1
|
Zhang X, Gu D, Liu D, Hassan MA, Yu C, Wu X, Huang S, Bian S, Wei P, Li J. Recent Advances in Gene Mining and Hormonal Mechanism for Brown Planthopper Resistance in Rice. Int J Mol Sci 2024; 25:12965. [PMID: 39684676 DOI: 10.3390/ijms252312965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024] Open
Abstract
Rice (Oryza sativa L.) feeds half the world's population and serves as one of the most vital staple food crops globally. The brown planthopper (BPH, Nilaparvata lugens Stål), a major piercing-sucking herbivore specific to rice, accounts for large yield losses annually in rice-growing areas. Developing rice varieties with host resistance has been acknowledged as the most effective and economical approach for BPH control. Accordingly, the foremost step is to identify BPH resistance genes and elucidate the resistance mechanism of rice. More than 70 BPH resistance genes/QTLs with wide distributions on nine chromosomes have been identified from rice and wild relatives. Among them, 17 BPH resistance genes were successfully cloned and principally encoded coiled-coil nucleotide-binding leucine-rich repeat (CC-NB-LRR) protein and lectin receptor kinase (LecRK), as well as proteins containing a B3 DNA-binding domain, leucine-rich repeat domain (LRD) and short consensus repeat (SCR) domain. Multiple mechanisms contribute to rice resistance against BPH attack, including transcription factors, physical barriers, phytohormones, defense metabolites and exocytosis pathways. Plant hormones, including jasmonic acid (JA), salicylic acid (SA), ethylene (ET), abscisic acid (ABA), gibberellins (GAs), cytokinins (CKs), brassinosteroids (BRs) and indoleacetic-3-acid (IAA), play crucial roles in coordinating rice defense responses to the BPH. Here, we summarize some recent advances in the genetic mapping, cloning and biochemical mechanisms of BPH resistance genes. We also review the latest studies on our understanding of the function and crosstalk of phytohormones in the rice immune network against BPHs. Further directions for rice BPH resistance studies and management are also proposed.
Collapse
Affiliation(s)
- Xiao Zhang
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dongfang Gu
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Daoming Liu
- National Center of Technology Innovation for Saline-Alkali Tolerant Rice in Sanya, Sanya 572024, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha 410125, China
| | - Muhammad Ahmad Hassan
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Cao Yu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Xiangzhi Wu
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Shijie Huang
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Shiquan Bian
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Pengcheng Wei
- College of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Juan Li
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
2
|
Sriram M, Manonmani S, Gopalakrishnan C, Sheela V, Shanmugam A, Revanna Swamy KM, Suresh R. Breeding for brown plant hopper resistance in rice: recent updates and future perspectives. Mol Biol Rep 2024; 51:1038. [PMID: 39365503 DOI: 10.1007/s11033-024-09966-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
Rice yield is often threatened by various stresses caused by biotic and abiotic agents. Many biotic stress factors are known to cause crop growth and yield from seedling to maturity. The brown plant hopper (BPH) can potentially reduce the rice yield to an extent of up to 80%. Intensive research efforts in 1972 led to a better understanding of pathogens/insect and host-plant resistance. This resulted in the identification of about 70 BPH-resistant genes and quantitative trait loci (QTLs) from diversified sources including wild germplasm. However, the BPH-resistant improved varieties with a single resistant gene lose the effectiveness of the gene because of the evolution of new biotypes. This review inferred that the level of resistance durable when incorporating multiple 'R' gene combinations when compared to a single gene. Breeding tools like wide hybridization, biparental crosses, marker-assisted introgression, pyramiding, and genetic engineering have been widely employed to breed rice varieties with single or combination of 'R' genes conferring durable resistance to BPH. Many other genes like receptor-like kinase genes, transcriptional factors, etc., were also found to be involved in the resistant mechanisms of 'R' genes. Due to this, the durability of the resistance can be improved and the level of resistance of the 'R' genes can be increased by adopting newer breeding tools like genome editing which hold promise to develop rice varieties with stable resistance.
Collapse
Affiliation(s)
- Muthukumarasamy Sriram
- Department of Genetics and Plant Breeding, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Swaminathan Manonmani
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Chellapan Gopalakrishnan
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Venugopal Sheela
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Aravindan Shanmugam
- ICAR-Central Institute for Cotton Research, Regional Station, Coimbatore, 641003, India
| | - K M Revanna Swamy
- Department of Genetics and Plant Breeding, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - Ramalingam Suresh
- Department of Rice, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, 641003, India.
| |
Collapse
|
3
|
Ye Y, Wang Y, Zou L, Wu X, Zhang F, Chen C, Xiong S, Liang B, Zhu Z, Wu W, Zhang S, Wu J, Hu J. Identification and candidate analysis of a new brown planthopper resistance locus in an Indian landrace of rice, paedai kalibungga. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:45. [PMID: 38911334 PMCID: PMC11190133 DOI: 10.1007/s11032-024-01485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
The brown planthopper (Nilaparvata lugens Stål, BPH) is the most destructive pest of rice (Oryza sativa L.). Utilizing resistant rice cultivars that harbor resistance gene/s is an effective strategy for integrated pest management. Due to the co-evolution of BPH and rice, a single resistance gene may fail because of changes in the virulent BPH population. Thus, it is urgent to explore and map novel BPH resistance genes in rice germplasm. Previously, an indica landrace from India, Paedai kalibungga (PK), demonstrated high resistance to BPH in both in Wuhan and Fuzhou, China. To map BPH resistance genes from PK, a BC1F2:3 population derived from crosses of PK and a susceptible parent, Zhenshan 97 (ZS97), was developed and evaluated for BPH resistance. A novel BPH resistance locus, BPH39, was mapped on the short arm of rice chromosome 6 using next-generation sequencing-based bulked segregant analysis (BSA-seq). BPH39 was validated using flanking markers within the locus. Furthermore, near-isogenic lines carrying BPH39 (NIL-BPH39) were developed in the ZS97 background. NIL-BPH39 exhibited the physiological mechanisms of antibiosis and preference toward BPH. BPH39 was finally delimited to an interval of 84 Kb ranging from 1.07 to 1.15 Mb. Six candidate genes were identified in this region. Two of them (LOC_Os06g02930 and LOC_Os06g03030) encode proteins with a similar short consensus repeat (SCR) domain, which displayed many variations leading to amino acid substitutions and showed higher expression levels in NIL-BPH39. Thus, these two genes are considered reliable candidate genes for BPH39. Additionally, transcriptome sequencing, DEGs analysis, and gene RT-qPCR verification preliminary revealed that BPH39 may be involved in the jasmonic acid (JA) signaling pathway, thus mediating the molecular mechanism of BPH resistance. This work will facilitate map-based cloning and marker-assisted selection for the locus in breeding programs targeting BPH resistance. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01485-6.
Collapse
Affiliation(s)
- Yangdong Ye
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-Borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Yanan Wang
- Fujian Key Laboratory of Crop Breeding By Design and Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Ling Zou
- Fujian Key Laboratory of Crop Breeding By Design and Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Xiaoqing Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-Borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Fangming Zhang
- Fujian Key Laboratory of Crop Breeding By Design and Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Cheng Chen
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-Borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Shangye Xiong
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-Borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Baohui Liang
- Fujian Key Laboratory of Crop Breeding By Design and Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Zhihong Zhu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-Borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Weiren Wu
- Fujian Key Laboratory of Crop Breeding By Design and Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Shuai Zhang
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-Borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Jianguo Wu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-Borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Jie Hu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Vector-Borne Virus Research Center, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
- Fujian Key Laboratory of Crop Breeding By Design and Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| |
Collapse
|
4
|
Zhou C, Jiang W, Guo J, Zhu L, Liu L, Liu S, Chen R, Du B, Huang J. Genome-wide association study and genomic prediction for resistance to brown planthopper in rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1373081. [PMID: 38576786 PMCID: PMC10991774 DOI: 10.3389/fpls.2024.1373081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024]
Abstract
The brown planthopper (BPH) is the most destructive insect pest that threatens rice production globally. Developing rice varieties incorporating BPH-resistant genes has proven to be an effective control measure against BPH. In this study, we assessed the resistance of a core collection consisting of 502 rice germplasms by evaluating resistance scores, weight gain rates and honeydew excretions. A total of 117 rice varieties (23.31%) exhibited resistance to BPH. Genome-wide association studies (GWAS) were performed on both the entire panel of 502 rice varieties and its subspecies, and 6 loci were significantly associated with resistance scores (P value < 1.0e-8). Within these loci, we identified eight candidate genes encoding receptor-like protein kinase (RLK), nucleotide-binding and leucine-rich repeat (NB-LRR), or LRR proteins. Two loci had not been detected in previous study and were entirely novel. Furthermore, we evaluated the predictive ability of genomic selection for resistance to BPH. The results revealed that the highest prediction accuracy for BPH resistance reached 0.633. As expected, the prediction accuracy increased progressively with an increasing number of SNPs, and a total of 6.7K SNPs displayed comparable accuracy to 268K SNPs. Among various statistical models tested, the random forest model exhibited superior predictive accuracy. Moreover, increasing the size of training population improved prediction accuracy; however, there was no significant difference in prediction accuracy between a training population size of 737 and 1179. Additionally, when there existed close genetic relatedness between the training and validation populations, higher prediction accuracies were observed compared to scenarios when they were genetically distant. These findings provide valuable resistance candidate genes and germplasm resources and are crucial for the application of genomic selection for breeding durable BPH-resistant rice varieties.
Collapse
Affiliation(s)
- Cong Zhou
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan, China
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weihua Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lijiang Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Shengyi Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jin Huang
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
5
|
Shi S, Wang H, Zha W, Wu Y, Liu K, Xu D, He G, Zhou L, You A. Recent Advances in the Genetic and Biochemical Mechanisms of Rice Resistance to Brown Planthoppers ( Nilaparvata lugens Stål). Int J Mol Sci 2023; 24:16959. [PMID: 38069282 PMCID: PMC10707318 DOI: 10.3390/ijms242316959] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is the staple food of more than half of Earth's population. Brown planthopper (Nilaparvata lugens Stål, BPH) is a host-specific pest of rice responsible for inducing major losses in rice production. Utilizing host resistance to control N. lugens is considered to be the most cost-effective method. Therefore, the exploration of resistance genes and resistance mechanisms has become the focus of breeders' attention. During the long-term co-evolution process, rice has evolved multiple mechanisms to defend against BPH infection, and BPHs have evolved various mechanisms to overcome the defenses of rice plants. More than 49 BPH-resistance genes/QTLs have been reported to date, and the responses of rice to BPH feeding activity involve various processes, including MAPK activation, plant hormone production, Ca2+ flux, etc. Several secretory proteins of BPHs have been identified and are involved in activating or suppressing a series of defense responses in rice. Here, we review some recent advances in our understanding of rice-BPH interactions. We also discuss research progress in controlling methods of brown planthoppers, including cultural management, trap cropping, and biological control. These studies contribute to the establishment of green integrated management systems for brown planthoppers.
Collapse
Affiliation(s)
- Shaojie Shi
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Huiying Wang
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Wenjun Zha
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Yan Wu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Kai Liu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Deze Xu
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Zhou
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Aiqing You
- Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (S.S.); (H.W.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
6
|
Srivastava A, Pusuluri M, Balakrishnan D, Vattikuti JL, Neelamraju S, Sundaram RM, Mangrauthia SK, Ram T. Identification and Functional Characterization of Two Major Loci Associated with Resistance against Brown Planthoppers ( Nilaparvata lugens (Stål)) Derived from Oryza nivara. Genes (Basel) 2023; 14:2066. [PMID: 38003009 PMCID: PMC10671472 DOI: 10.3390/genes14112066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The brown planthopper (BPH) is a highly destructive pest of rice, causing significant economic losses in various regions of South and Southeast Asia. Researchers have made promising strides in developing resistance against BPH in rice. Introgression line RPBio4918-230S, derived from Oryza nivara, has shown consistent resistance to BPH at both the seedling and adult stages of rice plants. Segregation analysis has revealed that this resistance is governed by two recessive loci, known as bph39(t) and bph40(t), contributing to 21% and 22% of the phenotypic variance, respectively. We later mapped the genes using a backcross population derived from a cross between Swarna and RPBio4918-230S. We identified specific marker loci, namely RM8213, RM5953, and R4M17, on chromosome 4, flanking the bph39(t) and bph40(t) loci. Furthermore, quantitative expression analysis of candidate genes situated between the RM8213 and R4M17 markers was conducted. It was observed that eight genes exhibited up-regulation in RPBio4918-230S and down-regulation in Swarna after BPH infestation. One gene of particular interest, a serine/threonine-protein kinase receptor (STPKR), showed significant up-regulation in RPBio4918-230S. In-depth sequencing of the susceptible and resistant alleles of STPKR from Swarna and RPBio4918-230S, respectively, revealed numerous single nucleotide polymorphisms (SNPs) and insertion-deletion (InDel) mutations, both in the coding and regulatory regions of the gene. Notably, six of these mutations resulted in amino acid substitutions in the coding region of STPKR (R5K, I38L, S120N, T319A, T320S, and F348S) when compared to Swarna and the reference sequence of Nipponbare. Further validation of these mutations in a set of highly resistant and susceptible backcross inbred lines confirmed the candidacy of the STPKR gene with respect to BPH resistance controlled by bph39(t) and bph40(t). Functional markers specific for STPKR have been developed and validated and can be used for accelerated transfer of the resistant locus to elite rice cultivars.
Collapse
Affiliation(s)
- Akanksha Srivastava
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
| | - Madhu Pusuluri
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad 502324, India
| | - Divya Balakrishnan
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
| | - Jhansi Lakshmi Vattikuti
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
| | - Sarla Neelamraju
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
| | - Raman Meenakshi Sundaram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
| | | | - Tilathoo Ram
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India; (A.S.); (M.P.); (D.B.); (R.M.S.)
| |
Collapse
|
7
|
Yang K, Liu H, Jiang W, Hu Y, Zhou Z, An X, Miao S, Qin Y, Du B, Zhu L, He G, Chen R. Large scale rice germplasm screening for identification of novel brown planthopper resistance sources. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:70. [PMID: 37649829 PMCID: PMC10462578 DOI: 10.1007/s11032-023-01416-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Rice (Oryza sativa L.) is a staple food crop globally. Brown planthopper (Nilaparvata lugens Stål, BPH) is the most destructive insect that threatens rice production annually. More than 40 BPH resistance genes have been identified so far, which provide valuable gene resources for marker-assisted breeding against BPH. However, it is still urgent to evaluate rice germplasms and to explore more new wide-spectrum BPH resistance genes to combat newly occurring virulent BPH populations. To this end, 560 germplasm accessions were collected from the International Rice Research Institute (IRRI), and their resistance to current BPH population of China was examined. A total of 105 highly resistant materials were identified. Molecular screening of BPH resistance genes in these rice germplasms was conducted by developing specific functional molecular markers of eight cloned resistance genes. Twenty-three resistant germplasms were found to contain none of the 8 cloned BPH resistance genes. These accessions also exhibited a variety of resistance mechanisms as indicated by an improved insect weight gain (WG) method, suggesting the existence of new resistance genes. One new BPH resistance gene, Bph44(t), was identified in rice accession IRGC 15344 and preliminarily mapped to a 0-2 Mb region on chromosome 4. This study systematically sorted out the corresponding relationships between BPH resistance genes and germplasm resources using a functional molecular marker system. Newly explored resistant germplasms will provide valualble donors for the identification of new resistance genes and BPH resistance breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01416-x.
Collapse
Affiliation(s)
- Ke Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Hongmei Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Weihua Jiang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yinxia Hu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Zhiyang Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Xin An
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Si Miao
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Yushi Qin
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072 China
| |
Collapse
|
8
|
Yan L, Luo T, Huang D, Wei M, Ma Z, Liu C, Qin Y, Zhou X, Lu Y, Li R, Qin G, Zhang Y. Recent Advances in Molecular Mechanism and Breeding Utilization of Brown Planthopper Resistance Genes in Rice: An Integrated Review. Int J Mol Sci 2023; 24:12061. [PMID: 37569437 PMCID: PMC10419156 DOI: 10.3390/ijms241512061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Over half of the world's population relies on rice as their staple food. The brown planthopper (Nilaparvata lugens Stål, BPH) is a significant insect pest that leads to global reductions in rice yields. Breeding rice varieties that are resistant to BPH has been acknowledged as the most cost-effective and efficient strategy to mitigate BPH infestation. Consequently, the exploration of BPH-resistant genes in rice and the development of resistant rice varieties have become focal points of interest and research for breeders. In this review, we summarized the latest advancements in the localization, cloning, molecular mechanisms, and breeding of BPH-resistant rice. Currently, a total of 70 BPH-resistant gene loci have been identified in rice, 64 out of 70 genes/QTLs were mapped on chromosomes 1, 2, 3, 4, 6, 8, 10, 11, and 12, respectively, with 17 of them successfully cloned. These genes primarily encode five types of proteins: lectin receptor kinase (LecRK), coiled-coil-nucleotide-binding-leucine-rich repeat (CC-NB-LRR), B3-DNA binding domain, leucine-rich repeat domain (LRD), and short consensus repeat (SCR). Through mediating plant hormone signaling, calcium ion signaling, protein kinase cascade activation of cell proliferation, transcription factors, and miRNA signaling pathways, these genes induce the deposition of callose and cell wall thickening in rice tissues, ultimately leading to the inhibition of BPH feeding and the formation of resistance mechanisms against BPH damage. Furthermore, we discussed the applications of these resistance genes in the genetic improvement and breeding of rice. Functional studies of these insect-resistant genes and the elucidation of their network mechanisms establish a strong theoretical foundation for investigating the interaction between rice and BPH. Furthermore, they provide ample genetic resources and technical support for achieving sustainable BPH control and developing innovative insect resistance strategies.
Collapse
Affiliation(s)
- Liuhui Yan
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
- Liuzhou Branch, Guangxi Academy of Agricultural Sciences, Liuzhou Research Center of Agricultural Sciences, Liuzhou 545000, China;
| | - Tongping Luo
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Dahui Huang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Minyi Wei
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Zengfeng Ma
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Chi Liu
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Yuanyuan Qin
- Agricultural Science and Technology Information Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China;
| | - Xiaolong Zhou
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Yingping Lu
- Liuzhou Branch, Guangxi Academy of Agricultural Sciences, Liuzhou Research Center of Agricultural Sciences, Liuzhou 545000, China;
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
| | - Gang Qin
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
| | - Yuexiong Zhang
- Guangxi Key Laboratory of Rice Genetics and Breeding, Rice Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (L.Y.); (T.L.); (D.H.); (M.W.); (Z.M.); (C.L.); (X.Z.)
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning 530004, China;
| |
Collapse
|
9
|
Tan HQ, Palyam S, Gouda J, Kumar PP, Chellian SK. Identification of two QTLs, BPH41 and BPH42, and their respective gene candidates for brown planthopper resistance in rice. Sci Rep 2022; 12:18538. [PMID: 36323756 PMCID: PMC9630283 DOI: 10.1038/s41598-022-21973-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
The brown planthopper (BPH) is the leading cause of insect damage to rice plants and BPH infestations have caused profound losses in rice production since the 1970's. There is an urgent need to discover new BPH resistance genes to ensure the successful production of rice. Here, a new BPH resistance source provided by SeedWorks International Pvt. Ltd., SWD10, was used for this purpose. QTL mapping using 232 F2 progenies and 216 polymorphic markers revealed two dominant BPH resistance QTLs, BPH41 and BPH42, located on chromosome 4. BPH resistance mechanism test revealed that antibiosis and antixenosis mechanisms both play a role in BPH resistance conferred by these two QTLs. The QTLs were delimited between markers SWRm_01617 and SWRm_01522 for BPH41, and SWRm_01695 and SWRm_00328 for BPH42. Additionally, using RNA-seq data of lines containing the resistant QTLs, we shortlisted four and three gene candidates for BPH41 and BPH42, respectively. Differential gene expression analysis of lines containing the QTLs suggested that SWD10 BPH resistance is contributed by the plant's innate immunity and the candidate genes may be part of the rice innate immunity pathway. Currently, the newly identified QTLs are being utilized for breeding BPH resistant rice varieties and hybrids.
Collapse
Affiliation(s)
- Han Qi Tan
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- Straits Biotech Pte. Ltd., Singapore, Singapore
| | | | | | - Prakash P Kumar
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | | |
Collapse
|
10
|
Wani SH, Choudhary M, Barmukh R, Bagaria PK, Samantara K, Razzaq A, Jaba J, Ba MN, Varshney RK. Molecular mechanisms, genetic mapping, and genome editing for insect pest resistance in field crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3875-3895. [PMID: 35267056 PMCID: PMC9729161 DOI: 10.1007/s00122-022-04060-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/11/2022] [Indexed: 05/03/2023]
Abstract
Improving crop resistance against insect pests is crucial for ensuring future food security. Integrating genomics with modern breeding methods holds enormous potential in dissecting the genetic architecture of this complex trait and accelerating crop improvement. Insect resistance in crops has been a major research objective in several crop improvement programs. However, the use of conventional breeding methods to develop high-yielding cultivars with sustainable and durable insect pest resistance has been largely unsuccessful. The use of molecular markers for identification and deployment of insect resistance quantitative trait loci (QTLs) can fastrack traditional breeding methods. Till date, several QTLs for insect pest resistance have been identified in field-grown crops, and a few of them have been cloned by positional cloning approaches. Genome editing technologies, such as CRISPR/Cas9, are paving the way to tailor insect pest resistance loci for designing crops for the future. Here, we provide an overview of diverse defense mechanisms exerted by plants in response to insect pest attack, and review recent advances in genomics research and genetic improvements for insect pest resistance in major field crops. Finally, we discuss the scope for genomic breeding strategies to develop more durable insect pest resistant crops.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, J&K, 192101, India.
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research (ICAR-IIMR), PAU Campus, Ludhiana, Punjab, 141001, India
| | - Rutwik Barmukh
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Pravin K Bagaria
- ICAR-Indian Institute of Maize Research (ICAR-IIMR), PAU Campus, Ludhiana, Punjab, 141001, India
| | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Jagdish Jaba
- Intergated Crop Management, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Malick Niango Ba
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP 12404, Niamey, Niger
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
11
|
Zha W, Li S, Xu H, Chen J, Liu K, Li P, Liu K, Yang G, Chen Z, Shi S, Zhou L, You A. Genome-wide identification of long non-coding (lncRNA) in Nilaparvata lugens's adaptability to resistant rice. PeerJ 2022; 10:e13587. [PMID: 35910769 PMCID: PMC9332332 DOI: 10.7717/peerj.13587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/24/2022] [Indexed: 01/22/2023] Open
Abstract
Background The brown planthopper (BPH), Nilaparvata lugens (Stål), is a very destructive pest that poses a major threat to rice plants worldwide. BPH and rice have developed complex feeding and defense strategies in the long-term co-evolution. Methods To explore the molecular mechanism of BPH's adaptation to resistant rice varieties, the lncRNA expression profiles of two virulent BPH populations were analyzed. The RNA-seq method was used to obtain the lncRNA expression data in TN1 and YHY15. Results In total, 3,112 highly reliable lncRNAs in TN1 and YHY15 were identified. Compared to the expression profiles between TN1 and YHY15, 157 differentially expressed lncRNAs, and 675 differentially expressed mRNAs were identified. Further analysis of the possible regulation relationships between differentially expressed lncRNAs and differentially expressed mRNAs, identified three pair antisense targets, nine pair cis-regulation targets, and 3,972 pair co-expressed targets. Function enriched found arginine and proline metabolism, glutathione metabolism, and carbon metabolism categories may significantly affect the adaptability in BPH when it is exposed to susceptible and resistant rice varieties. Altogether, it provided scientific data for the study of lncRNA regulation of brown planthopper resistance to rice. These results are helpful in the development of new control strategies for host defense against BPH and breeding rice for high yield.
Collapse
Affiliation(s)
- Wenjun Zha
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Sanhe Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Huashan Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Junxiao Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Peide Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Kai Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Guocai Yang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Zhijun Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Shaojie Shi
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China,Hubei Hongshan Laboratory, Wuhan, Hubei, China
| |
Collapse
|
12
|
Zhang B, Ma L, Wu B, Xing Y, Qiu X. Introgression Lines: Valuable Resources for Functional Genomics Research and Breeding in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2022; 13:863789. [PMID: 35557720 PMCID: PMC9087921 DOI: 10.3389/fpls.2022.863789] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/01/2022] [Indexed: 05/14/2023]
Abstract
The narrow base of genetic diversity of modern rice varieties is mainly attributed to the overuse of the common backbone parents that leads to the lack of varied favorable alleles in the process of breeding new varieties. Introgression lines (ILs) developed by a backcross strategy combined with marker-assisted selection (MAS) are powerful prebreeding tools for broadening the genetic base of existing cultivars. They have high power for mapping quantitative trait loci (QTLs) either with major or minor effects, and are used for precisely evaluating the genetic effects of QTLs and detecting the gene-by-gene or gene-by-environment interactions due to their low genetic background noise. ILs developed from multiple donors in a fixed background can be used as an IL platform to identify the best alleles or allele combinations for breeding by design. In the present paper, we reviewed the recent achievements from ILs in rice functional genomics research and breeding, including the genetic dissection of complex traits, identification of elite alleles and background-independent and epistatic QTLs, analysis of genetic interaction, and genetic improvement of single and multiple target traits. We also discussed how to develop ILs for further identification of new elite alleles, and how to utilize IL platforms for rice genetic improvement.
Collapse
Affiliation(s)
- Bo Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Bi Wu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Xianjin Qiu
- College of Agriculture, Yangtze University, Jingzhou, China
| |
Collapse
|
13
|
Nguyen CD, Zheng SH, Sanada-Morimura S, Matsumura M, Yasui H, Fujita D. Substitution mapping and characterization of brown planthopper resistance genes from indica rice variety, 'PTB33' ( Oryza sativa L.). BREEDING SCIENCE 2021; 71:497-509. [PMID: 35087314 PMCID: PMC8784355 DOI: 10.1270/jsbbs.21034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/02/2021] [Indexed: 06/14/2023]
Abstract
Rice (Oryza sativa L.) yield is severely reduced by the brown planthopper (BPH), Nilaparvata lugens Stål, in Asian countries. Increasing resistance in rice against BPH can mitigate yield loss. Previous reports indicated the presence of three BPH resistance genes, BPH2, BPH17-ptb, and BPH32, in durable resistant indica rice cultivar 'PTB33'. However, several important questions remain unclear; the genetic locations of BPH resistance genes on rice chromosomes and how these genes confer resistance, especially with relationship to three major categories of resistance mechanisms; antibiosis, antixenosis or tolerance. In this study, locations of BPH2, BPH17-ptb, and BPH32 were delimited using chromosome segment substitution lines derived from crosses between 'Taichung 65' and near-isogenic lines for BPH2 (BPH2-NIL), BPH17-ptb (BPH17-ptb-NIL), and BPH32 (BPH32-NIL). BPH2 was delimited as approximately 247.5 kbp between RM28449 and ID-161-2 on chromosome 12. BPH17-ptb and BPH32 were located between RM1305 and RM6156 on chromosome 4 and RM508 and RM19341 on chromosome 6, respectively. The antibiosis, antixenosis, and tolerance were estimated by several tests using BPH2-NIL, BPH17-ptb-NIL, and BPH32-NIL. BPH2 and BPH17-ptb showed resistance to antibiosis and antixenosis, while BPH17-ptb and BPH32 showed tolerance. These results contribute to the development of durable BPH resistance lines using three resistance genes from 'PTB33'.
Collapse
Affiliation(s)
- Cuong Dinh Nguyen
- The United Graduate School of Agricultural Sciences, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Biotechnology Department, College of Food Industry, 101B Le Huu Trac Street, Son Tra District, Da Nang City 550000, Vietnam
| | - Shao-Hui Zheng
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| | - Sachiyo Sanada-Morimura
- Agro-Enviroment Research Division, Kyushu Okinawa Agricultural Research Center, NARO, 2421 Suya, Koshi, Kumamoto 861-1192, Japan
| | - Masaya Matsumura
- Division of Applied Entomology and Zoology, Central Region Agricultural Research Center, NARO, 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8666, Japan
| | - Hideshi Yasui
- Plant Breeding Laboratory, Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Daisuke Fujita
- Faculty of Agriculture, Saga University, 1 Honjo-machi, Saga 840-8502, Japan
| |
Collapse
|
14
|
Gottin C, Dievart A, Summo M, Droc G, Périn C, Ranwez V, Chantret N. A new comprehensive annotation of leucine-rich repeat-containing receptors in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:492-508. [PMID: 34382706 PMCID: PMC9292849 DOI: 10.1111/tpj.15456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/23/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
Oryza sativa (rice) plays an essential food security role for more than half of the world's population. Obtaining crops with high levels of disease resistance is a major challenge for breeders, especially today, given the urgent need for agriculture to be more sustainable. Plant resistance genes are mainly encoded by three large leucine-rich repeat (LRR)-containing receptor (LRR-CR) families: the LRR-receptor-like kinase (LRR-RLK), LRR-receptor-like protein (LRR-RLP) and nucleotide-binding LRR receptor (NLR). Using lrrprofiler, a pipeline that we developed to annotate and classify these proteins, we compared three publicly available annotations of the rice Nipponbare reference genome. The extended discrepancies that we observed for LRR-CR gene models led us to perform an in-depth manual curation of their annotations while paying special attention to nonsense mutations. We then transferred this manually curated annotation to Kitaake, a cultivar that is closely related to Nipponbare, using an optimized strategy. Here, we discuss the breakthrough achieved by manual curation when comparing genomes and, in addition to 'functional' and 'structural' annotations, we propose that the community adopts this approach, which we call 'comprehensive' annotation. The resulting data are crucial for further studies on the natural variability and evolution of LRR-CR genes in order to promote their use in breeding future resilient varieties.
Collapse
Affiliation(s)
- Céline Gottin
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Anne Dievart
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Marilyne Summo
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Gaëtan Droc
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Christophe Périn
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
- CIRADUMR AGAP InstitutF‐34398MontpellierFrance
| | - Vincent Ranwez
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
| | - Nathalie Chantret
- UMR AGAP InstitutUniv MontpellierCIRAD, INRAEInstitut AgroF‐34398MontpellierFrance
| |
Collapse
|
15
|
Zheng X, Zhu L, He G. Genetic and molecular understanding of host rice resistance and Nilaparvata lugens adaptation. CURRENT OPINION IN INSECT SCIENCE 2021; 45:14-20. [PMID: 33227482 DOI: 10.1016/j.cois.2020.11.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The variability of brown planthopper (BPH) populations and diversity of the host rice germplasm provide an ideal model for exploring the genetic and molecular basis of insect-plant interactions. During the long-term evolutionary arms race, complicated feeding and defense strategies have developed in BPH and rice. Nine major BPH resistance genes have been cloned and the exploration of BPH resistance genes medicated mechanism against BPH shed a light on the molecular basis of the rice-BPH interaction. This short review provides an update on our current understanding of the genetic and molecular mechanism for rice resistance and BPH adaptation. Understanding the interactions between BPH and rice will provide novel insights for sustainable control of this pest.
Collapse
Affiliation(s)
- Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
16
|
Liu Y, Wang W, Li Y, Liu F, Han W, Li J. Transcriptomic and proteomic responses to brown plant hopper (Nilaparvata lugens) in cultivated and Bt-transgenic rice (Oryza sativa) and wild rice (O. rufipogon). J Proteomics 2020; 232:104051. [PMID: 33217583 DOI: 10.1016/j.jprot.2020.104051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/27/2020] [Accepted: 11/15/2020] [Indexed: 10/23/2022]
Abstract
Strategies are still employed to reduce insect damage in crop production, including conventional breeding with wild germplasm resources and transgenic technology with foreign genes' insertion. Cultivated and Bt-transgenic rice (Oryza sativa) and two ecotypes of wild rice (O. rufipogon) were treated by a 72 h feeding of brown plant hopper (Nilaparvata lugens). Under the feeding of N. lugens, compared with the cultivated rice (568 and 4), more differentially expressed genes (DEGs) and differentially accumulated proteins (DAPs) were identified in transgenic rice (2098 and 11) and two wild ecotypes (1990, 39 and 1932, 25, respectively). The iTRAQ analysis showed 79 DAPs and confirmed the results of RNA-seq, which showed the least GO terms and KEGG pathways responding to herbivory in the cultivated rice. DAPs significantly enriched two GO terms that are related with Bph14 and Bph33 genes in rice. Most of DEGs and DAPs were related to plant biological processes of plant-pathogen interaction and plant hormone signal transduction, and hormone signaling and transcription factors regulate the immune response of rice to BPH. Our results demonstrated the similarity in the wild rice and Bt-transgenic rice for their transcriptomic and proteomic response to herbivory, while cultivated rice lacked enough pathways in response to herbivory. STATEMENT OF SIGNIFICANCE OF THE STUDY: The iTRAQ analysis and RNA-seq were employed 39 to identify differentially expressed genes (DEGs) and differentially accumulated proteins (DAPs) in seedlings of cultivated, Bt-transgenic and two wild rice ecotypes under feeding of brown plant hopper. Wild rice showed DEGs and DAPs related to biochemical pathways of plant pathogen interactions and plant hormone signal transductions, while cultivated rice lacked enough pathways in response to herbivory. Crop domestication weakened the response of plants to herbivory, while the insertion of Bt gene might promote the response of plants to herbivory. Growing environment plays an important role in regulating gene networks of plant response to herbivory. Our results highlighted the importance of conservation of crop wild species. SIGNIFICANCE: Insect damage is one of main factors in reducing agricultural production, and technologies and methods were employed to control insect pests in agricultural systems. Transgenic technology is developed to produce insect-resistant crops, but receive concerns on biosafety risks. Alternatively, crop wild species are important genetic resource in crop breeding to produce trait-specific varieties. Here, we investigated the molecular mechanisms of plant response to herbivory in wild, Bt-transgenic and cultivated rice, and found crop domestication weakened the response of plants to herbivory. The insertion of foreign Bt gene may promote the expression of other genes. In addition, our results showed growing environment plays an important role in regulating gene networks of plant response to herbivory. These results highlight the importance of wild species conservation, with the strategy of in situ conservation.
Collapse
Affiliation(s)
- Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Weiqing Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, CAS, Beijing 100093, China
| | - Yonghua Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fang Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Weijuan Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
17
|
Zheng X, Xin Y, Peng Y, Shan J, Zhang N, Wu D, Guo J, Huang J, Guan W, Shi S, Zhou C, Chen R, Du B, Zhu L, Yang F, Fu X, Yuan L, He G. Lipidomic analyses reveal enhanced lipolysis in planthoppers feeding on resistant host plants. SCIENCE CHINA-LIFE SCIENCES 2020; 64:1502-1521. [PMID: 33165813 DOI: 10.1007/s11427-020-1834-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/10/2020] [Indexed: 11/26/2022]
Abstract
The brown planthopper (BPH) (Nilaparvata lugens Stål) is a highly destructive pest that seriously damages rice (Oryza sativa L.) and causes severe yield losses. To better understand the physiological and metabolic mechanisms through which BPHs respond to resistant rice, we combined mass-spectrometry-based lipidomics with transcriptomic analysis and gene knockdown techniques to compare the lipidomes of BPHs feeding on either of the two resistant (NIL-Bph6 and NIL-Bph9) plants or a wild-type, BPH susceptible (9311) plant. Insects that were fed on resistant rice transformed triglyceride (TG) to phosphatidylcholine (PC) and digalactosyldiacylglycerol (DGDG), with these lipid classes showing significant alterations in fatty acid composition. Moreover, the insects that were fed on resistant rice were characterized by prominent expression changes in genes involved in lipid metabolism processes. Knockdown of the NlBmm gene, which encodes a lipase that regulates the mobilization of lipid reserves, significantly increased TG content and feeding performance of BPHs on resistant plants relative to dsGFP-injected BPHs. Our study provides the first detailed description of lipid changes in BPHs fed on resistant and susceptible rice genotypes. Results from BPHs fed on resistant rice plants reveal that these insects can accelerate TG mobilization to provide energy for cell proliferation, body maintenance, growth and oviposition.
Collapse
Affiliation(s)
- Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yeyun Xin
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Yaxin Peng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Junhan Shan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ning Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Di Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianping Guo
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jin Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Wei Guan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shaojie Shi
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Cong Zhou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Rongzhi Chen
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bo Du
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Fang Yang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Xiqin Fu
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Longping Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Hunan Academy of Agricultural Sciences, Changsha, 410125, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
18
|
Sani Haliru B, Rafii MY, Mazlan N, Ramlee SI, Muhammad I, Silas Akos I, Halidu J, Swaray S, Rini Bashir Y. Recent Strategies for Detection and Improvement of Brown Planthopper Resistance Genes in Rice: A Review. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1202. [PMID: 32937908 PMCID: PMC7569854 DOI: 10.3390/plants9091202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 08/11/2020] [Accepted: 09/10/2020] [Indexed: 05/07/2023]
Abstract
Brown planthopper (BPH; Nilaparvata lugens Stal) is considered the main rice insect pest in Asia. Several BPH-resistant varieties of rice have been bred previously and released for large-scale production in various rice-growing regions. However, the frequent surfacing of new BPH biotypes necessitates the evolution of new rice varieties that have a wide genetic base to overcome BPH attacks. Nowadays, with the introduction of molecular approaches in varietal development, it is possible to combine multiple genes from diverse sources into a single genetic background for durable resistance. At present, above 37 BPH-resistant genes/polygenes have been detected from wild species and indica varieties, which are situated on chromosomes 1, 3, 4, 6, 7, 8, 9, 10, 11 and 12. Five BPH gene clusters have been identified from chromosomes 3, 4, 6, and 12. In addition, eight BPH-resistant genes have been successfully cloned. It is hoped that many more resistance genes will be explored through screening of additional domesticated and undomesticated species in due course.
Collapse
Affiliation(s)
- Bello Sani Haliru
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
- Department of Crop Science, Usmanu Danfodiyo University, Sokoto P. M. B. 2346, Sokoto State, Nigeria
| | - Mohd Y. Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (S.I.R.); (S.S.); (Y.R.B.)
| | - Norida Mazlan
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Shairul Izan Ramlee
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (S.I.R.); (S.S.); (Y.R.B.)
| | - Isma’ila Muhammad
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
| | - Ibrahim Silas Akos
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
| | - Jamilu Halidu
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (B.S.H.); (I.M.); (I.S.A.); (J.H.)
| | - Senesie Swaray
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (S.I.R.); (S.S.); (Y.R.B.)
| | - Yusuf Rini Bashir
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia; (S.I.R.); (S.S.); (Y.R.B.)
| |
Collapse
|
19
|
Li Y, Mo Y, Li Z, Yang M, Tang L, Cheng L, Qiu Y. Characterization and application of a gall midge resistance gene (Gm6) from Oryza sativa 'Kangwenqingzhan'. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:579-591. [PMID: 31745579 DOI: 10.1007/s00122-019-03488-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
The resistance gene Gm6 was mapped and characterized using near-isogenic and pyramided lines, followed by marker-assisted selection to develop lines with resistance to both gall midge and brown planthopper. The Asian rice gall midge (GM; Orseolia oryzae; Diptera: Cecidomyiidae) is a major destructive pest affecting rice cultivation regions. The characterization of GM-resistance genes and the breeding of resistant varieties are together considered the most efficient strategy for managing this insect. Here, the Gm6 resistance gene derived from the Kangwenqingzhan (KW) variety was found to be located on the long arm of chromosome 4 using the F2 population of 9311/KW. The region was narrowed to a 90-kb segment flanked by the markers YW91 and YW3-4 using backcrossing populations. Based on no-choice feeding and host choice tests, GM development and growth in near-isogenic lines (NILs) were severely restricted compared to that in the 9311 control. On day 8, the average GM body length was 0.69 mm and 0.56 mm on NILs and 9311, respectively, and the differences were more significant at later time points. However, GM insects exhibited no host preference between NILs and 9311, and there was normal egg hatching on the resistant plants. We developed pyramided lines carrying BPH27, BPH36, and Gm6 by crossing and backcrossing with marker-assisted selection. These lines were similar to the KW parent in terms of agronomic traits while also exhibiting high resistance to brown planthopper (BPH) and GM. The present mapping and characterization of Gm6 will facilitate map-based cloning of this important resistance gene and its application in the breeding of insect-resistant rice varieties.
Collapse
Affiliation(s)
- Yang Li
- Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Yi Mo
- Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Zhihua Li
- Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Meng Yang
- Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Lihua Tang
- Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China
| | - Ling Cheng
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yongfu Qiu
- Agricultural College, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
20
|
Wang H, Gao Y, Mao F, Xiong L, Mou T. Directional upgrading of brown planthopper resistance in an elite rice cultivar by precise introgression of two resistance genes using genomics-based breeding. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110211. [PMID: 31521227 DOI: 10.1016/j.plantsci.2019.110211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 05/23/2023]
Abstract
Brown planthopper (BPH) is a devastating pest that threatens the food security of rice-producing countries. At present, most cultivars planted in farmers' paddies lack effective BPH resistance, which constitutes a potential threat to rice yield. Moreover, developing BPH-resistant rice varieties using traditional breeding approaches is time-consuming, labor-intensive, and unpredictable. In this study, we successfully enhanced BPH resistance of the elite rice cultivar Wushansimiao by introgressing the resistance genes BPH14 and BPH15 through positive selection, negative selection, and whole genome background selection. Through backcrossing, the introgression fragments were reduced to 428.3 kb for BPH14 and 413.1 kb for BPH15. Except for these two fragments, the residual genetic background of the selected near-isogenic lines (NILs) was nearly identical to that of the recurrent parent, with a genetic background recovery rate of 99.78%. As a result, the selected NILs exhibited much stronger BPH resistance at the seedling and adult stages compared to the recurrent parent. Moreover, field tests showed that grain yield, major agronomic traits, and grain quality of the five selected NILs were statistically indistinguishable from those of the recurrent parent. Our results provide an effective approach for directionally upgrading the target traits and will inform and facilitate rice breeding.
Collapse
Affiliation(s)
- Hongbo Wang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Gao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Fangming Mao
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Tongmin Mou
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
21
|
Ling Y, Ang L, Weilin Z. Current understanding of the molecular players involved in resistance to rice planthoppers. PEST MANAGEMENT SCIENCE 2019; 75:2566-2574. [PMID: 31095858 DOI: 10.1002/ps.5487] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 05/24/2023]
Abstract
Rice planthoppers are the most widespread and destructive pest of rice. Planthopper control depends greatly on the understanding of molecular players involved in resistance to planthoppers. This paper summarizes the recent progress in the understanding of some molecular players involved in resistance to planthoppers and the mechanisms involved. Recent researches showed that host-plant resistance is the most promising sustainable approach for controlling planthoppers. Planthopper-resistant varieties with a host-plant resistance gene have been released for rice products. Integrated planthopper management is a proposed strategy to prolong the durability of host-plant resistance. Bacillus spp. and their gene products or insect pathogenic fungi have great potential for application in the biological control of planthoppers. Enhancement of the activity of the natural enemies of planthoppers would be more cost-effective and environmentally friendly. Various molecular processes regulate rice-planthopper interactions. Rice encounters planthopper attacks via transcription factors, secondary metabolites, and signaling networks in which phytohormones have central roles. Maintenance of cell wall integrity and lignification act as physical barriers. Indirect defenses of rice are regulated via chemical elicitors, honeydew-associated elicitor, amendment with silicon and biochar, and salivary protein of BPH as elicitor or effector. Further research directions on planthopper control and rice defense against planthoppers are also put forward. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Ling
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
- Department of Environmental Engineering, Quzhou University, Quzhou, P.R. China
| | - Li Ang
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| | - Zhang Weilin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, P. R. China
| |
Collapse
|
22
|
Li Z, Xue Y, Zhou H, Li Y, Usman B, Jiao X, Wang X, Liu F, Qin B, Li R, Qiu Y. High-resolution mapping and breeding application of a novel brown planthopper resistance gene derived from wild rice (Oryza. rufipogon Griff). RICE (NEW YORK, N.Y.) 2019; 12:41. [PMID: 31165331 PMCID: PMC6548798 DOI: 10.1186/s12284-019-0289-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/11/2019] [Indexed: 05/03/2023]
Abstract
BACKGROUND The brown planthopper (Nilaparvata lugens Stål; BPH), one of the most destructive pests of rice, has proven to be a substantial threat, conferring enormous production losses in Asia and becoming a difficult challenge to manipulate and control under field conditions. The continuous use of insecticides promotes the resurgence of BPH, which results in resistant varieties adapting through the upgrading of new BPH biotypes. To overcome resistance acquired by BPH against resistance varieties, different forms of novel resistant gene fusions act as functional domains for breeding to enhance insect resistance. RESULTS The current study reports on the novel BPH resistance gene Bph36 derived from two introgression lines (RBPH16 and RBPH17) developed from wild rice GX2183 which was previously reported to be resistant to BPH. Using two F2 crossing populations (Kangwenqizhan × RBPH16 and Huanghuazhan × RBPH17) in a bulked segregant analysis (BSA) for identification of resistant genes and QTL analysis, two QTLs for BPH resistance were generated on the long and short arms of chromosome 4, which was further confirmed by developing BC1F2:3 populations by backcrossing via marker assisted selection (MAS) approach. One BPH resistance locus on the short arm of chromosome 4 was mapped to a 38-kb interval flanked by InDel markers S13 and X48, and then was named Bph36, whereas another locus on the long arm of chromosome 4 was also detected in an interval flanked by RM16766 and RM17033, which was the same as that of Bph27. An evaluation analysis based on four parameters (BPH host selection, honeydew weight, BPH survival rate and BPH population growth rate) shows that Bph36 conferred high levels antibiosis and antixenosis to BPH. Moreover, Bph36 pyramided with Bph3, Bph27, and Bph29 through MAS into elite cultivars 9311 and MH511 (harbored Xa23), creating different background breeding lines that also exhibited strong resistance to BPH in the seedling or tillering stage. CONCLUSION Bph36 can be utilized in BPH resistance breeding programs to develop high resistant rice lines and the high-resolution fine mapping will facilitate further map-based cloning and marker-assisted gene pyramiding of resistant gene. MAS exploited to pyramid with Bph3, Bph27, Bph29, and Xa23 was confirmed the effectiveness for BPH resistance breeding in rice and provided insights into the molecular mechanism of defense to control this devastating insect.
Collapse
Affiliation(s)
- Zhihua Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Yanxia Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
- School of Electrical and Control Engineering, North University of China, Taiyuan, 030051, China
| | - Hailian Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Yang Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Babar Usman
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Xiaozhen Jiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Xinyi Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Baoxiang Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005, China
| | - Rongbai Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005, China.
| | - Yongfu Qiu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Agricultural College, Guangxi University, Nanning, 530005, China.
| |
Collapse
|
23
|
Kalia S, Rathour R. Current status on mapping of genes for resistance to leaf- and neck-blast disease in rice. 3 Biotech 2019; 9:209. [PMID: 31093479 PMCID: PMC6509304 DOI: 10.1007/s13205-019-1738-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/29/2019] [Indexed: 12/15/2022] Open
Abstract
Blast disease caused by fungal pathogen Pyricularia oryzae is a major threat to rice productivity worldwide. The rice-blast pathogen can infect both leaves and panicle neck nodes. Nearly, 118 genes for resistance to leaf blast have been identified and 25 of these have been molecularly characterized. A great majority of these genes encode nucleotide-binding site-leucine-rich repeat (NBS-LRR) proteins and are organized into clusters as allelic or tightly linked genes. Compared to ever expanding list of leaf-blast-resistance genes, a few major genes mediating protection to neck blast have been identified. A great majority of the genetic studies conducted with the genotypes differing in the degree of susceptibility/resistance to neck blast have suggested quantitative inheritance for the trait. Several reports on co-localization of gene/QTLs for leaf- and neck-blast resistance in rice genome have suggested the existence of common genes for resistance to both phases of the disease albeit inconsistencies in the genomic positions leaf- and neck-blast-resistance genes in some instances have presented the contrasting scenario. There is a strong evidence to suggest that developmentally regulated expression of many blast-resistance genes is a key determinant deciding their effectiveness against leaf or neck blast. Testing of currently characterized leaf-blast-resistance genes for their reaction to neck blast is required to expand the existing repertoire resistance genes against neck blast. Current developments in the understanding of molecular basis of host-pathogen interactions in rice-blast pathosystem offer novel possibilities for achieving durable resistance to blast through exploitation of natural or genetically engineered loss-of-function alleles of host susceptibility genes.
Collapse
Affiliation(s)
- S. Kalia
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176062 India
| | - R. Rathour
- Department of Agricultural Biotechnology, CSK Himachal Pradesh Agricultural University, Palampur, Himachal Pradesh 176062 India
| |
Collapse
|