1
|
Lu C, Liu X, Tang Y, Fu Y, Zhang J, Yang L, Li P, Zhu Z, Dong P. A comprehensive review of TGA transcription factors in plant growth, stress responses, and beyond. Int J Biol Macromol 2024; 258:128880. [PMID: 38141713 DOI: 10.1016/j.ijbiomac.2023.128880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/17/2023] [Accepted: 12/17/2023] [Indexed: 12/25/2023]
Abstract
TGA transcription factors (TFs), belonging to the D clade of the basic region leucine zipper (bZIP) family, exhibit a specific ability to recognize and bind to regulatory elements with TGACG as the core recognition sequence, enabling the regulation of target gene expression and participation in various biological regulatory processes. In plant growth and development, TGA TFs influence organ traits and phenotypes, including initial root length and flowering time. They also play a vital role in responding to abiotic stresses like salt, drought, and cadmium exposure. Additionally, TGA TFs are involved in defending against potential biological stresses, such as fungal bacterial diseases and nematodes. Notably, TGA TFs are sensitive to the oxidative-reductive state within plants and participate in pathways that aid in the elimination of reactive oxygen species (ROS) generated during stressful conditions. TGA TFs also participate in multiple phytohormonal signaling pathways (ABA, SA, etc.). This review thoroughly examines the roles of TGA TFs in plant growth, development, and stress response. It also provides detailed insights into the mechanisms underlying their involvement in physiological and pathological processes, and their participation in plant hormone signaling. This multifaceted exploration distinguishes this review from others, offering a comprehensive understanding of TGA TFs.
Collapse
Affiliation(s)
- Chenfei Lu
- School of Life Sciences, Chongqing University, Chongqing 401331, China; College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xingyu Liu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuqin Tang
- College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yingqi Fu
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Jiaomei Zhang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Liting Yang
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Peihua Li
- College of Agronomy, Xichang University, Xichang, Sichuan 615013, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, Chongqing 401331, China.
| | - Pan Dong
- School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400716, China.
| |
Collapse
|
2
|
Zhai R, Ye S, Ye J, Wu M, Zhu G, Yu F, Wang X, Feng Y, Zhang X. Glutaredoxin in Rice Growth, Development, and Stress Resistance: Mechanisms and Research Advances. Int J Mol Sci 2023; 24:16968. [PMID: 38069292 PMCID: PMC10707574 DOI: 10.3390/ijms242316968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is a staple food for more than half of the global population. Various abiotic and biotic stresses lead to accumulation of reactive oxygen species in rice, which damage macromolecules and signaling pathways. Rice has evolved a variety of antioxidant systems, including glutaredoxin (GRX), that protect against various stressors. A total of 48 GRX gene loci have been identified on 11 of the 12 chromosomes of the rice genome; none were found on chromosome 9. GRX proteins were classified into four categories according to their active sites: CPYC, CGFS, CC, and GRL. In this paper, we summarized the recent research advances regarding the roles of GRX in rice development regulation and response to stresses, and discussed future research perspectives related to rice production. This review could provide information for rice researchers on the current status of the GRX and serve as guidance for breeding superior varieties.
Collapse
Affiliation(s)
- Rongrong Zhai
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shenghai Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jing Ye
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Mingming Wu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guofu Zhu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Faming Yu
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingyu Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Yue Feng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiaoming Zhang
- Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
3
|
Hua M, Yin W, Fernández Gómez J, Tidy A, Xing G, Zong J, Shi S, Wilson ZA. Barley TAPETAL DEVELOPMENT and FUNCTION1 (HvTDF1) gene reveals conserved and unique roles in controlling anther tapetum development in dicot and monocot plants. THE NEW PHYTOLOGIST 2023; 240:173-190. [PMID: 37563927 PMCID: PMC10952600 DOI: 10.1111/nph.19161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/20/2023] [Indexed: 08/12/2023]
Abstract
The anther tapetum helps control microspore release and essential components for pollen wall formation. TAPETAL DEVELOPMENT and FUNCTION1 (TDF1) is an essential R2R3 MYB tapetum transcription factor in Arabidopsis thaliana; however, little is known about pollen development in the temperate monocot barley. Here, we characterize the barley (Hordeum vulgare L.) TDF1 ortholog using reverse genetics and transcriptomics. Spatial/temporal expression analysis indicates HvTDF1 has tapetum-specific expression during anther stage 7/8. Homozygous barley hvtdf1 mutants exhibit male sterility with retarded tapetum development, delayed tapetum endomitosis and cell wall degeneration, resulting in enlarged, vacuolated tapetum surrounding collapsing microspores. Transient protein expression and dual-luciferase assays show TDF1 is a nuclear-localized, transcription activator, that directly activates osmotin proteins. Comparison of hvtdf1 transcriptome data revealed several pathways were delayed, endorsing the observed retarded anther morphology. Arabidopsis tdf1 mutant fertility was recovered by HvTDF1, supporting a conserved role for TDF1 in monocots and dicots. This indicates that tapetum development shares similarity between monocot and dicots; however, barley HvTDF1 appears to uniquely act as a modifier to activate tapetum gene expression pathways, which are subsequently also induced by other factors. Therefore, the absence of HvTDF1 results in delayed developmental progression rather than pathway failure, although inevitably still results in pollen degeneration.
Collapse
Affiliation(s)
- Miaoyuan Hua
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Wenzhe Yin
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| | | | - Alison Tidy
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| | - Guangwei Xing
- Goethe University Frankfurt am MainMax‐von‐Laue Str. 9Frankfurt am Main60438Germany
| | - Jie Zong
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghai200240China
| | - Shuya Shi
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| | - Zoe A. Wilson
- Division of Plant and Crop Sciences, School of BiosciencesUniversity of NottinghamSutton Bonington CampusLoughboroughLeicsLE12 5RDUK
| |
Collapse
|
4
|
Somashekar H, Nonomura KI. Genetic Regulation of Mitosis-Meiosis Fate Decision in Plants: Is Callose an Oversighted Polysaccharide in These Processes? PLANTS (BASEL, SWITZERLAND) 2023; 12:1936. [PMID: 37653853 PMCID: PMC10223186 DOI: 10.3390/plants12101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 09/02/2023]
Abstract
Timely progression of the meiotic cell cycle and synchronized establishment of male meiosis in anthers are key to ascertaining plant fertility. With the discovery of novel regulators of the plant cell cycle, the mechanisms underlying meiosis initiation and progression appear to be more complex than previously thought, requiring the conjunctive action of cyclins, cyclin-dependent kinases, transcription factors, protein-protein interactions, and several signaling components. Broadly, cell cycle regulators can be classified into two categories in plants based on the nature of their mutational effects: (1) those that completely arrest cell cycle progression; and (2) those that affect the timing (delay or accelerate) or synchrony of cell cycle progression but somehow complete the division process. Especially the latter effects reflect evasion or obstruction of major steps in the meiosis but have sometimes been overlooked due to their subtle phenotypes. In addition to meiotic regulators, very few signaling compounds have been discovered in plants to date. In this review, we discuss the current state of knowledge about genetic mechanisms to enter the meiotic processes, referred to as the mitosis-meiosis fate decision, as well as the importance of callose (β-1,3 glucan), which has been unsung for a long time in male meiosis in plants.
Collapse
Affiliation(s)
- Harsha Somashekar
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima 411-8540, Japan;
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| | - Ken-Ichi Nonomura
- Plant Cytogenetics Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Mishima 411-8540, Japan;
- Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Mishima 411-8540, Japan
| |
Collapse
|
5
|
Salazar‐Sarasua B, López‐Martín MJ, Roque E, Hamza R, Cañas LA, Beltrán JP, Gómez‐Mena C. The tapetal tissue is essential for the maintenance of redox homeostasis during microgametogenesis in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1281-1297. [PMID: 36307971 PMCID: PMC10100220 DOI: 10.1111/tpj.16014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The tapetum is a specialized layer of cells within the anther, adjacent to the sporogenous tissue. During its short life, it provides nutrients, molecules and materials to the pollen mother cells and microsporocytes, being essential during callose degradation and pollen wall formation. The interaction between the tapetum and sporogenous cells in Solanum lycopersicum (tomato) plants, despite its importance for breeding purposes, is poorly understood. To investigate this process, gene editing was used to generate loss-of-function mutants that showed the complete and specific absence of tapetal cells. These plants were obtained targeting the previously uncharacterized Solyc03g097530 (SlTPD1) gene, essential for tapetum specification in tomato plants. In the absence of tapetum, sporogenous cells developed and callose deposition was observed. However, sporocytes failed to undergo the process of meiosis and finally degenerated, leading to male sterility. Transcriptomic analysis conducted in mutant anthers lacking tapetum revealed the downregulation of a set of genes related to redox homeostasis. Indeed, mutant anthers showed a reduction in the accumulation of reactive oxygen species (ROS) at early stages and altered activity of ROS-scavenging enzymes. The results obtained highlight the importance of the tapetal tissue in maintaining redox homeostasis during male gametogenesis in tomato plants.
Collapse
Affiliation(s)
- Blanca Salazar‐Sarasua
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - María Jesús López‐Martín
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - Edelín Roque
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - Rim Hamza
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - Luis Antonio Cañas
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - José Pío Beltrán
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| | - Concepción Gómez‐Mena
- Instituto de Biología Molecular y Celular de Plantas (Consejo Superior de Investigaciones Científicas‐Universitat Politècnica de Valencia)C/Ingeniero Fausto Elio s/n Edif. 8EValencia46022Spain
| |
Collapse
|
6
|
Marchant DB, Walbot V. Anther development-The long road to making pollen. THE PLANT CELL 2022; 34:4677-4695. [PMID: 36135809 PMCID: PMC9709990 DOI: 10.1093/plcell/koac287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/29/2022] [Indexed: 06/01/2023]
Abstract
Anthers express the most genes of any plant organ, and their development involves sequential redifferentiation of many cell types to perform distinctive roles from inception through pollen dispersal. Agricultural yield and plant breeding depend on understanding and consequently manipulating anthers, a compelling motivation for basic plant biology research to contribute. After stamen initiation, two theca form at the tip, and each forms an adaxial and abaxial lobe composed of pluripotent Layer 1-derived and Layer 2-derived cells. After signal perception or self-organization, germinal cells are specified from Layer 2-derived cells, and these secrete a protein ligand that triggers somatic differentiation of their neighbors. Historically, recovery of male-sterile mutants has been the starting point for studying anther biology. Many genes and some genetic pathways have well-defined functions in orchestrating subsequent cell fate and differentiation events. Today, new tools are providing more detailed information; for example, the developmental trajectory of germinal cells illustrates the power of single cell RNA-seq to dissect the complex journey of one cell type. We highlight ambiguities and gaps in available data to encourage attention on important unresolved issues.
Collapse
Affiliation(s)
- D Blaine Marchant
- Department of Biology, Stanford University, Stanford, California 94505, USA
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94505, USA
| |
Collapse
|
7
|
Shen L, Tian F, Cheng Z, Zhao Q, Feng Q, Zhao Y, Han B, Fang Y, Lin Y, Chen R, Wang D, Sun W, Sun J, Zeng H, Yao N, Gao G, Luo J, Xu Z, Bai S. OsMADS58 Stabilizes Gene Regulatory Circuits during Rice Stamen Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:2899. [PMID: 36365352 PMCID: PMC9658454 DOI: 10.3390/plants11212899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Rice (Oryza sativa) OsMADS58 is a C-class MADS box protein, and characterization of a transposon insertion mutant osmads58 suggested that OsMADS58 plays a role in stamen development. However, as no null mutation has been obtained, its role has remained unclear. Here, we report that the CRISPR knockout mutant osmads58 exhibits complex altered phenotypes, including anomalous diploid germ cells, aberrant meiosis, and delayed tapetum degeneration. This CRISPR mutant line exhibited stronger changes in expression of OsMADS58 target genes compared with the osmads58 dSpm (transposon insertion) line, along with changes in multiple pathways related to early stamen development. Notably, transcriptional regulatory circuits in young panicles covering the stamen at stages 4-6 were substantially altered in the CRISPR line compared to the dSpm line. These findings strongly suggest that the pleiotropic effects of OsMADS58 on stamen development derive from a potential role in stabilizing gene regulatory circuits during early stamen development. Thus, this work opens new avenues for viewing and deciphering the regulatory mechanisms of early stamen development from a network perspective.
Collapse
Affiliation(s)
- Liping Shen
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Feng Tian
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing 100871, China
- Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Zhukuan Cheng
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China
| | - Qi Feng
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China
| | - Yan Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, CAS Center of Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200233, China
| | - Yuhan Fang
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
| | - Yanan Lin
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
| | - Rui Chen
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
| | - Donghui Wang
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
| | | | - Jiaqi Sun
- School of Life Science, Sun Yat-sen University, Guangzhou 510260, China
| | - Hongyun Zeng
- School of Life Science, Sun Yat-sen University, Guangzhou 510260, China
| | - Nan Yao
- School of Life Science, Sun Yat-sen University, Guangzhou 510260, China
| | - Ge Gao
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Center for Bioinformatics (CBI), Peking University, Beijing 100871, China
- Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Jingchu Luo
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Zhihong Xu
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
| | - Shunong Bai
- State Key Laboratory of Protein & Plant Gene Research, Peking University, Beijing 100871, China
- College of Life Sciences, Peking University, Beijing 100871, China
- Center of Quantitative Biology, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Zou T, Xiong P, Zhou F, Zhou D, Chen H, Li G, Peng K, Zheng K, Han Y, Zhang K, Zhang X, Yang S, Deng Q, Wang S, Zhu J, Liang Y, Sun C, Yu X, Liu H, Wang L, Li P, Li S. Grass-specific ABERRANT MICROSPORE DEVELOPMENT 1 is required for maintaining pollen fertility in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1509-1526. [PMID: 35883135 DOI: 10.1111/tpj.15921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 06/15/2023]
Abstract
Pollen development includes a series of biological events that require precise gene regulation. Although several transcription factors (TFs) have been shown to play roles in maintaining pollen fertility, the major regulatory networks underlying tapetum development and pollen wall formation are largely unknown. Herein, we report that ABERRANT MICROSPORE DEVELOPMENT1 (AMD1), a protein annotated previously as unknown protein, is required for tapetum development and pollen exine patterning in rice (Oryza sativa L.). AMD1 encodes a grass-specific protein exhibiting transactivation activity in the nucleus and is spatiotemporally expressed in the tapetum and microspores during pollen development. Further biochemical assays indicate that AMD1 directly activates the transcription of DEFECTIVE POLLEN WALL (DPW) and POLYKETIDE SYNTHASE2 (OsPKS2), which are both implicated in sporopollenin biosynthesis during exine formation. Additionally, AMD1 directly interacts with TAPETUM DEGENERATION RETARDATION (TDR), a key TF involved in the regulation of tapetum degradation and exine formation. Taken together, we demonstrate that AMD1 is an important regulatory component involved in the TDR-mediated regulatory pathway to regulate sporopollenin biosynthesis, tapetum degradation, and exine formation for pollen development. Our work provides insights into the regulatory network of rice sexual reproduction and a useful target for genetic engineering of new male-sterile lines for hybrid rice breeding.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Pingping Xiong
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Fuxing Zhou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dan Zhou
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hao Chen
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Gongwen Li
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kun Peng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaiyou Zheng
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yuhao Han
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Kaixuan Zhang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xu Zhang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shangyu Yang
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiming Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiquan Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jun Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Changhui Sun
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiumei Yu
- College of Resource, Sichuan Agricultural University, Chengdu, 611130, China
| | - Huainian Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingxia Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Ping Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
- State Key Laboratory of Hybrid Rice, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
9
|
Zheng S, Dong J, Lu J, Li J, Jiang D, Yu H, Ye S, Bu W, Liu Z, Zhou H, Ding Y, Zhuang C. A cytosolic pentatricopeptide repeat protein is essential for tapetal plastid development by regulating OsGLK1 transcript levels in rice. THE NEW PHYTOLOGIST 2022; 234:1678-1695. [PMID: 35306663 DOI: 10.1111/nph.18105] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Most plant pentatricopeptide repeat (PPR) proteins localize to and function inside plastids and mitochondria. However, the function of PPRs that only localize to the cytoplasm remains unknown. Here, we demonstrated that the rice (Oryza sativa) PPR protein CYTOPLASM-LOCALIZED PPR1 (OsCPPR1) contributes to pollen development and localizes to the cytoplasm. Knocking down OsCPPR1 led to abnormal plastid development in tapetal cells, prolonged tapetal programmed cell death (PCD) and tapetum degradation, and significantly reduced pollen fertility. Transcriptome analysis revealed that the transcript level of OsGOLDEN-LIKE1 (OsGLK1), which encodes a transcription factor that regulates plastid development and maintenance, was significantly higher in the OsCPPR1 knockdown plants compared to wild-type plants. We further determined that OsCPPR1 downregulates OsGLK1 transcription by directly binding to the single-stranded regions of OsGLK1 mRNAs. Overexpression of OsGLK1 resulted in abnormal tapetum and plastid development, similar to that seen in OsCPPR1 knockdown plants, and suppression of OsGLK1 partially restored pollen fertility in the OsCPPR1 knockdown plants. We therefore conclude that OsCPPR1 suppresses OsGLK1 in the regulation of plastid development and PCD in the tapetum. Our work revealed novel functions for a cytosolic PPR, demonstrating the diverse roles of PPRs in plants and identifying a new regulatory mechanism for regulating pollen development in rice.
Collapse
Affiliation(s)
- Shaoyan Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jingfang Dong
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jingqin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Dagang Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Haopeng Yu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Simiao Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Wenli Bu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zhenlan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Hai Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Yiliang Ding
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| |
Collapse
|
10
|
Sun G, Geng S, Zhang H, Jia M, Wang Z, Deng Z, Tao S, Liao R, Wang F, Kong X, Fu M, Liu S, Li A, Mao L. Matrilineal empowers wheat pollen with haploid induction potency by triggering postmitosis reactive oxygen species activity. THE NEW PHYTOLOGIST 2022; 233:2405-2414. [PMID: 35015909 DOI: 10.1111/nph.17963] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Reactive oxygen species (ROS) play important roles during anther and pollen development. DNA damage may cause chromosome fragmentation that is considered to underlie chromosome elimination for haploid induction by matrilineal pollen, a key step in MATRILINEAL-based double haploid breeding technology. But when and how DNA damage occurs is unknown. We performed comparative studies of wheat pollens from the wild-type and the CRISPR/Cas9 edited matrilineal mutant (mMTL). Chemical assays detected a second wave of ROS in mMTL pollen at the three-nuclei-stage and subsequently, along with reduced antioxidant enzyme activities. RNA-seq analysis revealed disturbed expression of genes for fatty acid biosynthesis and ROS homoeostasis. Gas chromatography-mass spectrometry measurement identified abnormal fatty acid metabolism that may contribute to defective mMTL pollen walls as observed using electron microscopy, consistent with the function of MTL as a phospholipase. Moreover, DNA damage was identified using TdT-mediated dUTP nick-end labelling and quantified using comet assays. Velocity patterns showed that ROS increments preceded that of DNA damage over the course of pollen maturation. Our work hypothesises that mMTL-triggered later-stage-specific ROS causes DNA damage that may contribute to chromosome fragmentation and hence chromosome elimination during haploid induction. These findings may provide more ways to accelerate double haploid-based plant breeding.
Collapse
Affiliation(s)
- Guoliang Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shuaifeng Geng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongjie Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meiling Jia
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhenyu Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhongyin Deng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shu Tao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ruyi Liao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Fang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xingchen Kong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Mingxue Fu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shaoshuai Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Aili Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Long Mao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
11
|
Hao M, Yang W, Li T, Shoaib M, Sun J, Liu D, Li X, Nie Y, Tian X, Zhang A. Combined Transcriptome and Proteome Analysis of Anthers of AL-type Cytoplasmic Male Sterile Line and Its Maintainer Line Reveals New Insights into Mechanism of Male Sterility in Common Wheat. Front Genet 2022; 12:762332. [PMID: 34976010 PMCID: PMC8718765 DOI: 10.3389/fgene.2021.762332] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic male sterility (CMS) plays an essential role in hybrid seeds production. In wheat, orf279 was reported as a CMS gene of AL-type male sterile line (AL18A), but its sterility mechanism is still unclear. Therefore, transcriptomic and proteomic analyses of the anthers of AL18A and its maintainer line (AL18B) were performed to interpret the sterility mechanism. Results showed that the electron transport chain and ROS scavenging enzyme expression levels changed in the early stages of the anther development. Biological processes, i.e., fatty acid synthesis, lipid transport, and polysaccharide metabolism, were abnormal, resulting in pollen abortion in AL18A. In addition, we identified several critical regulatory genes related to anther development through combined analysis of transcriptome and proteome. Most of the genes were enzymes or transcription factors, and 63 were partially homologous to the reported genic male sterile (GMS) genes. This study provides a new perspective of the sterility mechanism of AL18A and lays a foundation to study the functional genes of anther development.
Collapse
Affiliation(s)
- Miaomiao Hao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Tingdong Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Shoaib
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yingbin Nie
- Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences, Shihezi, China
| | - Xiaoming Tian
- Institute of Crop Research, Xinjiang Academy of Agri-Reclamation Sciences, Shihezi, China
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology/Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Hao M, Yang W, Lu W, Sun L, Shoaib M, Sun J, Liu D, Li X, Zhang A. Characterization of the Mitochondrial Genome of a Wheat AL-Type Male Sterility Line and the Candidate CMS Gene. Int J Mol Sci 2021; 22:6388. [PMID: 34203740 PMCID: PMC8232308 DOI: 10.3390/ijms22126388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
Heterosis utilization is very important in hybrid seed production. An AL-type cytoplasmic male sterile (CMS) line has been used in wheat-hybrid seed production, but its sterility mechanism has not been explored. In the present study, we sequenced and verified the candidate CMS gene in the AL-type sterile line (AL18A) and its maintainer line (AL18B). In the late uni-nucleate stage, the tapetum cells of AL18A showed delayed programmed cell death (PCD) and termination of microspore at the bi-nucleate stage. As compared to AL18B, the AL18A line produced 100% aborted pollens. The mitochondrial genomes of AL18A and AL18B were sequenced using the next generation sequencing such as Hiseq and PacBio. It was found that the mitochondrial genome of AL18A had 99% similarity with that of Triticum timopheevii, AL18B was identical to that of Triticum aestivum cv. Chinese Yumai. Based on transmembrane structure prediction, 12 orfs were selected as candidate CMS genes, including a previously suggested orf256. Only the lines harboring orf279 showed sterility in the transgenic Arabidopsis system, indicating that orf279 is the CMS gene in the AL-type wheat CMS lines. These results provide a theoretical basis and data support to further analyze the mechanism of AL-type cytoplasmic male sterility in wheat.
Collapse
Affiliation(s)
- Miaomiao Hao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenlong Yang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiwen Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhe Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China
| | - Muhammad Shoaib
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiazhu Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
| | - Dongcheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
| | - Xin Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
| | - Aimin Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; (M.H.); (W.L.); (L.S.); (M.S.); (J.S.); (D.L.); (X.L.)
| |
Collapse
|
13
|
Dukowic-Schulze S, van der Linde K. Oxygen, secreted proteins and small RNAs: mobile elements that govern anther development. PLANT REPRODUCTION 2021; 34:1-19. [PMID: 33492519 PMCID: PMC7902584 DOI: 10.1007/s00497-020-00401-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/24/2020] [Indexed: 05/24/2023]
Abstract
Correct anther development is essential for male fertility and subsequently agricultural yield. Defects in anther development range from the early stage of stamen formation until the late stage of tapetum degeneration. In particular, the specification of the four distinct somatic layers and the inner sporogenous cells need perfect orchestration relying on precise cell-cell communication. Up to now, several signals, which coordinate the anther´s developmental program, have been identified. Among the known signals are phytohormones, environmental conditions sensed via glutaredoxins, several receptor-like kinases triggered by ligands like MAC1, and small RNAs such as miRNAs and the monocot-prevalent reproductive phasiRNAs. Rather than giving a full review on anther development, here we discuss anther development with an emphasis on mobile elements like ROS/oxygen, secreted proteins and small RNAs (only briefly touching on phytohormones), how they might act and interact, and what the future of this research area might reveal.
Collapse
Affiliation(s)
- Stefanie Dukowic-Schulze
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| | - Karina van der Linde
- Department of Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
14
|
Xie X, Zhang Z, Zhao Z, Xie Y, Li H, Ma X, Liu YG, Chen L. The mitochondrial aldehyde dehydrogenase OsALDH2b negatively regulates tapetum degeneration in rice. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2551-2560. [PMID: 31989154 PMCID: PMC7210758 DOI: 10.1093/jxb/eraa045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/26/2020] [Indexed: 05/02/2023]
Abstract
Timely degradation of anther tapetal cells is a prerequisite for normal pollen development in flowering plants. Although several genes involved in tapetum development have been identified, the molecular basis of tapetum degeneration regulation remains poorly understood. In this study, we identified and characterized the nucleus-encoded, conserved mitochondrial aldehyde dehydrogenase OsALDH2b as a key regulator of tapetum degeneration in rice (Oryza sativa). OsALDH2b was highly expressed in anthers from meiosis to the early microspore stage. Mutation of OsALDH2b resulted in excess malonaldehyde accumulation and earlier programmed cell death in the tapetum, leading to premature tapetum degeneration and abnormal microspore development. These results demonstrate that OsALDH2b negatively regulates tapetal programmed cell death and is required for male reproductive development, providing insights into the regulation of tapetum development in plants.
Collapse
Affiliation(s)
- Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Zixu Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
| | - Zhe Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
| | - Yongyao Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
| | - Heying Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Xingliang Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Letian Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
- College of Life Sciences, South China Agricultural University, Guangzhou, China
- Key Laboratory of Plant Functional Genomics and Biotechnology of Guangdong Provincial Higher Education Institutions, South China Agricultural University, Guangzhou, China
- Correspondence:
| |
Collapse
|