1
|
Zhao K, Yang T, Pang B, Wang H, Yang Z, Liang W, Rui C, Gao W. Response of different cotton genotypes to salt stress and re-watering. BMC PLANT BIOLOGY 2025; 25:587. [PMID: 40320527 PMCID: PMC12051324 DOI: 10.1186/s12870-025-06534-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 04/10/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Cotton is a vital economic crop and reserve material and a pioneer crop planted on saline-alkaline soil. Improving the tolerance of cotton to saline alkaline environments is particularly important. RESULTS Salt-tolerant and salt-sensitive cotton plants at the three-leaf stage were subjected to 200 mM NaCl stress treatment, thereafter, microstructural observations beside physiological and biochemical analyses were performed on cotton leaves at 0 h (CK), 48 h (NaCl) and re-watering (RW) for 48 h. Salt stress altered microstructural observations and physiological and biochemical in ST and SS (p < 0.05). After re-watering, ST recovered fully, while SS sustained permanent oxidative and structural damage, indicating distinct salt tolerance. Transcriptome analysis was performed on cotton leaves under salt stress and re-watering conditions. KEGG analysis revealed that the response of cotton to salt stress and its adaptation to re-watering may be related to major protein families such as photosynthesis (ko 00195), photosynthesis-antenna protein (ko 00196), plant hormone signal transduction (ko 04075), starch and sucrose metabolism (ko 00500), and porphyrin and chlorophyll metabolism (ko 00860). A gray coexpression module associated with cotton restoration under salt stress was enriched according to WGCNA. CONCLUSIONS Salt stress did not only affect the physiological and biochemical levels of cotton but also induced structural changes in cells and tissues. Re-watering was relatively effective in stabilizing the physiological and biochemical parameters, as well as the leaf microstructure, of cotton plants under salt stress. WGCNA revealed enriched gray coexpression modules related to the recovery of cotton plants under salt stress, and screening of the pivotal genes in the gray module revealed five critical hubs, namely, GH_A01G1528, GH_A08G2688, GH_D08G2683, GH_D01G1620 and GH_A10G0617. Overall, our findings can provide new insights into enhancing cotton salt tolerance and exploring salt tolerance genes in cotton,including screening cotton genetic resources using those potential responsive genes. This study provides a theoretical basis for further exploration of the molecular mechanism of cotton salt tolerance and genetic resources for breeding salt-tolerant cotton.
Collapse
Affiliation(s)
- Kang Zhao
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, China
| | - Tao Yang
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, China
| | - Bo Pang
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, China
| | - Honggang Wang
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, China
| | - Zhining Yang
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, China
| | - Weiwei Liang
- Grass Industry Research Institute of Xinjiang Animal Science Academy, Urumqi, 830000, China
| | - Cun Rui
- Anyang Institute of Technology, Anyang, 455000, China.
| | - Wengwei Gao
- College of Agriculture, Xinjiang Agricultural University/Engineering Research Centre of Cotton, Ministry of Education, Urumqi, 830052, China.
| |
Collapse
|
2
|
Cui J, Li S, Zhang T, Li C, Duan Y, Xu S, Wang J, Liu H, Yang L, Xin W, Jia Y, Bu Q, Zou D, Zheng H. OsWRKY49 on qAT5 positively regulates alkalinity tolerance at the germination stage in Oryza sativa L. ssp. japonica. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:14. [PMID: 39729109 DOI: 10.1007/s00122-024-04772-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/22/2024] [Indexed: 12/28/2024]
Abstract
KEY MESSAGE Integrated genome-wide association study and linkage mapping revealed genetic basis of alkalinity tolerance during rice germination. The key gene OsWRKY49 was further verified in transgenic plants. With the widespread use of the rice direct seeding cultivation model, improving the tolerance of rice varieties to salinity-alkalinity at the germination stage has become increasingly important. However, as previous studies have concentrated on neutral salt stress, understanding of alkalinity tolerance is still in its infancy, and the genetic resource data is scarce. Here, we used a natural population composed of 295 japonica rice varieties and a recombinant inbred population including 189 lines derived from Caidao (alkali-sensitive) and WD20342 (alkali-tolerant) to uncover the genetic structure of alkalinity tolerance during rice germination. A total of 15 lead SNPs and six QTLs related to relative germination potential (RGP) and relative germination index (RGI) were detected by genome-wide association study and linkage mapping. Of which, Chr5_28094966, a lead SNP was located in the interval of the mapped major QTL qAT5, that was significantly associated with both RGP and RGI in the two populations. According to the LD block analysis and QTL interval, a 425 kb overlapped region was obtained for screening the candidate genes. After haplotype analysis, qRT-PCR and parental sequence analysis, LOC_Os05g49100 (OsWRKY49) was initially considered as the candidate gene. Having studied the characteristics of rice lines with OsWRKY49 knockout and overexpression, we established that OsWRKY49 could be a positive regulator of alkalinity tolerance in rice at the germination stage. Subcellular localization showed that green fluorescent protein-tagged OsWRKY49 was localized in the nucleus. The application of OsWRKY49 could be useful for increasing alkalinity tolerance of rice direct seeding.
Collapse
Affiliation(s)
- Jingnan Cui
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Shuangshuang Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Tong Zhang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Chong Li
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Yuxuan Duan
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Shanbin Xu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Yan Jia
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, State Key Laboratory of Black Soils Conservation and Utilization, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
3
|
Sheng W, Zhang G, Zhai L, Xu J. Candidate genes for alkali tolerance identified by genome-wide association study at the seedling stage in rice (Oryza sativa L.). Sci Rep 2024; 14:30063. [PMID: 39627306 PMCID: PMC11614934 DOI: 10.1038/s41598-024-79273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 11/07/2024] [Indexed: 12/06/2024] Open
Abstract
Alkali stress is one of the most serious abiotic stresses limiting crop yield and it has become an increasingly serious global problem in recent years. Alkalinity tolerance (AT) at the seedling stage is one of the determinant factors for establishment of rice population under alkaline stress condition. Here, we evaluated and measured seven traits related to AT of 528 diverse rice accessions at the seedling stage. Xian accessions were generally more alkali-tolerant than Geng accessions. GJ-tmp accessions showed the most alkali tolerance in the Geng subgroups and XI-1B accessions had the weakest alkali tolerance in the Xian subgroups. A total of 121 QTLs were identified for AT by genome-wide association study (GWAS), and five important candidate genes, LOC_Os01g19800, LOC_Os01g20160, LOC_Os01g52500, LOC_Os01g67370 and LOC_Os03g03900, were selected by gene function annotation, haplotype analysis, and qRT-PCR. Pyramiding of multiple AT advanced candidate genes is a favorable strategy for improving AT of rice varieties. Our study has screened alkali-tolerant germplasm resources and provided valuable genetic information for alkali-tolerant rice breeding.
Collapse
Affiliation(s)
- Wan Sheng
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guogen Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Laiyuan Zhai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
| | - Jianlong Xu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China.
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572024, Hainan, China.
| |
Collapse
|
4
|
Xu S, Zheng J, Du H, Du X, Li C, Duan Y, Cai Y, Wang J, Liu H, Yang L, Xin W, Jia Y, Zou D, Zheng H. GWAS combined with linkage analysis reveals major QTLs and candidate genes of salt tolerance in Japonica rice seedlings. FRONTIERS IN PLANT SCIENCE 2024; 15:1462856. [PMID: 39554521 PMCID: PMC11563981 DOI: 10.3389/fpls.2024.1462856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 11/19/2024]
Abstract
Background Soil salinization is one of the significant factors limiting high crop yields and expansion of arable land, seriously affecting global agricultural production. Rice is an essential food crop throughout the world, and its seedlings are particularly susceptible to salt stress, which can directly affect the growth and development of rice and its final yield. We used the natural population as the material for genome-wide association study (GWAS) and the recombinant inbred line (RIL) population from CD (salt sensitive)/WD20342 (salt tolerant) hybridization as the material for linkage analysis. Results The degree of salt tolerance was evaluated by using the relative root length (RRL), relative root number (RRN), relative root fresh weight (RRFW), and relative root dry weight (RRDW) as indicators. Fifteen and six major quantitative trait loci (QTLs) were identified by GWAS and linkage analysis, respectively. Meanwhile, the GWAS identified the lead SNP (Chr2_22340368), which was located within qRRL2 and qRRDW2 identified by linkage analysis. GWAS, combined with linkage analysis, selected a 196-kb overlapping region on chromosome 2, including 22 candidate genes. LOC_Os02g36880 was discovered as the candidate gene involved in salt tolerance by haplotype analysis, qRT-PCR, and sequence analysis. The score of salinity toxicity (SST) and seedling survival rate (SSR) were determined for CRISPR/Cas9 mutants (CR-1 and CR-15) and wild-type (ZH11), respectively. Conclusion The phenotypic validation indicated that LOC_Os02g36880 negatively regulated the salt tolerance at the seedling stage. This study provides resources for breeding Japonica rice to improve its response to salt stress.
Collapse
Affiliation(s)
- Shanbin Xu
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jie Zheng
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Haoqiang Du
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Xiaodong Du
- Rice Research Institute, Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Chong Li
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yuxuan Duan
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yanan Cai
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hualong Liu
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Wei Xin
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Yan Jia
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin, China
| |
Collapse
|
5
|
Zhang X, Liu K, Yang C, Hou B, Yang X, Wang L, Cui S, Lai Y, Li Z, Jiang S. Detection of Quantitative Trait Loci Associated with Alkaline Tolerance Using Recombinant Inbred Line Population Derived from Longdao5 × Zhongyouzao8 at Seedling Stage. Life (Basel) 2024; 14:1151. [PMID: 39337933 PMCID: PMC11433348 DOI: 10.3390/life14091151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Salt-alkaline stress is one of the most stressful occurrences, causing negative effects on plant development and agricultural yield. Identifying and utilizing genes that affect alkaline tolerance is an excellent approach to accelerate breeding processes and meet the needs for remediating saline-alkaline soil. Here, we employed a mapping population of 176 recombinant inbred lines (RILs) produced from a cross between alkali-tolerant Longdao5 and alkali-sensitive Zhongyouzao8 to identify the quantitative trait loci (QTLs) determining alkali tolerance at the seedling stage. For the evaluation of alkali tolerance, the recovered seedling's average alkali tolerance index (ATI), root number (RN), root length (RL), seedling dry weight (SW), root dry weight (RW), and seedling height (SH) were assessed, together with their relative alkaline damage rate. Under alkaline stress, the ATI was substantially negative connected with the root number, seedling height, seedling dry weight, and root dry weight; however, it was considerably positive correlated with the relative alkaline damage rate of the root number and root dry weight. A total of 13 QTLs for the root number, root length, seedling height, seedling dry weight, root dry weight, and alkali tolerance index under alkaline stress were identified, which were distributed across chromosomes 1, 2, 3, 4, 5, 7, and 8. All of these QTLs formed two QTL clusters for alkali tolerance on chromosome 5 and chromosome 7, designated AT5 and AT7, respectively. Nine QTLs were identified for the relative alkaline damage rate of the root number, root length, seedling height, seedling dry weight, and root dry weight under alkali stress. These QTLs were located on chromosome 2, 4, 6, 7, 8, 9, and 12. In conclusion, these findings further strengthen our knowledge about rice's genetic mechanisms for alkaline tolerance. This research offers clues to accelerate breeding programs for new alkaline-tolerance rice varieties.
Collapse
Affiliation(s)
- Xijuan Zhang
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Harbin 150086, China
- Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
| | - Kai Liu
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
| | - Chuanming Yang
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Harbin 150086, China
- Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
| | - Benfu Hou
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Harbin 150086, China
- Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
| | - Xianli Yang
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Harbin 150086, China
- Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
| | - Lizhi Wang
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Harbin 150086, China
- Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
| | - Shize Cui
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Harbin 150086, China
- Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
| | - Yongcai Lai
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Harbin 150086, China
| | - Zhugang Li
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
| | - Shukun Jiang
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin 150086, China
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Harbin 150086, China
- Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin 150086, China
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161006, China
| |
Collapse
|
6
|
Chen Y, Wang Z, Qu X, Song B, Tang Y, Li B, Cao G, Yi G. An intronic SNP affects skeletal muscle development by regulating the expression of TP63. Front Vet Sci 2024; 11:1396766. [PMID: 38933706 PMCID: PMC11199888 DOI: 10.3389/fvets.2024.1396766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Background Porcine skeletal muscle development is pivotal for improving meat production. TP63, a transcription factor, regulates vital cellular processes, yet its role in skeletal muscle proliferation is unclear. Methods The effects of TP63 on skeletal muscle cell viability and proliferation were investigated using both mouse and porcine skeletal muscle myoblasts. Selective sweep analysis in Western pigs identified TP63 as a potential candidate gene for skeletal muscle development. The correlation between TP63 overexpression and cell proliferation was assessed using quantitative real-time PCR (RT-qPCR) and 5-ethynyl-2'-deoxyuridine (EDU). Results The study revealed a positive correlation between TP63 overexpression and skeletal muscle cell proliferation. Bioinformatics analysis predicted an interaction between MEF2A, another transcription factor, and the mutation site of TP63. Experimental validation through dual-luciferase assays confirmed that a candidate enhancer SNP could influence MEF2A binding, subsequently regulating TP63 expression and promoting skeletal muscle cell proliferation. Conclusion These findings offer experimental evidence for further exploration of skeletal muscle development mechanisms and the advancement of genetic breeding strategies aimed at improving meat production traits.
Collapse
Affiliation(s)
- Yufen Chen
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Zhen Wang
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaolu Qu
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bangmin Song
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yueting Tang
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bugao Li
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Guoqing Cao
- College of Animal Science, Shanxi Agricultural University, Jinzhong, China
| | - Guoqiang Yi
- Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Livestock and Poultry Multi-omics of MARA, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Kunpeng Institute of Modern Agriculture at Foshan, Chinese Academy of Agricultural Sciences, Foshan, China
- Bama Yao Autonomous County Rural Revitalization Research Institute, Bama, China
| |
Collapse
|
7
|
Wang C, Qin K, Shang X, Gao Y, Wu J, Ma H, Wei Z, Dai G. Mapping quantitative trait loci associated with self-(in)compatibility in goji berries (Lycium barbarum). BMC PLANT BIOLOGY 2024; 24:441. [PMID: 38778301 PMCID: PMC11112781 DOI: 10.1186/s12870-024-05092-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND Goji (Lycium barbarum L.) is a perennial deciduous shrub widely distributed in arid and semiarid regions of Northwest China. It is highly valued for its medicinal and functional properties. Most goji varieties are naturally self-incompatible, posing challenges in breeding and cultivation. Self-incompatibility is a complex genetic trait, with ongoing debates regarding the number of self-incompatible loci. To date, no genetic mappings has been conducted for S loci or other loci related to self-incompatibility in goji. RESULTS We used genome resequencing to create a high-resolution map for detecting de novo single-nucleotide polymorphisms (SNP) in goji. We focused on 229 F1 individuals from self-compatible '13-19' and self-incompatible 'new 9' varieties. Subsequently, we conducted a quantitative trait locus (QTL) analysis on traits associated with self-compatibility in goji berries. The genetic map consisted of 249,327 SNPs distributed across 12 linkage groups (LGs), spanning a total distance of 1243.74 cM, with an average interval of 0.002 cM. Phenotypic data related to self-incompatibility, such as average fruit weight, fruit rate, compatibility index, and comparable compatibility index after self-pollination and geitonogamy, were collected for the years 2021-2022, as well as for an extra year representing the mean data from 2021 to 2022 (2021/22). A total of 43 significant QTL, corresponding to multiple traits were identified, accounting for more than 11% of the observed phenotypic variation. Notably, a specific QTL on chromosome 2 consistently appeared across different years, irrespective of the relationship between self-pollination and geitonogamy. Within the localization interval, 1180 genes were annotated, including Lba02g01102 (annotated as an S-RNase gene), which showed pistil-specific expression. Cloning of S-RNase genes revealed that the parents had two different S-RNase alleles, namely S1S11 and S2S8. S-genotype identification of the F1 population indicated segregation of the four S-alleles from the parents in the offspring, with the type of S-RNase gene significantly associated with self-compatibility. CONCLUSIONS In summary, our study provides valuable insights into the genetic mechanism underlying self-compatibility in goji berries. This highlights the importance of further positional cloning investigations and emphasizes the importance of integration of marker-assisted selection in goji breeding programs.
Collapse
Affiliation(s)
- Cuiping Wang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China.
- State Key Laboratory of Efficient Production of Forest Resources, Yinchuan, 750004, China.
| | - Ken Qin
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Xiaohui Shang
- School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Yan Gao
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Jiali Wu
- School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Haijun Ma
- School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
- Ningxia Grape and Wine Technology Center, North Minzu University, Yinchuan, 750021, China
| | - Zhaojun Wei
- School of Biological Science and Engineering, North Minzu University, Yinchuan, 750021, China
| | - Guoli Dai
- National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China.
| |
Collapse
|
8
|
Chen N, Ma T, Xia S, Li C, Liu Y, Wang J, Qu G, Liu H, Zheng H, Yang L, Zou D, Wang J, Xin W. Mapping of Candidate Genes for Nitrogen Uptake and Utilization in Japonica Rice at Seedling Stage. Genes (Basel) 2024; 15:327. [PMID: 38540386 PMCID: PMC10970145 DOI: 10.3390/genes15030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitrogen (N) is one of the essential nutrients for the growth and development of crops. The adequate application of N not only increases the yield of crops but also improves the quality of agricultural products, but the excessive application of N can cause many adverse effects on ecology and the environment. In this study, genome-wide association analysis (GWAS) was performed under low- and high-N conditions based on 788,396 SNPs and phenotypic traits relevant to N uptake and utilization (N content and N accumulation). A total of 75 QTLs were obtained using GWAS, which contained 811 genes. Of 811 genes, 281 genes showed different haplotypes, and 40 genes had significant phenotypic differences among different haplotypes. Of these 40 genes, 5 differentially expressed genes (Os01g0159250, Os02g0618200, Os02g0618400, Os02g0630300, and Os06g0619000) were finally identified as the more valuable candidate genes based on the transcriptome data sequenced from Longjing31 (low-N-tolerant variety) and Songjing 10 (low-N-sensitive variety) under low- and high-N treatments. These new findings enrich the genetic resources for N uptake and utilization in rice, as well as lay a theoretical foundation for improving the efficiency of N uptake and utilization in rice.
Collapse
Affiliation(s)
- Ning Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Tianze Ma
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Sijia Xia
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Chengxin Li
- Harbin Academy of Agricultural Sciences, Harbin 150030, China;
| | - Yinuo Liu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Jiaqi Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Guize Qu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Hualong Liu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Hongliang Zheng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Luomiao Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Jingguo Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Wei Xin
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
9
|
Liang X, Li J, Yang Y, Jiang C, Guo Y. Designing salt stress-resilient crops: Current progress and future challenges. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:303-329. [PMID: 38108117 DOI: 10.1111/jipb.13599] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/10/2023] [Accepted: 12/15/2023] [Indexed: 12/19/2023]
Abstract
Excess soil salinity affects large regions of land and is a major hindrance to crop production worldwide. Therefore, understanding the molecular mechanisms of plant salt tolerance has scientific importance and practical significance. In recent decades, studies have characterized hundreds of genes associated with plant responses to salt stress in different plant species. These studies have substantially advanced our molecular and genetic understanding of salt tolerance in plants and have introduced an era of molecular design breeding of salt-tolerant crops. This review summarizes our current knowledge of plant salt tolerance, emphasizing advances in elucidating the molecular mechanisms of osmotic stress tolerance, salt-ion transport and compartmentalization, oxidative stress tolerance, alkaline stress tolerance, and the trade-off between growth and salt tolerance. We also examine recent advances in understanding natural variation in the salt tolerance of crops and discuss possible strategies and challenges for designing salt stress-resilient crops. We focus on the model plant Arabidopsis (Arabidopsis thaliana) and the four most-studied crops: rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), and soybean (Glycine max).
Collapse
Affiliation(s)
- Xiaoyan Liang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
| | - Jianfang Li
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100194, China
| | - Yongqing Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
| | - Caifu Jiang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100094, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, 100094, China
- Frontiers Science Center for Molecular Design Breeding, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
10
|
Li C, Lu C, Yang M, Wu G, Nyasulu M, He H, He X, Bian J. Uncovering Novel QTLs and Candidate Genes for Salt Tolerance at the Bud Burst Stage in Rice through Genome-Wide Association Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:174. [PMID: 38256728 PMCID: PMC10818446 DOI: 10.3390/plants13020174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/07/2023] [Accepted: 11/22/2023] [Indexed: 01/24/2024]
Abstract
Salt stress is one of the most important factors limiting rice growth and yield increase. Salt tolerance of rice at the bud burst (STB) stage determines whether germinated seeds can grow normally under salt stress, which is very important for direct seeding. However, reports on quantitative trait loci (QTLs) and candidate genes for STB in rice are very limited. In this study, a natural population of 130 indica and 81 japonica rice accessions was used to identify STB-related QTLs and candidate genes using a genome-wide association study (GWAS). Nine QTLs, including five for relative shoot length (RSL), two for relative root length (RRL), and two for relative root number (RRN), were identified. Five of these STB-related QTLs are located at the same site as the characterized salt tolerance genes, such as OsMDH1, OsSRFP1, and OsCDPK7. However, an important QTL related to RSL, qRSL1-2, has not been previously identified and was detected on chromosome 1. The candidate region for qRSL1-2 was identified by linkage disequilibrium analysis, 18 genes were found to have altered expression levels under salt stress through the RNA-seq database, and 10 of them were found to be highly expressed in the shoot. It was also found that, eight candidate genes (LOC_Os01g62980, LOC_Os01g63190, LOC_Os01g63230, LOC_Os01g63280, LOC_Os01g63400, LOC_Os01g63460, and LOC_Os01g63580) for qRSL1-2 carry different haplotypes between indica and japonica rice, which exactly corresponds to the significant difference in RSL values between indica and japonica rice in this study. Most of the accessions with elite haplotypes were indica rice, which had higher RSL values. These genes with indica-japonica specific haplotypes were identified as candidate genes. Rice accessions with elite haplotypes could be used as important resources for direct seeding. This study also provides new insights into the genetic mechanism of STB.
Collapse
Affiliation(s)
- Caijing Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
- Institute of Agricultural Sciences, Ganzhou 341000, China
| | - Changsheng Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| | - Mengmeng Yang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| | - Guangliang Wu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| | - Mvuyeni Nyasulu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| | - Haohua He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| | - Xiaopeng He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| | - Jianmin Bian
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Nanchang 330045, China; (C.L.); (C.L.); (M.Y.); (G.W.); (M.N.); (H.H.)
| |
Collapse
|
11
|
Wang J, Hu K, Wang J, Gong Z, Li S, Deng X, Li Y. Integrated Transcriptomic and Metabolomic Analyses Uncover the Differential Mechanism in Saline-Alkaline Tolerance between Indica and Japonica Rice at the Seedling Stage. Int J Mol Sci 2023; 24:12387. [PMID: 37569762 PMCID: PMC10418499 DOI: 10.3390/ijms241512387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Saline-alkaline stress is one of the major damages that severely affects rice (Oryza sativa L.) growth and grain yield; however, the mechanism of the tolerance remains largely unknown in rice. Herein, we comparatively investigated the transcriptome and metabolome of two contrasting rice subspecies genotypes, Luohui 9 (abbreviation for Chao2R under study, O. sativa ssp. indica, saline-alkaline-sensitive) and RPY geng (O. sativa ssp. japonica, saline-alkaline-tolerant), to identify the main pathways and important factors related to saline-alkaline tolerance. Transcriptome analysis showed that 68 genes involved in fatty acid, amino acid (such as phenylalanine and tryptophan), phenylpropanoid biosynthesis, energy metabolism (such as Glycolysis and TCA cycle), as well as signal transduction (such as hormone and MAPK signaling) were identified to be specifically upregulated in RPY geng under saline-alkaline conditions, implying that a series of cascade changes from these genes promotes saline-alkaline stress tolerance. The transcriptome changes observed in RPY geng were in high accordance with the specifically accumulation of metabolites, consisting mainly of 14 phenolic acids, 8 alkaloids, and 19 lipids based on the combination analysis of transcriptome and metabolome. Moreover, some genes involved in signal transduction as hub genes, such as PR5, FLS2, BRI1, and NAC, may participate in the saline-alkaline stress response of RPY geng by modulating key genes involved in fatty acid, phenylpropanoid biosynthesis, amino acid metabolism, and glycolysis metabolic pathways based on the gene co-expression network analysis. The present research results not only provide important insights for understanding the mechanism underlying of rice saline-alkaline tolerance at the transcriptome and metabolome levels but also provide key candidate target genes for further enhancing rice saline-alkaline stress tolerance.
Collapse
Affiliation(s)
- Jianyong Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Keke Hu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Jien Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Ziyun Gong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Shuangmiao Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Xiaoxiao Deng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| |
Collapse
|
12
|
Reyes VP. Fantastic genes: where and how to find them? Exploiting rice genetic resources for the improvement of yield, tolerance, and resistance to a wide array of stresses in rice. Funct Integr Genomics 2023; 23:238. [PMID: 37439874 DOI: 10.1007/s10142-023-01159-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/14/2023]
Abstract
Rice production is a critical component of global food security. To date, rice is grown in over 100 countries and is the primary source of food for more than 3 billion people. Despite its importance, rice production is facing numerous challenges that threaten its future viability. One of the primary problems is the advent of climate change. The changing climatic conditions greatly affect the growth and productivity of rice crop and the quality of rice yield. Similarly, biotic stresses brought about by pathogen and pest infestations are greatly affecting the productivity of rice. To address these issues, the utilization of rice genetic resources is necessary to map, identify, and understand the genetics of important agronomic traits. This review paper highlights the role of rice genetic resources for developing high-yielding and stress-tolerant rice varieties. The integration of genetic, genomic, and phenomic tools in rice breeding programs has led to the development of high-yielding and stress-tolerant rice varieties. The collaboration of multidisciplinary teams of experts, sustainable farming practices, and extension services for farmers is essential for accelerating the development of high-yielding and stress-tolerant rice varieties.
Collapse
|
13
|
Xu N, Chen B, Cheng Y, Su Y, Song M, Guo R, Wang M, Deng K, Lan T, Bao S, Wang G, Guo Z, Yu L. Integration of GWAS and RNA-Seq Analysis to Identify SNPs and Candidate Genes Associated with Alkali Stress Tolerance at the Germination Stage in Mung Bean. Genes (Basel) 2023; 14:1294. [PMID: 37372474 DOI: 10.3390/genes14061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/13/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Soil salt-alkalization seriously impacts crop growth and productivity worldwide. Breeding and applying tolerant varieties is the most economical and effective way to address soil alkalization. However, genetic resources for breeders to improve alkali tolerance are limited in mung bean. Here, a genome-wide association study (GWAS) was performed to detect alkali-tolerant genetic loci and candidate genes in 277 mung bean accessions during germination. Using the relative values of two germination traits, 19 QTLs containing 32 SNPs significantly associated with alkali tolerance on nine chromosomes were identified, and they explained 3.6 to 14.6% of the phenotypic variance. Moreover, 691 candidate genes were mined within the LD intervals containing significant trait-associated SNPs. Transcriptome sequencing of alkali-tolerant accession 132-346 under alkali and control conditions after 24 h of treatment was conducted, and 2565 DEGs were identified. An integrated analysis of the GWAS and DEGs revealed six hub genes involved in alkali tolerance responses. Moreover, the expression of hub genes was further validated by qRT-PCR. These findings improve our understanding of the molecular mechanism of alkali stress tolerance and provide potential resources (SNPs and genes) for the genetic improvement of alkali tolerance in mung bean.
Collapse
Affiliation(s)
- Ning Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Bingru Chen
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yuxin Cheng
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Yufei Su
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Mengyuan Song
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Rongqiu Guo
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Minghai Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Kunpeng Deng
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Tianjiao Lan
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Shuying Bao
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Guifang Wang
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Zhongxiao Guo
- Institute of Crop Germplasm Resources, Jilin Academy of Agricultural Sciences, Gongzhuling 136100, China
| | - Lihe Yu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
14
|
Singh L, Pruthi R, Chapagain S, Subudhi PK. Genome-Wide Association Study Identified Candidate Genes for Alkalinity Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112206. [PMID: 37299185 DOI: 10.3390/plants12112206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Alkalinity stress is a major hindrance to enhancing rice production globally due to its damaging effect on plants' growth and development compared with salinity stress. However, understanding of the physiological and molecular mechanisms of alkalinity tolerance is limited. Therefore, a panel of indica and japonica rice genotypes was evaluated for alkalinity tolerance at the seedling stage in a genome-wide association study to identify tolerant genotypes and candidate genes. Principal component analysis revealed that traits such as alkalinity tolerance score, shoot dry weight, and shoot fresh weight had the highest contribution to variations in tolerance, while shoot Na+ concentration, shoot Na+:K+ ratio, and root-to-shoot ratio had moderate contributions. Phenotypic clustering and population structure analysis grouped the genotypes into five subgroups. Several salt-susceptible genotypes such as IR29, Cocodrie, and Cheniere placed in the highly tolerant cluster suggesting different underlying tolerance mechanisms for salinity and alkalinity tolerance. Twenty-nine significant SNPs associated with alkalinity tolerance were identified. In addition to three alkalinity tolerance QTLs, qSNK4, qSNC9, and qSKC10, which co-localized with the earlier reported QTLs, a novel QTL, qSNC7, was identified. Six candidate genes that were differentially expressed between tolerant and susceptible genotypes were selected: LOC_Os04g50090 (Helix-loop-helix DNA-binding protein), LOC_Os08g23440 (amino acid permease family protein), LOC_Os09g32972 (MYB protein), LOC_Os08g25480 (Cytochrome P450), LOC_Os08g25390 (Bifunctional homoserine dehydrogenase), and LOC_Os09g38340 (C2H2 zinc finger protein). The genomic and genetic resources such as tolerant genotypes and candidate genes would be valuable for investigating the alkalinity tolerance mechanisms and for marker-assisted pyramiding of the favorable alleles for improving alkalinity tolerance at the seedling stage in rice.
Collapse
Affiliation(s)
- Lovepreet Singh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Rajat Pruthi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Sandeep Chapagain
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Prasanta K Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
15
|
Zhang G, Bi Z, Jiang J, Lu J, Li K, Bai D, Wang X, Zhao X, Li M, Zhao X, Wang W, Xu J, Li Z, Zhang F, Shi Y. Genome-wide association and epistasis studies reveal the genetic basis of saline-alkali tolerance at the germination stage in rice. FRONTIERS IN PLANT SCIENCE 2023; 14:1170641. [PMID: 37251777 PMCID: PMC10213895 DOI: 10.3389/fpls.2023.1170641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/10/2023] [Indexed: 05/31/2023]
Abstract
Introduction Saline-alkali stress is one of the main abiotic factors limiting rice production worldwide. With the widespread use of rice direct seeding technology, it has become increasingly important to improve rice saline-alkali tolerance at the germination stage. Methods To understand the genetic basis of saline-alkali tolerance and facilitate breeding efforts for developing saline-alkali tolerant rice varieties, the genetic basis of rice saline-alkali tolerance was dissected by phenotyping seven germination-related traits of 736 diverse rice accessions under the saline-alkali stress and control conditions using genome-wide association and epistasis analysis (GWAES). Results Totally, 165 main-effect quantitative trait nucleotides (QTNs) and 124 additional epistatic QTNs were identified as significantly associated with saline-alkali tolerance, which explained a significant portion of the total phenotypic variation of the saline-alkali tolerance traits in the 736 rice accessions. Most of these QTNs were located in genomic regions either harboring saline-alkali tolerance QTNs or known genes for saline-alkali tolerance reported previously. Epistasis as an important genetic basis of rice saline-alkali tolerance was validated by genomic best linear unbiased prediction in which inclusion of both main-effect and epistatic QTNs showed a consistently better prediction accuracy than either main-effect or epistatic QTNs alone. Candidate genes for two pairs of important epistatic QTNs were suggested based on combined evidence from the high-resolution mapping plus their reported molecular functions. The first pair included a glycosyltransferase gene LOC_Os02g51900 (UGT85E1) and an E3 ligase gene LOC_Os04g01490 (OsSIRP4), while the second pair comprised an ethylene-responsive transcriptional factor, AP59 (LOC_Os02g43790), and a Bcl-2-associated athanogene gene, OsBAG1 (LOC_Os09g35630) for salt tolerance. Detailed haplotype analyses at both gene promoter and CDS regions of these candidate genes for important QTNs identified favorable haplotype combinations with large effects on saline-alkali tolerance, which can be used to improve rice saline-alkali tolerance by selective introgression. Discussion Our findings provided saline-alkali tolerant germplasm resources and valuable genetic information to be used in future functional genomic and breeding efforts of rice saline-alkali tolerance at the germination stage.
Collapse
Affiliation(s)
- Guogen Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Bi
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Jiang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingbing Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Keyang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Di Bai
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Xinchen Wang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Xueyu Zhao
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Min Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiuqin Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Jianlong Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhikang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| |
Collapse
|
16
|
Xu S, Cui J, Cao H, Liang S, Ma T, Liu H, Wang J, Yang L, Xin W, Jia Y, Zou D, Zheng H. Identification of candidate genes for salinity tolerance in Japonica rice at the seedling stage based on genome-wide association study and linkage mapping. FRONTIERS IN PLANT SCIENCE 2023; 14:1184416. [PMID: 37235029 PMCID: PMC10206223 DOI: 10.3389/fpls.2023.1184416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023]
Abstract
Background Salinity tolerance plays a vital role in rice cultivation because the strength of salinity tolerance at the seedling stage directly affects seedling survival and final crop yield in saline soils. Here, we combined a genome-wide association study (GWAS) and linkage mapping to analyze the candidate intervals for salinity tolerance in Japonica rice at the seedling stage. Results We used the Na+ concentration in shoots (SNC), K+ concentration in shoots (SKC), Na+/K+ ratio in shoots (SNK), and seedling survival rate (SSR) as indices to assess the salinity tolerance at the seedling stage in rice. The GWAS identified the lead SNP (Chr12_20864157), associated with an SNK, which the linkage mapping detected as being in qSK12. A 195-kb region on chromosome 12 was selected based on the overlapping regions in the GWAS and the linkage mapping. Based on haplotype analysis, qRT-PCR, and sequence analysis, we obtained LOC_Os12g34450 as a candidate gene. Conclusion Based on these results, LOC_Os12g34450 was identified as a candidate gene contributing to salinity tolerance in Japonica rice. This study provides valuable guidance for plant breeders to improve the response of Japonica rice to salt stress.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Detang Zou
- *Correspondence: Detang Zou, ; Hongliang Zheng,
| | | |
Collapse
|
17
|
Singh L, Coronejo S, Pruthi R, Chapagain S, Bhattarai U, Subudhi PK. Genetic Dissection of Alkalinity Tolerance at the Seedling Stage in Rice ( Oryza sativa) Using a High-Resolution Linkage Map. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11233347. [PMID: 36501386 PMCID: PMC9738157 DOI: 10.3390/plants11233347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/12/2023]
Abstract
Although both salinity and alkalinity result from accumulation of soluble salts in soil, high pH and ionic imbalance make alkaline stress more harmful to plants. This study aimed to provide molecular insights into the alkalinity tolerance using a recombinant inbred line (RIL) population developed from a cross between Cocodrie and Dular with contrasting response to alkalinity stress. Forty-six additive QTLs for nine morpho-physiological traits were mapped on to a linkage map of 4679 SNPs under alkalinity stress at the seedling stage and seven major-effect QTLs were for alkalinity tolerance scoring, Na+ and K+ concentrations and Na+:K+ ratio. The candidate genes were identified based on the comparison of the impacts of variants of genes present in five QTL intervals using the whole genome sequences of both parents. Differential expression of no apical meristem protein, cysteine protease precursor, retrotransposon protein, OsWAK28, MYB transcription factor, protein kinase, ubiquitin-carboxyl protein, and NAD binding protein genes in parents indicated their role in response to alkali stress. Our study suggests that the genetic basis of tolerance to alkalinity stress is most likely different from that of salinity stress. Introgression and validation of the QTLs and genes can be useful for improving alkalinity tolerance in rice at the seedling stage and advancing understanding of the molecular genetic basis of alkalinity stress adaptation.
Collapse
|
18
|
Liu Z, Hu Y, Du A, Yu L, Fu X, Wu C, Lu L, Liu Y, Wang S, Huang W, Tu S, Ma X, Li H. Cell Wall Matrix Polysaccharides Contribute to Salt-Alkali Tolerance in Rice. Int J Mol Sci 2022; 23:ijms232315019. [PMID: 36499349 PMCID: PMC9735747 DOI: 10.3390/ijms232315019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022] Open
Abstract
Salt-alkali stress threatens the resilience to variable environments and thus the grain yield of rice. However, how rice responds to salt-alkali stress at the molecular level is poorly understood. Here, we report isolation of a novel salt-alkali-tolerant rice (SATR) by screening more than 700 germplasm accessions. Using 93-11, a widely grown cultivar, as a control, we characterized SATR in response to strong salt-alkali stress (SSAS). SATR exhibited SSAS tolerance higher than 93-11, as indicated by a higher survival rate, associated with higher peroxidase activity and total soluble sugar content but lower malonaldehyde accumulation. A transcriptome study showed that cell wall biogenesis-related pathways were most significantly enriched in SATR relative to 93-11 upon SSAS. Furthermore, higher induction of gene expression in the cell wall matrix polysaccharide biosynthesis pathway, coupled with higher accumulations of hemicellulose and pectin as well as measurable physio-biochemical adaptive responses, may explain the strong SSAS tolerance in SATR. We mapped SSAS tolerance to five genomic regions in which 35 genes were candidates potentially governing SSAS tolerance. The 1,4-β-D-xylan synthase gene OsCSLD4 in hemicellulose biosynthesis pathway was investigated in details. The OsCSLD4 function-disrupted mutant displayed reduced SSAS tolerance, biomass and grain yield, whereas the OsCSLD4 overexpression lines exhibited increased SSAS tolerance. Collectively, this study not only reveals the potential role of cell wall matrix polysaccharides in mediating SSAS tolerance, but also highlights applicable value of OsCSLD4 and the large-scale screening system in developing SSAS-tolerant rice.
Collapse
Affiliation(s)
- Zhijian Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongzhi Hu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Anping Du
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lan Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Xingyue Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuili Wu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Longxiang Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangxuan Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songhu Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weizao Huang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shengbin Tu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinrong Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
19
|
Hong H, Li M, Chen Y, Wang H, Wang J, Guo B, Gao H, Ren H, Yuan M, Han Y, Qiu L. Genome-wide association studies for soybean epicotyl length in two environments using 3VmrMLM. FRONTIERS IN PLANT SCIENCE 2022; 13:1033120. [PMID: 36452100 PMCID: PMC9704727 DOI: 10.3389/fpls.2022.1033120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/04/2022] [Indexed: 06/17/2023]
Abstract
Germination of soybean seed is the imminent vital process after sowing. The status of plumular axis and radicle determine whether soybean seed can emerge normally. Epicotyl, an organ between cotyledons and first functional leaves, is essential for soybean seed germination, seedling growth and early morphogenesis. Epicotyl length (EL) is a quantitative trait controlled by multiple genes/QTLs. Here, the present study analyzes the phenotypic diversity and genetic basis of EL using 951 soybean improved cultivars and landraces from Asia, America, Europe and Africa. 3VmrMLM was used to analyze the associations between EL in 2016 and 2020 and 1,639,846 SNPs for the identification of QTNs and QTN-by-environment interactions (QEIs)".A total of 180 QTNs and QEIs associated with EL were detected. Among them, 74 QTNs (ELS_Q) and 16 QEIs (ELS_QE) were identified to be associated with ELS (epicotyl length of single plant emergence), and 60 QTNs (ELT_Q) and 30 QEIs (ELT_QE) were identified to be associated with ELT (epicotyl length of three seedlings). Based on transcript abundance analysis, GO (Gene Ontology) enrichment and haplotype analysis, ten candidate genes were predicted within nine genic SNPs located in introns, upstream or downstream, which were supposed to be directly or indirectly involved in the process of seed germination and seedling development., Of 10 candidate genes, two of them (Glyma.04G122400 and Glyma.18G183600) could possibly affect epicotyl length elongation. These results indicate the genetic basis of EL and provides a valuable basis for specific functional studies of epicotyl traits.
Collapse
Affiliation(s)
- Huilong Hong
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mei Li
- Crop Information Center, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yijie Chen
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Haorang Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, China
| | - Jun Wang
- College of Agriculture, Yangtze University, Jingzhou, China
| | - Bingfu Guo
- Nanchang Branch of National Center of Oil crops Improvement, Jiangxi Province Key Laboratory of Oil crops Biology, Crops Research Institute of Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Huawei Gao
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) Chinese Academy of Agricultural Sciences, Beijing, China
| | - Honglei Ren
- Soybean Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Ming Yuan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Yingpeng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry), Northeast Agricultural University, Harbin, China
| | - Lijuan Qiu
- Institute of Crop Science, National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI) Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
20
|
Chen H, Han Z, Ma Q, Dong C, Ning X, Li J, Lin H, Xu S, Li Y, Hu Y, Si Z, Song Q. Identification of elite fiber quality loci in upland cotton based on the genotyping-by-target-sequencing technology. FRONTIERS IN PLANT SCIENCE 2022; 13:1027806. [PMID: 36407612 PMCID: PMC9669494 DOI: 10.3389/fpls.2022.1027806] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Genome-wide association studies (GWAS) of fiber quality traits of upland cotton were conducted to identify the single-nucleotide polymorphic (SNP) loci associated with cotton fiber quality, which lays the foundation for the mining of elite] cotton fiber gene resources and its application in molecular breeding. A total of 612 upland cotton accessions were genotyped using the ZJU Cotton Chip No. 1 40K chip array via the liquid-phase probe hybridization-based genotyping-by-target-sequencing (GBTS) technology. In the present study, five fiber quality traits, namely fiber length, fiber strength, micronaire, uniformity and elongation, showed different degrees of variation in different environments. The average coefficient of variation of fiber strength was the greatest, whereas the average coefficient of variation of uniformity was the least. Significant or extremely significant correlations existed among the five fiber quality traits, especially fiber length, strength, uniformity and elongation all being significantly negative correlated with micronaire. Population cluster analysis divided the 612 accessions into four groups: 73 assigned to group I, 226 to group II, 220 to group III and 93 to group IV. Genome-wide association studies of five fiber quality traits in five environments was performed and a total of 42 SNP loci associated with target traits was detected, distributed on 19 chromosomes, with eight loci associated with fiber length, five loci associated with fiber strength, four loci associated with micronaire, twelve loci associated with fiber uniformity and thirteen loci associated with fiber elongation. Of them, seven loci were detected in more than two environments. Nine SNP loci related to fiber length, fiber strength, uniformity and elongation were found on chromosome A07, seven loci related to fiber length, fiber strength, micronaire and elongation were detected on chromosome D01, and five loci associated with fiber length, uniformity and micronaire were detected on chromosome D11. The results from this study could provide more precise molecular markers and genetic resources for cotton breeding for better fiber quality in the future.
Collapse
Affiliation(s)
- Hong Chen
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Zegang Han
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Research Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qi Ma
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Chengguang Dong
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Xinzhu Ning
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Jilian Li
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Hai Lin
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Shouzhen Xu
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| | - Yiqian Li
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Research Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Research Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zhanfeng Si
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, The Advanced Seed Research Institute, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Qingping Song
- Cotton Research Institute, Xinjiang Academy of Agricultural and Reclamation Science, Northwest Inland Region Key Laboratory of Cotton Biology and Genetic Breeding of Ministry of Agriculture, Shihezi, China
| |
Collapse
|
21
|
Sun K, Li D, Xia A, Zhao H, Wen Q, Jia S, Wang J, Yang G, Zhou D, Huang C, Wang H, Chen Z, Guo T. Targeted Identification of Rice Grain-Associated Gene Allelic Variation Through Mutation Induction, Targeted Sequencing, and Whole Genome Sequencing Combined with a Mixed-Samples Strategy. RICE (NEW YORK, N.Y.) 2022; 15:57. [PMID: 36326973 PMCID: PMC9633910 DOI: 10.1186/s12284-022-00603-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The mining of new allelic variation and the induction of new genetic variability are the basis for improving breeding efficiency. RESULTS In this study, in total, 3872 heavy ion-irradiated M2 generation rice seeds and individual leaves were collected. The grain length was between 8 and 10.22 mm. The grain width was between 1.54 and 2.87 mm. The results showed that there was extensive variation in granulotype. The allelic variation in GS3 and GW5 was detected in 484 mixed samples (8:1) using targeted sequencing technology, and 12 mixed samples containing potential mutations and 15 SNPs were obtained; combined with Sanger sequencing and phenotype data, 13 key mutants and their corresponding SNPs were obtained; protein structural and functional analysis of key mutants screened out 6 allelic variants leading to altered grain shape, as well as the corresponding mutants, including long-grain mutants GS3-2 and GS3-7, short-grain mutants GS3-3 and GS3-5, wide-grain mutant GW5-1 and narrow-grain mutant GW5-4; whole genome sequencing identified new grain length gene allelic variants GS3-G1, GS3-G2 and GS3-G3. CONCLUSION Based on the above studies, we found 6 granulotype mutants and 9 granulotype-related allelic variants, which provided new functional gene loci and a material basis for molecular breeding and genotype mutation and phenotype analysis. We propose a method for targeted identification of allelic variation in rice grain type genes by combining targeted sequencing of mixed samples and whole genome sequencing. The method has the characteristics of low detection cost, short detection period, and flexible detection of traits and genes.
Collapse
Affiliation(s)
- Kai Sun
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Dandan Li
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Aoyun Xia
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Hua Zhao
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Qin Wen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Sisi Jia
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Jiafeng Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Guili Yang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Danhua Zhou
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Cuihong Huang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Hui Wang
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Zhiqiang Chen
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China
| | - Tao Guo
- National Engineering Research Center of Plant Space Breeding, South China Agricultural University, 510642, Guangzhou, People's Republic of China.
| |
Collapse
|
22
|
Identification of Alkaline Salt Tolerance Genes in Brassica napus L. by Transcriptome Analysis. Genes (Basel) 2022; 13:genes13081493. [PMID: 36011404 PMCID: PMC9408751 DOI: 10.3390/genes13081493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/19/2022] Open
Abstract
Soil salt alkalization is one major abiotic factor reducing the productivity of crops, including rapeseed, an indispensable oil crop and vegetable. The mechanism studies of alkali salt tolerance can help breed highly resistant varieties. In the current study, rapeseed (B. napus) line 2205 exhibited more tolerance to alkaline salt than line 1423 did. In line 2205, the lesser plasma membrane damage index, the accumulated osmotic solute, and higher antioxidant enzyme activities contributed to alkaline tolerance. A more integrated mesophyll-cell structure was revealed under alkali salt stress by ultrastructure observation in line 2205, which also implied a lesser injury. Transcriptome analysis showed that more genes responded to alkaline salt in line 2205. The expression of specific-response genes in line 1423 was lower than in line 2205. However, most of the specific-response genes in line 2205 had higher expression, which was mainly enriched in carbohydrate metabolism, photosynthetic processes, ROS regulating, and response to salt stress. It can be seen that the tolerance to alkaline salt is attributed to the high expression of some genes in these pathways. Based on these, twelve cross-differentially expressed genes were proposed as candidates. They provide clues for further analysis of the resistance mechanism of rapeseed.
Collapse
|
23
|
Identification and Functional Analysis of the Caffeic Acid O-Methyltransferase (COMT) Gene Family in Rice (Oryza sativa L.). Int J Mol Sci 2022; 23:ijms23158491. [PMID: 35955626 PMCID: PMC9369235 DOI: 10.3390/ijms23158491] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 07/28/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
Caffeic acid O-methyltransferase (COMT) is one of the core enzymes involved in lignin synthesis. However, there is no systematic study on the rice COMT gene family. We identified 33 COMT genes containing the methyltransferase-2 domain in the rice genome using bioinformatic methods and divided them into Group I (a and b) and Group II. Motifs, conserved domains, gene structure and SNPs density are related to the classification of OsCOMTs. The tandem phenomenon plays a key role in the expansion of OsCOMTs. The expression levels of fourteen and thirteen OsCOMTs increased or decreased under salt stress and drought stress, respectively. OsCOMTs showed higher expression levels in the stem. The lignin content of rice was measured in five stages; combined with the expression analysis of OsCOMTs and multiple sequence alignment, we found that OsCOMT8, OsCOMT9 and OsCOMT15 play a key role in the synthesis of lignin. Targeted miRNAs and gene ontology annotation revealed that OsCOMTs were involved in abiotic stress responses. Our study contributes to the analysis of the biological function of OsCOMTs, which may provide information for future rice breeding and editing of the rice genome.
Collapse
|
24
|
Unraveling the genomic regions controlling the seed vigour index, root growth parameters and germination per cent in rice. PLoS One 2022; 17:e0267303. [PMID: 35881571 PMCID: PMC9321372 DOI: 10.1371/journal.pone.0267303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
High seed vigour ensures good quality seed and higher productivity. Early seedling growth parameters indicate seed vigour in rice. Seed vigour via physiological growth parameters is a complex trait controlled by many quantitative trait loci. A panel was prepared representing a population of 274 rice landraces by including genotypes from all the phenotypic groups of sixseedling stage physiological parameters including germination % for association mapping. Wide variations for the six studiedtraits were observed in the population. The population was classified into 3 genetic groups. Fixation indices indicated the presence of linkage disequilibrium in the population. The population was classified into subpopulations and each subpopulation showed correspondence with the 6 physiological traits. A total of 5 reported QTLs viz., qGP8.1 for germination % (GP); qSVII2.1, qSVII6.1 and qSVII6.2 for seed vigour index II (SVII), and qRSR11.1 for root-shoot ratio (RSR) were validated in this mapping population. In addition, 13 QTLs regulating the physiological parameters such as qSVI 11.1 for seed vigour index I; qSVI11.1 and qSVI12.1 for seed vigour index II; qRRG10.1, qRRG8.1, qRRG8.2, qRRG6.1 and qRRG4.1 for rate of root growth (RRG); qRSR2.1, qRSR3.1 and qRSR5.1 for root-shoot ratio (RSR) while qGP6.2 and qGP6.3 for germination %were identified. Additionally, co-localization or co-inheritance of QTLs, qGP8.1 and qSVI8.1 for GP and SVI-1; qGP6.2 and qRRG6.1 for GP and RRG, and qSVI11.1 and qRSR11.1 for SVI and RSR were detected. The QTLs identified in this study will be useful for improvement of seed vigour trait in rice.
Collapse
|
25
|
Mei S, Zhang G, Jiang J, Lu J, Zhang F. Combining Genome-Wide Association Study and Gene-Based Haplotype Analysis to Identify Candidate Genes for Alkali Tolerance at the Germination Stage in Rice. FRONTIERS IN PLANT SCIENCE 2022; 13:887239. [PMID: 35463411 PMCID: PMC9033254 DOI: 10.3389/fpls.2022.887239] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 03/22/2022] [Indexed: 06/01/2023]
Abstract
Salinity-alkalinity stress is one of the main abiotic factors limiting rice production worldwide. With the widespread use of rice direct seeding technology, it has become increasingly important to improve the tolerance to salinity-alkalinity of rice varieties at the germination stage. Although we have a more comprehensive understanding of salt tolerance in rice, the genetic basis of alkali tolerance in rice is still poorly understood. In this study, we measured seven germination-related traits under alkali stress and control conditions using 428 diverse rice accessions. The alkali tolerance levels of rice germplasms varied considerably during germination. Xian/indica accessions had generally higher tolerance to alkali stress than Geng/japonica accessions at the germination stage. Using genome-wide association analysis, 90 loci were identified as significantly associated with alkali tolerance. Eight genes (LOC_Os01g12000, LOC_Os03g60240, LOC_Os03g08960, LOC_Os04g41410, LOC_Os09g25060, LOC_Os11g35350, LOC_Os12g09350, and LOC_Os12g13300) were selected as important candidate genes for alkali tolerance based on the gene functional annotation and gene-CDS-haplotype analysis. According to the expression levels of LOC_Os09g25060 (OsWRKY76), it is likely to play a negative regulatory role in alkali tolerance during rice germination. An effective strategy for improving rice alkali tolerance may be to pyramid alkali-tolerant haplotypes of multiple candidate genes to obtain the optimal haplotype combination. Our findings may provide valuable genetic information and expand the use of alkali tolerance germplasm resources in rice molecular breeding to improve the alkali tolerance at the germination stage.
Collapse
Affiliation(s)
- Song Mei
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guogen Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Jing Jiang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jingbing Lu
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Fan Zhang
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
26
|
Liu Z, Yang B, Huang R, Suo H, Zhang Z, Chen W, Dai X, Zou X, Ou L. Transcriptome- and proteome-wide Association of Real Isogenic Line Populations Identified Twelve Core QTLs for four fruit traits in pepper (Capsicum annuum L.). HORTICULTURE RESEARCH 2022; 9:uhac015. [PMID: 35147182 PMCID: PMC9016867 DOI: 10.1093/hr/uhac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Zhoubin Liu
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Bozhi Yang
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Renyan Huang
- Plant Protection Institute of Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Huan Suo
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Zhuqing Zhang
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Wenchao Chen
- Vegetable Institution of Hunan Academy of Agricultural Science, Changsha, 410125, China
| | - Xiongze Dai
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Xuexiao Zou
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| | - Lijun Ou
- Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha 410125, China
| |
Collapse
|
27
|
Chen G, Hu K, Zhao J, Guo F, Shan W, Jiang Q, Zhang J, Guo Z, Feng Z, Chen Z, Wu X, Zhang S, Zuo S. Genome-Wide Association Analysis for Salt-Induced Phenotypic and Physiologic Responses in Rice at Seedling and Reproductive Stages. FRONTIERS IN PLANT SCIENCE 2022; 13:822618. [PMID: 35222481 PMCID: PMC8863738 DOI: 10.3389/fpls.2022.822618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Salinity is one of the main adverse environmental factors severely inhibiting rice growth and decreasing grain productivity. Developing rice varieties with salt tolerance (ST) is one of the most economical approaches to cope with salinity stress. In this study, the salt tolerance of 220 rice accessions from rice diversity panel l (RDP1), representing five subpopulations, were evaluated based on 16 ST indices at both seedling and reproductive stages under salt stress. An apparent inconsistency was found for ST between the two stages. Through a gene-based/tightly linked genome-wide association study with 201,332 single nucleotide polymorphisms (SNPs) located within genes and their flanking regions were used, a total of 214 SNPs related to 251 genes, significantly associated with 16 ST-related indices, were detected at both stages. Eighty-two SNPs with low frequency favorable (LFF) alleles in the population were proposed to hold high breeding potential in improving rice ST. Fifty-four rice accessions collectively containing all these LFF alleles were identified as donors of these alleles. Through the integration of meta-quantitative trait locus (QTL) for ST and the response patterns of differential expression genes to salt stress, thirty-eight candidate genes were suggested to be involved in the regulation of rice ST. In total, the present study provides valuable information for further characterizing ST-related genes and for breeding ST varieties across whole developmental stages through marker-assisted selection (MAS).
Collapse
Affiliation(s)
- Gang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Keming Hu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Jianhua Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Feifei Guo
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Wenfeng Shan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Qiuqing Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Jinqiao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Zilong Guo
- Root Biology Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhiming Feng
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Zongxiang Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
| | - Xiaoxia Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Shengwei Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, China
| | - Shimin Zuo
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- Co-innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Institutes of Agricultural Science and Technology Development, Yangzhou University, The Ministry of Education of China, Yangzhou, China
| |
Collapse
|
28
|
Fan X, Jiang H, Meng L, Chen J. Gene Mapping, Cloning and Association Analysis for Salt Tolerance in Rice. Int J Mol Sci 2021; 22:11674. [PMID: 34769104 PMCID: PMC8583862 DOI: 10.3390/ijms222111674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/16/2022] Open
Abstract
Soil salinization caused by the accumulation of sodium can decrease rice yield and quality. Identification of rice salt tolerance genes and their molecular mechanisms could help breeders genetically improve salt tolerance. We studied QTL mapping of populations for rice salt tolerance, period and method of salt tolerance identification, salt tolerance evaluation parameters, identification of salt tolerance QTLs, and fine-mapping and map cloning of salt tolerance QTLs. We discuss our findings as they relate to other genetic studies of salt tolerance association.
Collapse
Affiliation(s)
- Xiaoru Fan
- School of Chemistry and Life Science, Anshan Normal University, Anshan 114007, China;
| | - Hongzhen Jiang
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Lijun Meng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Kunpeng Institute of Modern Agriculture at Foshan, Foshan 528200, China
| | - Jingguang Chen
- School of Agriculture, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| |
Collapse
|
29
|
QTL mapping and candidate gene mining of flag leaf size traits in Japonica rice based on linkage mapping and genome-wide association study. Mol Biol Rep 2021; 49:63-71. [PMID: 34677716 DOI: 10.1007/s11033-021-06842-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/13/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND As one of the most important factors of the japonica rice plant, leaf shape affects the photosynthesis and carbohydrate accumulation directly. Mining and using new leaf shape related genes/QTLs can further enrich the theory of molecular breeding and accelerate the breeding process of japonica rice. METHODS In the present study, 2 RILs and a natural population with 295 japonica rice varieties were used to map QTLs for flag leaf length (FL), flag leaf width (FW) and flag leaf area (FLA) by linkage analysis and genome-wide association study (GWAS) throughout 2 years. RESULTS A total of 64 QTLs were detected by 2 ways, and pleiotropic QTLs qFL2 (Chr2_33,332,579) and qFL10 (Chr10_10,107,835; Chr10_10,230,100) consisted of overlapping QTLs mapped by linkage analysis and GWAS throughout the 2 years were identified. CONCLUSIONS The candidate genes LOC_Os02g54254, LOC_Os02g54550, LOC_Os10g20160, LOC_Os10g20240, LOC_Os10g20260 were obtained, filtered by linkage disequilibrium (LD), and haplotype analysis. LOC_Os10g20160 (SD-RLK-45) showed outstanding characteristics in quantitative real-time PCR (qRT-PCR) analysis in leaf development period, belongs to S-domain receptor-like protein kinases gene and probably to be a main gene regulating flag leaf width of japonica rice. The results of this study provide valuable resources for mining the main genes/QTLs of japonica rice leaf development and molecular breeding of japonica rice ideal leaf shape.
Collapse
|
30
|
Karahara I, Horie T. Functions and structure of roots and their contributions to salinity tolerance in plants. BREEDING SCIENCE 2021; 71:89-108. [PMID: 33762879 PMCID: PMC7973495 DOI: 10.1270/jsbbs.20123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/15/2020] [Indexed: 05/03/2023]
Abstract
Soil salinity is an increasing threat to the productivity of glycophytic crops worldwide. The root plays vital roles under various stress conditions, including salinity, as well as has diverse functions in non-stress soil environments. In this review, we focus on the essential functions of roots such as in ion homeostasis mediated by several different membrane transporters and signaling molecules under salinity stress and describe recent advances in the impacts of quantitative trait loci (QTLs) or genetic loci (and their causal genes, if applicable) on salinity tolerance. Furthermore, we introduce important literature for the development of barriers against the apoplastic flow of ions, including Na+, as well as for understanding the functions and components of the barrier structure under salinity stress.
Collapse
Affiliation(s)
- Ichirou Karahara
- Department of Biology, Faculty of Science, University of Toyama, Toyama 930-8555, Japan
| | - Tomoaki Horie
- Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
- Corresponding author (e-mail: )
| |
Collapse
|