor sperm quality. Among the identified proteins, ACR, ACRBP, ACRV1, ACTL9, AKAP4, ATG3, CCT2, CFAP276, CFAP52, FAM209A, GGH, HPRT1, LYZL4, PRDX6, PRSS37, REEP6, ROPN1B, SPACA3, SOD1, SPEM1, SPESP1, SPINK2, TEKT5, and ZPBP were highlighted due to their roles in male reproductive tissues, association with infertility phenotypes or participation in specific biological functions in spermatozoa. CONCLUSIONS Sperm proteomics allows the identification of protein markers with the potential to overcome limitations in male infertility diagnosis and to understand changes in sperm function at the molecular level. This study provides a reliable list of systematically reported proteins that could be potential targets for further basic and clinical studies.
Collapse
Affiliation(s)
- Pedro O Corda
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Jéssica Moreira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - John Howl
- Research Institute in Healthcare Science, University of Wolverhampton, Wolverhampton, UK
| | - Pedro F Oliveira
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Margarida Fardilha
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal.
| | - Joana Vieira Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
- Unit for Multidisciplinary Research in Biomedicine (UMIB), Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
3
|
Zhu X, Tian T, Jiesisibieke D, Fang S, Zhang N, Ma J, Xia Y, Liu P, Li R, Qiao J, Yang R. Clinical outcome of different embryo transfer strategies after late rescue ICSI procedure: a 10-year total fertilisation failure cohort study. BMC Pregnancy Childbirth 2023; 23:549. [PMID: 37525112 PMCID: PMC10388511 DOI: 10.1186/s12884-023-05859-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 07/19/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Late rescue intracytoplasmic sperm injection (r-ICSI) has not been widely accepted as an alternative solution for unexpected total fertilisation failure (TFF) after in vitro fertilisation (IVF), due to the time-dependent in vitro deterioration of oocyte quality and endometrial growth not being synchronised with embryo development. This study aimed to evaluate the safety profile and effectiveness of freeze-all blastocyst transfer in combination with late r-ICSI. METHODS This was a retrospective cohort study carried out at the Reproductive Centre of Peking University Third Hospital, Beijing, China. All participants received treatment between 2009 and 2019. 2,270 patients in the aggregate encountered unexpected TFF during 149,054 cycles of IVF and adopted a late r-ICSI procedure. Among these patients, 263 women did not have cleavage-stage embryos available for evaluation. The remaining patients were grouped according to different embryo transfer (ET) strategies (926 women in Group 1 underwent fresh ET, 365 women in Group 2 underwent freeze-all ET, 716 women in Group 3 experienced blastulation failure). Patients received different ET strategies after r-ICSI, with the main outcome measures included live birth rate (LBR), cumulative live birth rate (cLBR), and conservative cLBR. RESULTS TFF occurred in 7.4% of all IVF cycles. Group 1 tended to be older at oocyte retrieval, with more infertile years, higher follicle-stimulating hormone (FSH) levels, higher gonadotropin consumption, and fewer oocytes retrieved. Group 2 exhibited considerably better LBRs following the first ET cycle (37.53% vs. 4.64%) and cLBRs (52.60% vs. 8.21%). After adjustment for covariates using binary logistic regression analyses, Group 2 still showed better obstetric performance in LBRs [OR:11.77, 95% CI (8.42-16.45)], cLBRs (OR:11.29, 95% CI (7.84-16.27)], and conservative cLBRs (OR:2.55, 95% CI (1.83-3.55)]. Additionally, the two groups showed similar miscarriage rates, whilst no new-borns with malformations or congenital diseases were reported. CONCLUSIONS Freeze-all blastocyst stage ET serves as an optimal strategy to support late r-ICSI. However, for women with limited oocytes available for r-ICSI use, weighing the benefits against the costs of the procedure might be prudent before implementing in vitro blastulation.
Collapse
Affiliation(s)
- Xiaxuan Zhu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Tian Tian
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Dina Jiesisibieke
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Shilin Fang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Nan Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Jinxi Ma
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Yuqi Xia
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
| | - Ping Liu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Jie Qiao
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China
| | - Rui Yang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49 North Huayuan Road, Haidian District, Beijing, 100191, China.
- National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China.
- Key Laboratory of Assisted Reproduction (Peking University), Ministry of Education, Beijing, 100191, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|
4
|
Preianò M, Correnti S, Butt TA, Viglietto G, Savino R, Terracciano R. Mass Spectrometry-Based Untargeted Approaches to Reveal Diagnostic Signatures of Male Infertility in Seminal Plasma: A New Laboratory Perspective for the Clinical Management of Infertility? Int J Mol Sci 2023; 24:4429. [PMID: 36901856 PMCID: PMC10002484 DOI: 10.3390/ijms24054429] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/23/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Male infertility has been recognized as a global health problem. Semen analysis, although considered the golden standard, may not provide a confident male infertility diagnosis alone. Hence, there is the urgent request for an innovative and reliable platform to detect biomarkers of infertility. The rapid expansion of mass spectrometry (MS) technology in the field of the 'omics' disciplines, has incredibly proved the great potential of MS-based diagnostic tests to revolutionize the future of pathology, microbiology and laboratory medicine. Despite the increasing success in the microbiology area, MS-biomarkers of male infertility currently remain a proteomic challenge. In order to address this issue, this review encompasses proteomics investigations by untargeted approaches with a special focus on experimental designs and strategies (bottom-up and top-down) for seminal fluid proteome profiling. The studies reported here witness the efforts of the scientific community to address these investigations aimed at the discovery of MS-biomarkers of male infertility. Proteomics untargeted approaches, depending on the study design, might provide a great plethora of biomarkers not only for a male infertility diagnosis, but also to address a new MS-biomarkers classification of infertility subtypes. From the early detection to the evaluation of infertility grade, new MS-derived biomarkers might also predict long-term outcomes and clinical management of infertility.
Collapse
Affiliation(s)
| | - Serena Correnti
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Tahreem Arshad Butt
- Department of Health Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100 Catanzaro, Italy
| | - Rocco Savino
- Department of Medical and Surgical Sciences, Magna Græcia University, 88100 Catanzaro, Italy
| | - Rosa Terracciano
- Department of Experimental and Clinical Medicine, Magna Græcia University, 88100 Catanzaro, Italy
| |
Collapse
|
5
|
Swain N, Samanta L, Goswami C, Kar S, Majhi RK, Kumar S, Dixit A. TRPV1 channel in spermatozoa is a molecular target for ROS-mediated sperm dysfunction and differentially expressed in both natural and ART pregnancy failure. Front Cell Dev Biol 2022; 10:867057. [PMID: 36211461 PMCID: PMC9538505 DOI: 10.3389/fcell.2022.867057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
Bi-directional crosstalk between Ca2+ signaling and ROS modulates physiological processes as a part of a regulatory circuit including sperm function. The role of transient receptor potential vanilloid 1 (TRPV1) in this regard cannot be undermined. This is the first report demonstrating the Ca2+-sensitive TRPV1 channel to be under-expressed in spermatozoa of subfertile men, idiopathic infertile men, and normozoospermic infertile males with high ROS (idiopathic infertility and unilateral varicocele). To study the effect of TRPV1 in determining the fertility outcome, we compared the expression profile of TRPV1 in spermatozoa of male partners who achieved pregnancy by natural conception (NC+, n = 10), IVF (IVF+, n = 23), or ICSI (ICSI +, n = 9) and their respective counterparts with failed pregnancy NC (n = 7), IVF (n = 23), or ICSI (n = 10), by both immunocytochemistry and flow-cytometry. Reduced expression of TRPV1 in sperm of IVF ± and ICSI ± men with respect to that NC+ men imply its role in mediating successful fertilization. Unsuccessful pregnancy outcome with an underexpression of TRPV1 in sperm of NC-/IVF-/ICSI-men suggests its role in conception and maintenance of pregnancy. Since ROS is regarded as one of the major contributors to sperm dysfunction, the effect of H2O2 +/- TRPV1 modulators (RTX/iRTX) on acrosomal reaction and calcium influx was evaluated to confirm TRPV1 as a redox sensor in human sperm. A significant increment in the percentage of acrosome reacted spermatozoa along with augmented Ca2+-influx was observed after H2O2 treatment, both in the presence or absence of TRPV1 agonist resiniferatoxin (RTX). The effect was attenuated by the TRPV1 antagonist iodoresiniferatoxin (iRTX), indicating the involvement of TRPV1 in mediating H2O2 response. Enhancement of motility and triggering of acrosomal reaction post TRPV1 activation suggested that disruption of these signaling cascades in vivo, possibly due to down-regulation of TRPV1 in these subfertile males. Bioinformatic analysis of the crosstalk between TRPV1 with fertility candidate proteins (reported to influence IVF outcome) revealed cell death and survival, cellular compromise, and embryonic development to be the primary networks affected by anomalous TRPV1 expression. We therefore postulate that TRPV1 can act as a redox sensor, and its expression in spermatozoa may serve as a fertility marker.
Collapse
Affiliation(s)
- Nirlipta Swain
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, India
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Odisha, India
| | - Luna Samanta
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, Cuttack, Odisha, India
- Centre for Excellence in Environment and Public Health, Ravenshaw University, Cuttack, Odisha, India
- *Correspondence: Luna Samanta, ; Chandan Goswami,
| | - Chandan Goswami
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Odisha, India
- *Correspondence: Luna Samanta, ; Chandan Goswami,
| | - Sujata Kar
- Kar Clinic and Hospital Pvt. Ltd., Bhubaneswar, India
| | - Rakesh Kumar Majhi
- School of Biological Sciences, National Institute of Science Education and Research, HBNI, Khordha, Odisha, India
| | - Sugandh Kumar
- Computational Biology and Bioinformatics Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Anshuman Dixit
- Computational Biology and Bioinformatics Laboratory, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Corda PO, Silva JV, Pereira SC, Barros A, Alves MG, Fardilha M. Bioinformatic Approach to Unveil Key Differentially Expressed Proteins in Human Sperm After Slow and Rapid Cryopreservation. Front Cell Dev Biol 2022; 9:759354. [PMID: 35145967 PMCID: PMC8821918 DOI: 10.3389/fcell.2021.759354] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 12/23/2021] [Indexed: 11/25/2022] Open
Abstract
Currently, two conventional freezing techniques are used in sperm cryopreservation: slow freezing (SF) and rapid freezing (RF). Despite the protocolar improvements, cryopreservation still induces significant alterations in spermatozoon that are poorly understood. Here, available proteomic data from human cryopreserved sperm was analyzed through bioinformatic tools to unveil key differentially expressed proteins (DEPs) that can be used as modulation targets or quality markers. From the included proteomic studies, 160 and 555 DEPs were collected for SF and RF groups, respectively. For each group, an integrative network was constructed using gene ontology and protein-protein interaction data to identify key DEPs. Among them, arylsulfatase A (ARSA) was highlighted in both freezing networks, and low ARSA levels have been associated with poor-sperm quality. Thus, ARSA was selected for further experimental investigation and its levels were assessed in cryopreserved samples by western blot. ARSA levels were significantly decreased in RF and SF samples (∼31.97 and ∼39.28%, respectively). The bioinformatic analysis also revealed that the DEPs were strongly associated with proteasomal and translation pathways. The purposed bioinformatic approach allowed the identification of potential key DEPs in freeze-thawed human spermatozoa. ARSA has the potential to be used as a marker to assess sperm quality after cryopreservation.
Collapse
Affiliation(s)
- Pedro O Corda
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Joana Vieira Silva
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.,Department of Chemistry, QOPNA and LAQV, University of Aveiro, Aveiro, Portugal.,Clinical and Experimental Endocrinology, Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Sara C Pereira
- Clinical and Experimental Endocrinology, Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Alberto Barros
- Department of Chemistry, QOPNA and LAQV, University of Aveiro, Aveiro, Portugal.,Centre for Reproductive Genetics A. Barros, Porto, Portugal.,Department of Genetics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Marco G Alves
- Clinical and Experimental Endocrinology, Department of Anatomy and Unit for Multidisciplinary Research in Biomedicine, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| |
Collapse
|
7
|
Henkel R. Oxidative Stress and Toxicity in Reproductive Biology and Medicine: A Comprehensive Update on Male Infertility Volume II - Conclusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:333-340. [PMID: 36472831 DOI: 10.1007/978-3-031-12966-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infertility is a globally under-recognized public health problem significantly impacting individual health and socioeconomics affecting millions of couples. The reasons for infertility are manifold and not only include many couples decision to postpone having children but also diseases (e.g., diabetes, infections, or varicocele), lifestyle (e.g., obesity), and environmental factors (e.g., bisphenol A, DTT or dioxin). In the pathology of many causes of infertility, oxidative stress plays a significant role as reactive oxygen species (ROS) exert significant detrimental effects. On the other hand, a small amount of ROS is essential to trigger physiological events such as capacitation. Therefore, a fine balance between oxidation and reduction has to be maintained. Apart from treating the underlying disease or correcting the cause of the infertility, oxidative stress can be treated by antioxidant supplementation. Since plants and their extracts contain numerous phytochemicals which exhibit antioxidant activity, many people tend to use herbal products. Alternatively, isolated antioxidants such as vitamin C or E are also used. However, when using purified antioxidants, it is essential that the redox balance is maintained to avoid a "reductive stress" situation, which is as harmful as oxidative stress.
Collapse
Affiliation(s)
- Ralf Henkel
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK. .,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa. .,American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA. .,LogixX Pharma, Theale, Reading, UK.
| |
Collapse
|
8
|
Liang J, Zheng Y, Zeng W, Chen L, Yang S, Du P, Wang Y, Yu X, Zhang X. Proteomic Profile of Sperm in Infertile Males Reveals Changes in Metabolic Pathways. Protein J 2021; 40:929-939. [PMID: 34213690 PMCID: PMC8593027 DOI: 10.1007/s10930-021-10013-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2021] [Indexed: 11/30/2022]
Abstract
The objective of the present study was to investigate the differences in the proteomic profiles of sperm from infertile males with severe oligoasthenoteratozoospermia requiring intracytoplasmic sperm injection (ICSI) and normal control sperm from fertile males. Isobaric tag for relative and absolute quantitation labeling and liquid chromatography-tandem mass spectrometry was performed for identifying proteins in the sperm of infertile and fertile males. Differentially expressed proteins were analyzed via the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases through the Database for Annotation, Visualization, and Integrated Discovery, and protein-protein networks were produced using the Search Tool for Retrieval of Interacting Genes. Immunofluorescence and western blotting verified the differential expression of Y-box-binding protein 1(YBX1), adenylate kinase 1 (AK1), and aconitase 2, mitochondrial (ACO2) proteins. Altogether, 3444 proteins were identified in the sperm of infertile and fertile males, and 938 were differentially expressed between the two groups. Pairwise comparisons revealed that 226 and 712 proteins were significantly upregulated and downregulated in infertile males, respectively. These proteins were significantly enriched in metabolic pathways as per KEGG enrichment analysis. YBX1 expression was upregulated in the sperm heads of patients requiring ICSI treatment, whereas AK1 and ACO2, which are critical enzymes involved in energy metabolism, were downregulated in the sperm tails of the same patients. This result indicates that metabolism may have a crucial role in maintaining normal sperm function. Overall, our results provide insights that will further help in investigating the pathogenic mechanisms of infertility and possible therapeutic strategies.
Collapse
Affiliation(s)
- Jiaying Liang
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Yichun Zheng
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China.
| | - Weihong Zeng
- Children Inherit Metabolism and Endocrine Department, Guangdong Women and Children Hospital, Guangzhou, 511400, China
| | - Liuqing Chen
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Shaofen Yang
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Peng Du
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Yujiang Wang
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Xingsu Yu
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China
| | - Xiqian Zhang
- Reproductive Medical Center, Guangdong Women and Children Hospital, No. 521 Xingnan Road, Guangzhou, 511400, Guangdong, China.
| |
Collapse
|
9
|
Torra-Massana M, Jodar M, Barragán M, Soler-Ventura A, Delgado-Dueñas D, Rodríguez A, Oliva R, Vassena R. Altered mitochondrial function in spermatozoa from patients with repetitive fertilization failure after ICSI revealed by proteomics. Andrology 2021; 9:1192-1204. [PMID: 33615715 DOI: 10.1111/andr.12991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Unexplained fertilization failure (FF), occurring in 1-3% of intracytoplasmic sperm injection (ICSI) cycles, results in both psychological and financial burden for the patients. However, the molecular causes behind FF remain largely unknown. Mass spectrometry is a powerful technique to identify and quantify proteins across samples; however, no study so far has used it to dissect the proteomic signature of spermatozoa with FF after ICSI. OBJECTIVE To investigate whether sperm samples from patients suffering repetitive FF after ICSI display alterations in their protein content. MATERIAL AND METHODS Seventeen infertile men were included: 5 patients presented FF in ≥3 consecutive ICSI cycles, while 12 patients had a fertilization rate >75% (controls). Individual sperm samples were subjected to 2D-LC-MS/MS. Both conventional and novel statistical approaches were used to identify differentially abundant proteins. Additionally, analysis of mitochondrial and proteasomal abundance and activity were performed, using Western blot, FACS analysis of JC-1 staining and AMC-peptide fluorometric assay. RESULTS Four proteins presented lower abundance (FMR1NB, FAM209B, RAB2B, and PSMA1) in the FF group compared to controls, while five mitochondrial proteins presented higher abundance in FF (DLAT, ATP5H, SLC25A3, SLC25A6, and FH) (p < 0.05). The altered abundance of mitochondrial DLAT and proteasomal PSMA1 was corroborated by Western blot. Of relevance, novel stable-protein pair analysis identified 73 correlations comprising 28 proteins within controls, while different mitochondrial proteins (ie, PDHA2, PHB2, and ATP5F1D) lost >50% of these correlations in specific FF samples pointing out specific mitochondrial deregulations. DISCUSSION This is the first proteomic analysis of spermatozoa from patients who resulted in fertilization failure after ICSI. The altered proteins, most of them related to mitochondrial function, could help to identify diagnostic/prognostic markers of fertilization failure and could further dissect the molecular paternal contribution to reach successful fertilization. CONCLUSION Sperm samples from patients with FF after ICSI present altered abundance of different proteins, including mainly mitochondrial proteins.
Collapse
Affiliation(s)
- Marc Torra-Massana
- EUGIN, Barcelona, Spain.,Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Meritxell Jodar
- Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,EUGIN-UB Research Excellence Program, Barcelona, Spain
| | | | - Ada Soler-Ventura
- Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,EUGIN-UB Research Excellence Program, Barcelona, Spain
| | - David Delgado-Dueñas
- Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,EUGIN-UB Research Excellence Program, Barcelona, Spain
| | | | - Rafael Oliva
- Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS, Fundació Clínic per a la Recerca Biomèdica, Hospital Clinic, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,EUGIN-UB Research Excellence Program, Barcelona, Spain
| | | |
Collapse
|
10
|
Panner Selvam MK, Finelli R, Agarwal A, Henkel R. Proteomics and metabolomics - Current and future perspectives in clinical andrology. Andrologia 2020; 53:e13711. [PMID: 32598566 DOI: 10.1111/and.13711] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/17/2020] [Accepted: 05/19/2020] [Indexed: 12/12/2022] Open
Abstract
Proteomics and metabolomics are emerging as promising tools to investigate the molecular mechanisms associated with male infertility. Proteins and metabolites play a pivotal role in regulating the molecular pathways associated with physiological functions of spermatozoa. Semen analysis, physical examination and laboratory work up cannot identify the etiology of infertility in 30%-40% of cases, which are classified as idiopathic. Therefore, the application of proteomics and metabolomics in the field of andrology will aid to overcome the limitations of the standard semen analysis. Understanding the molecular pathways associated with male infertility will help in planning ad hoc treatments, contributing to the clinical management of infertile patients. In this review, proteomics and metabolomics studies on spermatozoa and seminal plasma are discussed with a focus on molecular biomarkers associated with male infertility-related conditions.
Collapse
Affiliation(s)
| | - Renata Finelli
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Ralf Henkel
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH, USA.,Department of Medical Bioscience, University of the Western Cape, Bellville, South Africa
| |
Collapse
|
11
|
Jodar M, Attardo-Parrinello C, Soler-Ventura A, Barrachina F, Delgado-Dueñas D, Cívico S, Calafell JM, Ballescà JL, Oliva R. Sperm proteomic changes associated with early embryo quality after ICSI. Reprod Biomed Online 2020; 40:700-710. [DOI: 10.1016/j.rbmo.2020.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 10/31/2019] [Accepted: 01/06/2020] [Indexed: 12/11/2022]
|
12
|
Agarwal A, Panner Selvam MK, Baskaran S. Proteomic Analyses of Human Sperm Cells: Understanding the Role of Proteins and Molecular Pathways Affecting Male Reproductive Health. Int J Mol Sci 2020; 21:ijms21051621. [PMID: 32120839 PMCID: PMC7084638 DOI: 10.3390/ijms21051621] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/22/2020] [Accepted: 02/24/2020] [Indexed: 12/12/2022] Open
Abstract
Human sperm proteomics research has gained increasing attention lately, which provides complete information about the functional state of the spermatozoa. Changes in the sperm proteome are evident in several male infertility associated conditions. Global proteomic tools, such as liquid chromatography tandem mass spectrometry and matrix-assisted laser desorption/ionization time-of-flight, are used to profile the sperm proteins to identify the molecular pathways that are defective in infertile men. This review discusses the use of proteomic techniques to analyze the spermatozoa proteome. It also highlights the general steps involved in global proteomic approaches including bioinformatic analysis of the sperm proteomic data. Also, we have presented the findings of major proteomic studies and possible biomarkers in the diagnosis and therapeutics of male infertility. Extensive research on sperm proteome will help in understanding the role of fertility associated sperm proteins. Validation of the sperm proteins as biomarkers in different male infertility conditions may aid the physician in better clinical management.
Collapse
|
13
|
Plasma Protein Comparison between Dairy Cows with Inactive Ovaries and Estrus. Sci Rep 2019; 9:13709. [PMID: 31548586 PMCID: PMC6757064 DOI: 10.1038/s41598-019-49785-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/29/2019] [Indexed: 01/11/2023] Open
Abstract
To screen differentially expressed proteins in the blood dairy cows with inactive ovaries caused by a negative energy balance and to determine the roles of the identified proteins in the development of inactive ovaries.Holstein cows at 14 to 21 days postpartum in an intensive dairy farm were examined for their energy balance (EB) status by blood β-hydroxybutyrate (BHBA) and assigned to the inactive ovary (IO) group (n = 50) and the normal oestrus control (CON) group (n = 50) at 60 to 90 days postpartum by means of the oestrus manifestation, rectal examination and B-ultrasound examination. Fourteen differentially expressed proteins from 61 proteins in the plasma of dairy cows with IOs were identified by iTRAQ/LC-MS/MS and GO, KEGG, and PATHWAY analysis. Eleven expressed proteins were upregulated, and 3 expressed proteins were downregulated. Among the 10 differentially expressed proteins verified by Western blot or ELISA, the relative expression levels of ALDOB, IGFBP2, ITIH3 and LDHB in mixed samples and single samples were consistent with the proteomic protein results. PKM2, GPX3, ALDOB, RBP4 and AHSG were significantly different between the two groups (P < 0.05); APOA4 and SPAM1 were not significantly different (P > 0.05) but were still downregulated in the ovarian resting group. This study confirmed that 14 plasma differential proteins in the inactive ovaries of postpartum dairy cows were associated with follicular development, and these findings provide a foundation for further research on the mechanism and prevention of inactive ovaries in dairy cows.
Collapse
|
14
|
Liu X, Liu G, Zhu P, Wang Y, Wang J, Zhang W, Wang W, Li N, Wang X, Zhang C, Liu J, Shen X, Liu F. Characterization of seminal plasma proteomic alterations associated with the IVF and rescue-ICSI pregnancy in assisted reproduction. Andrology 2019; 8:407-420. [PMID: 31364287 DOI: 10.1111/andr.12687] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 06/25/2019] [Accepted: 07/02/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Seminal plasma is a promising diagnostic fluid for male infertility. In assisted reproduction, the seminal plasma-based characteristics of normozoospermic men achieving successful clinical pregnancy through rescue intracytoplasmic sperm injection after in vitro fertilization failure remain unclear. OBJECTIVE To identify potential seminal plasma proteins to contribute to a new understanding of unexplained male factor infertility. MATERIALS AND METHODS An approach with isobaric tags for relative and absolute quantification labeling coupled with liquid chromatography matrix-assisted laser desorption ionization mass spectrometry was applied to investigate differentially expressed proteins in the seminal plasma of a rescue intracytoplasmic sperm injection pregnancy group versus an in vitro fertilization pregnancy group of normozoospermic men. RESULT(S) The present work revealed seventy-three differentially expressed seminal plasma proteins between the in vitro fertilization and rescue intracytoplasmic sperm injection groups. Forty-five proteins were upregulated, and 28 proteins were downregulated in the rescue intracytoplasmic sperm injection group compared with the in vitro fertilization group. Bioinformatics analyses showed that these altered proteins were involved in various functions, including the kallikrein-related proteolytic cascade, immune response, and heparin binding. Furthermore, the validity of the proteomic results was verified by Western blot analysis of the proteins (lactoferrin [LTF], fibronectin [FN1], creatine kinase B type [CKB], kallikrein-2 [KLK2], aminopeptidase N [ANPEP], extracellular matrix protein 1 [ECM1], glycodelin [PAEP], alpha-1-antitrypsin [SERPINA1], and semenogelin-1 [SEMG1]) and immunofluorescence. Moreover, 16% of the seminal plasma proteins identified in the present work have not been reported in previous studies. DISCUSSION This panel of altered seminal plasma proteins associated with unexplained male factor infertility might have clinical relevance and may be useful in the diagnosis and prognosis of idiopathic infertility in in vitro fertilization. CONCLUSIONS Our work not only provides a new complementary high-confidence dataset of seminal plasma proteins but also shines new light onto the molecular characteristics of seminal plasma from normozoospermic men with different assisted reproductive outcomes.
Collapse
Affiliation(s)
- X Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - G Liu
- Reproductive Center, Tianjin Aiwei Hospital, Tianjin, China
| | - P Zhu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Y Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - J Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - W Zhang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - W Wang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - N Li
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - X Wang
- Department of Clinical Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - C Zhang
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - J Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - X Shen
- Reproductive Center, Beijing BaoDao Obstetrics and Gynecology Hospital, Beijing, China
| | - F Liu
- Central Laboratory, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| |
Collapse
|
15
|
Panner Selvam MK, Agarwal A, Pushparaj PN, Baskaran S, Bendou H. Sperm Proteome Analysis and Identification of Fertility-Associated Biomarkers in Unexplained Male Infertility. Genes (Basel) 2019; 10:genes10070522. [PMID: 31336797 PMCID: PMC6678187 DOI: 10.3390/genes10070522] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/08/2019] [Indexed: 01/13/2023] Open
Abstract
Up to 30% of men with normal semen parameters suffer from infertility and the reason for this is unknown. Altered expression of sperm proteins may be a major cause of infertility in these men. Proteomic profiling was performed on pooled semen samples from eight normozoospermic fertile men and nine normozoospermic infertile men using LC-MS/MS. Furthermore, key differentially expressed proteins (DEPs) related to the fertilization process were selected for validation using Western blotting. A total of 1139 and 1095 proteins were identified in normozoospermic fertile and infertile men, respectively. Of these, 162 proteins were identified as DEPs. The canonical pathway related to free radical scavenging was enriched with upregulated DEPs in normozoospermic infertile men. The proteins associated with reproductive system development and function, and the ubiquitination pathway were underexpressed in normozoospermic infertile men. Western blot analysis revealed the overexpression of annexin A2 (ANXA2) (2.03 fold change; P = 0.0243), and underexpression of sperm surface protein Sp17 (SPA17) (0.37 fold change; P = 0.0205) and serine protease inhibitor (SERPINA5) (0.32 fold change; P = 0.0073) in men with unexplained male infertility (UMI). The global proteomic profile of normozoospermic infertile men is different from that of normozoospermic fertile men. Our data suggests that SPA17, ANXA2, and SERPINA5 may potentially serve as non-invasive protein biomarkers associated with the fertilization process of the spermatozoa in UMI.
Collapse
Affiliation(s)
| | - Ashok Agarwal
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Peter Natesan Pushparaj
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Saradha Baskaran
- American Center for Reproductive Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Hocine Bendou
- South African National Bioinformatics Institute (SANBI), SA Medical Research Council Bioinformatics Unit, University of the Western Cape, Private Bag X17, Bellville, Cape Town 7535, South Africa
| |
Collapse
|
16
|
Xu F, Zhu H, Zhu W, Fan L. Human sperm acrosomal status, acrosomal responsiveness, and acrosin are predictive of the outcomes of in vitro fertilization: A prospective cohort study. Reprod Biol 2018; 18:344-354. [PMID: 30420163 DOI: 10.1016/j.repbio.2018.10.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/19/2018] [Accepted: 10/31/2018] [Indexed: 12/20/2022]
Abstract
The sperm acrosome reaction (AR) is a physiological secretory course of membrane fusion and hydrolytic enzymes, as well as matrix protein release, enabling spermatozoa to penetrate the egg surroundings. An instable acrosomal status before a specific stimulus, insufficient acrosomal responsiveness, or inadequate enzymatic activity of acrosomal content can be detrimental to male fertility. This prospective cohort study was designed to determine whether three human sperm acrosome evaluation parameters-including spontaneous AR rate, AR after calcium ionophore A23187 challenge (ARIC) rate, and modified Kennedy acrosin activity-can predict fertilization outcomes in vitro and are correlated with male characteristics. A total of 485 eligible couples undergoing in vitro fertilization (IVF) therapy were included in two phases of this study. In a 'construction phase', three acrosome evaluation parameters were determined simultaneously in 132 cases, whereas in a 'validation phase', the spontaneous AR rate was determined in 353 cases. The results of the 'construction phase' revealed that the spontaneous AR rate was the only significant predictor of fertilization outcome (unadjusted odds ratio [OR] = 0.68, 95% confidence interval [CI]: 0.53-0.88, P = 0.003; adjusted OR = 0.64, 95% CI: 0.43-0.95, P = 0.03), and the cut-off value for total fertilization failure (TFF) prediction, determined by ROC curve analysis, was 9.91%; higher acrosin activity was shown to predict a higher fertilization rate only when patients were divided into groups (≥25 μIU/106 spermatozoa, 14-25 μIU/106 spermatozoa, <14 μIU/106 spermatozoa). The spontaneous AR rate was negatively correlated with sperm motility, forward progression motility, and normal morphology; modified Kennedy acrosin activity was positively correlated with normal morphology; and the ARIC rate was not correlated with any of the male characteristics. A similar result was obtained for the spontaneous AR rate in the 'validation phase', and the cut-off value in predicting TFF was calibrated for 9.52%. Clinically, patients can voluntarily choose spontaneous AR rate alone or in combination with modified Kennedy acrosin activity to predict TFF, and early rescue intracytoplasmic sperm injection (ICSI), half ICSI, or full ICSI should be considered in advance for men with spontaneous AR rates ≥9.52% or spontaneous AR rates ≥9.52% and AE activities <25 μIU/106 spermatozoa.
Collapse
Affiliation(s)
- Fang Xu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China
| | - Hailun Zhu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China
| | - Wenbing Zhu
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medicine Science, Central South University, Changsha, China; Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China.
| |
Collapse
|