1
|
Denarié ME, Nielsen UN, Hartley SE, Johnson SN. Silicon-Mediated Interactions Between Plant Antagonists. PLANTS (BASEL, SWITZERLAND) 2025; 14:1204. [PMID: 40284092 PMCID: PMC12030492 DOI: 10.3390/plants14081204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025]
Abstract
The prolonged arms race between plants and their antagonists has resulted in the evolution of multiple plant defence mechanisms to combat attacks by pests and pathogens. Silicon (Si) accumulation occurs mainly in grasses and provides a physical barrier against antagonists. Biochemical pathways may also be involved in Si-mediated plant resistance, although the precise mode of action in this case is less clear. Most studies have focussed on Si-based effects against single attackers. In this review, we consider how Si-based plant resistance operates when simultaneously and/or sequentially attacked by insect herbivores, fungal phytopathogens, and plant parasitic nematodes and how the plant hormones jasmonic acid (JA) and salicylic acid (SA) are involved. Si defence may mediate both intra- and interspecific competition and facilitation. Si has been found to impact plant-mediated interactions between insect herbivores within the same feeding guild and across different feeding guilds, with varying patterns of JA and SA. These results suggest that hormonal crosstalk may play a role in the Si-mediated effects, although this finding varied between studies. While some reports support the notion that JA is linked to Si responses, others indicate that Si supplementation reduces JA production. In terms of phytopathogens, SA has not been found to be involved in Si-mediated defences. Improving our understanding of Si-mediated plant defence could be beneficial for sustainable agriculture under future climates.
Collapse
Affiliation(s)
- Marie-Emma Denarié
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (M.-E.D.); (U.N.N.)
| | - Uffe N. Nielsen
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (M.-E.D.); (U.N.N.)
| | - Susan E. Hartley
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK;
| | - Scott N. Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (M.-E.D.); (U.N.N.)
| |
Collapse
|
2
|
Tian Y, Dong X, Deng C, Yang D, Ma X, Mu Y. Lead/cadmium impacts on zeolite-tobermorite: Nutrient release and sediment stability. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125688. [PMID: 39862913 DOI: 10.1016/j.envpol.2025.125688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH. Through temperature gradient analyses, batch adsorption experiments at the water-soil interface, and density functional theory (DFT) calculations, the nutrient release mechanisms and the passivation of lead (Pb) and cadmium (Cd) by Z-TOBs were comprehensively investigated. The findings indicated that the release of silicon, calcium, and potassium nutrients from Z-TOBs was influenced by both ambient temperature and Pb and Cd concentrations. As the ambient temperature increased, the release patterns of different nutrients from Z-TOBs varied significantly, and the release of Pb and Cd was enhanced; however, the adsorption capacity for Pb consistently exceeded that for Cd. The passivation effect of soil amended with Z-TOBs on Pb remained stronger than that on Cd, significantly impacting the release of silicon. Characterization results revealed that silicon participated in the formation of silicon-containing compounds such as Cd2SiO4, CdAl2Si3O12, and Pb3Si2O7. The skew density calculated using DFT indicated that the silicic acid compounds formed with Pb and Cd exhibited greater stability than those formed with CO32- and SO42- groups, with Pb compounds demonstrating superior stability compared to Cd compounds. This study offers both practical and theoretical insights for the comprehensive utilization of high-ash coal slime in mild environments, presenting an alternative pathway for sustainable agricultural development.
Collapse
Affiliation(s)
- Yanfei Tian
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Engineering Research Center of Ecological Mining, Taiyuan, 030024, China
| | - Xianshu Dong
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Shanxi Engineering Research Center of Ecological Mining, Taiyuan, 030024, China.
| | - Chunsheng Deng
- College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan, 030024, China; Key Lab of In-Situ Modification of Deposit Properties for Improving Mining, Ministry of Education of the People's Republic of China, Taiyuan University of Technology, Taiyuan, 030024, China.
| | - Dong Yang
- Key Lab of In-Situ Modification of Deposit Properties for Improving Mining, Ministry of Education of the People's Republic of China, Taiyuan University of Technology, Taiyuan, 030024, China; State Center for Research and Development of Oil Shale Exploitation, Beijing, 100083, China
| | - Xiaoya Ma
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Yanze Mu
- Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
3
|
Pang Z, de Tombeur F, Hartley SE, Zohner CM, Nikolic M, Violle C, Mo L, Crowther TW, Guan DX, Luo Z, Zhu YG, Wang Y, Zhang P, Peng H, Strömberg CAE, Nikolic N, Liang Y. Convergent evidence for the temperature-dependent emergence of silicification in terrestrial plants. Nat Commun 2025; 16:1155. [PMID: 39880833 PMCID: PMC11779819 DOI: 10.1038/s41467-025-56438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/10/2025] [Indexed: 01/31/2025] Open
Abstract
Research on silicon (Si) biogeochemistry and its beneficial effects for plants has received significant attention over several decades, but the reasons for the emergence of high-Si plants remain unclear. Here, we combine experimentation, field studies and analysis of existing databases to test the role of temperature on the expression and emergence of silicification in terrestrial plants. We first show that Si is beneficial for rice under high temperature (40 °C), but harmful under low temperature (0 °C), whilst a 2 °C increase results in a 37% increase in leaf Si concentrations. We then find that, globally, the average distribution temperature of high-Si plant clades is 1.2 °C higher than that of low-Si clades. Across China, leaf Si concentrations increase with temperature in high-Si plants (wheat and rice), but not in low-Si plants (weeping willow and winter jasmine). From an evolutionary perspective, 77% of high-Si families (>10 mg Si g-1 DW) originate during warming episodes, while 86% of low-Si families (<1 mg Si g-1 DW) originate during cooling episodes. On average, Earth's temperature during the emergence of high-Si families is 3 °C higher than that of low-Si families. Taken together, our evidence suggests that plant Si variation is closely related to global and long-term climate change.
Collapse
Affiliation(s)
- Zhihao Pang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Félix de Tombeur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Sue E Hartley
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, 8092, Switzerland
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Lidong Mo
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, 8092, Switzerland
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, 8092, Switzerland
| | - Dong-Xing Guan
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongkui Luo
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yuxiao Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Ping Zhang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongyun Peng
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | | | - Nina Nikolic
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia.
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Puppe D, Busse J, Stein M, Kaczorek D, Buhtz C, Schaller J. Silica Accumulation in Potato ( Solanum tuberosum L.) Plants and Implications for Potato Yield Performance-Results from Field Experiments in Northeast Germany. BIOLOGY 2024; 13:828. [PMID: 39452136 PMCID: PMC11503998 DOI: 10.3390/biology13100828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
The potato is the most important non-cereal food crop, and thus improving potato growth and yield is the focus of agricultural researchers and practitioners worldwide. Several studies reported beneficial effects of silicon (Si) fertilization on potato performance, although plant species from the family Solanaceae are generally considered to be non-Si-accumulating. We used results from two field experiments in the temperate zone to gain insight into silica accumulation in potato plants, as well as corresponding long-term potato yield performance. We found relatively low Si contents in potato leaves and roots (up to 0.08% and 0.3% in the dry mass, respectively) and negligible Si contents in potato tuber skin and tuber flesh for plants grown in soils with different concentrations of plant-available Si (field experiment 1). Moreover, potato yield was not correlated to plant-available Si concentrations in soils in the long term (1965-2015, field experiment 2). Based on our results, we ascribe the beneficial effects of Si fertilization on potato growth and yield performance reported in previous studies mainly to antifungal/osmotic effects of foliar-applied Si fertilizers and to changes in physicochemical soil properties (e.g., enhanced phosphorus availability and water-holding capacity) caused by soil-applied Si fertilizers.
Collapse
Affiliation(s)
- Daniel Puppe
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Jacqueline Busse
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Mathias Stein
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Danuta Kaczorek
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
- Department of Soil Science, Warsaw University of Life Sciences (SGGW), 02-776 Warsaw, Poland
| | - Christian Buhtz
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), 15374 Müncheberg, Germany
| |
Collapse
|
5
|
Lu X, Zheng D, Feng N, Zhou G, Khan A, Zhao H, Deng P, Zhou H, Lin F, Chen Z. Metabolic Adaptations in Rapeseed: Hemin-Induced Resilience to NaCl Stress by Enhancing Growth, Photosynthesis, and Cellular Defense Ability. Metabolites 2024; 14:57. [PMID: 38248860 PMCID: PMC10818378 DOI: 10.3390/metabo14010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This study aimed to investigate whether presoaking with hemin (5 μmol·L-1) could alleviate NaCl stress during rapeseed seedlings' growth and its role in the regulation of photosynthesis. In this experiment, 'HUAYOUZA 62 (HYZ 62)' and 'HUAYOUZA 158R (158R)' were used as materials for pot experiments to study the morphology, photosynthetic characteristics, antioxidant activity, and osmoregulatory factors of seedlings under different salt concentrations, as well as the regulatory effects of hemin-presoaked seeds. Our findings revealed that, compared the control, NaCl stress inhibited the growth of two rapeseed varieties, decreased the seedling emergence rate, and increased the content of malondialdehyde (MDA), the electrolyte leakage rate (EL) and antioxidant enzyme activity. Hemin soaking alleviated the adverse effects of salt stress and increased plant height, root elongation and dry matter accumulation. Compared with all NaCl treatments, hemin significantly enhanced photosynthetic indexes, including a percent increase of 12.99-24.36% and 5.39-16.52% in net photosynthetic rate (Pn), 17.86-48.08% and 8.6-23.44% in stomatal conductivity (Gs), and 15.42-37.94% and 11.09-19.08% in transpiration rate (Tr) for HYZ62 and 158R, respectively. Moreover, hemin soaking also increased antioxidant enzyme activities, including superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX), reducing the malondialdehyde, and thus resulting in the alleviation of oxidative damage caused by NaCl stress. Furthermore, hemin stimulated the formation of soluble protein, which effectively regulated the osmo-protective qualities. The current findings strongly elucidate that hemin soaking could effectively alleviate the negative impacts of NaCl stress by regulating the morphological, photosynthetic, and antioxidant traits. This study provides a new idea regarding the effect of Hemin on the salt tolerance of rapeseed, and provides a basis for the practical application of Hemin in saline-alkali soil to improve the salt tolerance of cultivated rapeseed.
Collapse
Affiliation(s)
- Xutong Lu
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Dianfeng Zheng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Naijie Feng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Guangsheng Zhou
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Aaqil Khan
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Huimin Zhao
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Peng Deng
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Hang Zhou
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Feng Lin
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ziming Chen
- College of Coastal Agriculture Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
6
|
Li S, Xu S, Zheng J, Du H, Li C, Shen S, Liang S, Wang J, Liu H, Yang L, Xin W, Jia Y, Zou D, Zheng H. Joint QTL Mapping and Transcriptome Sequencing Analysis Reveal Candidate Genes for Salinity Tolerance in Oryza sativa L. ssp. Japonica Seedlings. Int J Mol Sci 2023; 24:17591. [PMID: 38139418 PMCID: PMC10743832 DOI: 10.3390/ijms242417591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023] Open
Abstract
Salinity stress is one of the major abiotic stresses affecting crop growth and production. Rice is an important food crop in the world, but also a salt-sensitive crop, and the rice seedling stage is the most sensitive to salt stress, which directly affects the final yield formation. In this study, two RIL populations derived from the crosses of CD (salt-sensitive)/WD (salt-tolerant) and KY131 (salt-sensitive)/XBJZ (salt-tolerant) were used as experimental materials, and the score of salinity toxicity (SST), the relative shoot length (RSL), the relative shoot fresh weight (RSFW), and the relative shoot dry weight (RSDW) were used for evaluating the degree of tolerance under salt stress in different lines. The genetic linkage map containing 978 and 527 bin markers were constructed in two RIL populations. A total of 14 QTLs were detected on chromosomes 1, 2, 3, 4, 7, 9, 10, 11, and 12. Among them, qSST12-1, qSST12-2, and qRSL12 were co-localized in a 140-kb overlap interval on chromosome 12, which containing 16 candidate genes. Furthermore, transcriptome sequencing and qRT-PCR were analyzed in CD and WD under normal and 120 mM NaCl stress. LOC_Os12g29330, LOC_Os12g29350, LOC_Os12g29390, and LOC_Os12g29400 were significantly induced by salt stress in both CD and WD. Sequence analysis showed that LOC_Os12g29400 in the salt-sensitive parents CD and KY131 was consistent with the reference sequence (Nipponbare), whereas the salt-tolerant parents WD and XBJZ differed significantly from the reference sequence both in the promoter and exon regions. The salt-tolerant phenotype was identified by using two T3 homozygous mutant plants of LOC_Os12g29400; the results showed that the score of salinity toxicity (SST) of the mutant plants (CR-3 and CR-5) was significantly lower than that of the wild type, and the seedling survival rate (SSR) was significantly higher than that of the wild type, which indicated that LOC_Os12g29400 could negatively regulate the salinity tolerance of rice at the seedling stage. The results lay a foundation for the analysis of the molecular mechanism of rice salinity tolerance and the cultivation of new rice varieties.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (S.L.); (S.X.); (J.Z.); (H.D.); (C.L.); (S.S.); (S.L.); (J.W.); (H.L.); (L.Y.); (W.X.); (Y.J.); (D.Z.)
| |
Collapse
|
7
|
Aouz A, Khan I, Chattha MB, Ahmad S, Ali M, Ali I, Ali A, Alqahtani FM, Hashem M, Albishi TS, Qari SH, Chatta MU, Hassan MU. Silicon Induces Heat and Salinity Tolerance in Wheat by Increasing Antioxidant Activities, Photosynthetic Activity, Nutrient Homeostasis, and Osmo-Protectant Synthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:2606. [PMID: 37514221 PMCID: PMC10385395 DOI: 10.3390/plants12142606] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023]
Abstract
Modern agriculture is facing the challenges of salinity and heat stresses, which pose a serious threat to crop productivity and global food security. Thus, it is necessary to develop the appropriate measures to minimize the impacts of these serious stresses on field crops. Silicon (Si) is the second most abundant element on earth and has been recognized as an important substance to mitigate the adverse effects of abiotic stresses. Thus, the present study determined the role of Si in mitigating adverse impacts of salinity stress (SS) and heat stress (HS) on wheat crop. This study examined response of different wheat genotypes, namely Akbar-2019, Subhani-2021, and Faisalabad-2008, under different treatments: control, SS (8 dSm-1), HS, SS + HS, control + Si, SS + Si, HS+ Si, and SS + HS+ Si. This study's findings reveal that HS and SS caused a significant decrease in the growth and yield of wheat by increasing electrolyte leakage (EL), malondialdehyde (MDA), and hydrogen peroxide (H2O2) production; sodium (Na+) and chloride (Cl-) accumulation; and decreasing relative water content (RWC), chlorophyll and carotenoid content, total soluble proteins (TSP), and free amino acids (FAA), as well as nutrient uptake (potassium, K; calcium, Ca; and magnesium, Mg). However, Si application offsets the negative effects of both salinity and HS and improved the growth and yield of wheat by increasing chlorophyll and carotenoid contents, RWC, antioxidant activity, TSP, FAA accumulation, and nutrient uptake (Ca, K, and Mg); decreasing EL, electrolyte leakage, MDA, and H2O2; and restricting the uptake of Na+ and Cl-. Thus, the application of Si could be an important approach to improve wheat growth and yield under normal and combined saline and HS conditions by improving plant physiological functioning, antioxidant activities, nutrient homeostasis, and osmolyte accumulation.
Collapse
Affiliation(s)
- Ansa Aouz
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Imran Khan
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Bilal Chattha
- Department of Agronomy, Faculty of Agriculture Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Shahbaz Ahmad
- Department of Entomology, Faculty of Agriculture Sciences, University of the Punjab, Lahore 54000, Pakistan
| | - Muqarrab Ali
- Department of Agronomy, Muhammad Nawaz Shareef University of Agriculture, Multan 66000, Pakistan
| | - Iftikhar Ali
- School of Life Sciences & Center of Novel Biomaterials, The Chinese University of Hong Kong, Shatin, Hong Kong
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Abid Ali
- Department of Agricultural and Food Sciences, University of Bologna, 40127 Bologna, Italy
| | - Fatmah M Alqahtani
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Mohamed Hashem
- Department of Biology, College of Science, King Khalid University, Abha 61413, Saudi Arabia
| | - Tasahil S Albishi
- Biology Department, College of Applied Sciences, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Sameer H Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Muhammad Umer Chatta
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan
| | - Muhammad Umair Hassan
- Research Center on Ecological Sciences, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
8
|
Lu H, Qin S, Zhao J, Pan P, Wang F, Tang S, Chen L, Akhtar K, He B. Silicon inhibits the upward transport of Cd in the first internode of different rice varieties in a Cd stressed farm land. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131860. [PMID: 37343406 DOI: 10.1016/j.jhazmat.2023.131860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/23/2023]
Abstract
Silicon spraying on leaves can reduce the accumulation of cadmium (Cd) in rice grain. However, it has been found that not all rice varieties decrease in Cd content after silicon (Si) application. A field study was conducted to check the performance of Si on the accumulation and transport of Cd in four rice varieties. TY390 and YXY2, having 51.5%- 60.6% Cd content of grain was inhibited by foliar Si, were classified as CRS varieties; BXY9978 and YXYLS, having Cd content of grain is nonresponsive with Si, were classified as CNS varieties. The Cd contents were mainly accumulated in stem, especially in the first stem node. While foliar Si reported no changes in the Cd content of first node in four different rice varieties. Comparing the correlation between Si and Cd contents in the above part of the first internode of CRS and CNS, as well as the relative expression of Cd transport genes in the first internode suggested that first internode was the key site to effect Cd transport through Si application, and OsZIP7 is a key Cd transporter protein responsive to Si, leading to different response of Cd transport and accmulation between the CRS and the CNS varieties of rice.
Collapse
Affiliation(s)
- Huaming Lu
- Guangxi Key Laboratory of Argo-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Shutao Qin
- Guangxi Key Laboratory of Argo-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, PR China; Guangxi Gefeng Environmental Protection Technology Co., Ltd., Guangxi Zhuang Autonomous Region, Nanning 530004, PR China
| | - Junyang Zhao
- Guangxi Key Laboratory of Argo-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, PR China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Peng Pan
- Guangxi Key Laboratory of Argo-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, PR China; Green Food Office of Jilin Province, Changchun, Jilin Province 130033, PR China
| | - Fenglin Wang
- Guangxi Nanning Zhuopu Biological Environmental Protection Technology Co., Ltd. Guangxi Zhuang Autonomous Region, Nanning 530004, PR China
| | - Shide Tang
- Guangxi Key Laboratory of Argo-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Lihong Chen
- Guangxi Key Laboratory of Argo-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Kashif Akhtar
- Guangxi Key Laboratory of Argo-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, PR China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, PR China
| | - Bing He
- Guangxi Key Laboratory of Argo-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
9
|
de Tombeur F, Raven JA, Toussaint A, Lambers H, Cooke J, Hartley SE, Johnson SN, Coq S, Katz O, Schaller J, Violle C. Why do plants silicify? Trends Ecol Evol 2023; 38:275-288. [PMID: 36428125 DOI: 10.1016/j.tree.2022.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/24/2022]
Abstract
Despite seminal papers that stress the significance of silicon (Si) in plant biology and ecology, most studies focus on manipulations of Si supply and mitigation of stresses. The ecological significance of Si varies with different levels of biological organization, and remains hard to capture. We show that the costs of Si accumulation are greater than is currently acknowledged, and discuss potential links between Si and fitness components (growth, survival, reproduction), environment, and ecosystem functioning. We suggest that Si is more important in trait-based ecology than is currently recognized. Si potentially plays a significant role in many aspects of plant ecology, but knowledge gaps prevent us from understanding its possible contribution to the success of some clades and the expansion of specific biomes.
Collapse
Affiliation(s)
- Félix de Tombeur
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France; School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, Australia.
| | - John A Raven
- Division of Plant Science, University of Dundee at the James Hutton Institute, Invergowrie, UK; School of Biological Sciences, The University of Western Australia, Perth, Australia; Climate Change Cluster, Faculty of Science, University of Technology Sydney, Ultimo, Australia
| | - Aurèle Toussaint
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Hans Lambers
- School of Biological Sciences and Institute of Agriculture, The University of Western Australia, Perth, Australia
| | - Julia Cooke
- School of Environment, Earth and Ecosystem Sciences, The Open University, Milton Keynes, UK
| | - Sue E Hartley
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Scott N Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| | - Sylvain Coq
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| | - Ofir Katz
- Dead Sea and Arava Science Center, Mount Masada, Tamar Regional Council, Israel; Eilat Campus, Ben-Gurion University of the Negev, Eilat, Israel
| | - Jörg Schaller
- Leibniz Centre for Agricultural Landscape Research (ZALF), Müncheberg, Germany
| | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
| |
Collapse
|
10
|
Thorne SJ, Maathuis FJM. Reducing potassium deficiency by using sodium fertilisation. STRESS BIOLOGY 2022; 2:45. [PMID: 37676370 PMCID: PMC10441835 DOI: 10.1007/s44154-022-00070-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2023]
Abstract
Potassium (K) is the most abundant cation in the vast majority of plants. It is required in large quantities which, in an agronomic context, typically necessitates application of K in the form of potash or other K fertilisers. Recently, the price of K fertiliser has risen dramatically, a situation that is paralleled by increasing K deficiency of soils around the globe. A potential solution to this problem is to reduce crop K fertiliser dependency by replacing it with sodium (Na) fertiliser which carries a much smaller price tag. In this paper we discuss the physiological roles of K and Na and the implications of Na fertilisation for crop cultivation and soil management. By using greenhouse growth assays we show distinct growth promotion after Na fertilisation in wheat, tomato, oilseed and sorghum. Our results also show that up to 60% of tissue K can be substituted by Na without growth penalty. Based on these data, simple economic models suggest that (part) replacement of K fertiliser with Na fertiliser leads to considerable savings.
Collapse
Affiliation(s)
- Sarah J. Thorne
- Department of Biology, University of Sheffield, Sheffield, S10 2TN UK
| | | |
Collapse
|
11
|
Jiang H, Song Z, Su QW, Wei ZH, Li WC, Jiang ZX, Tian P, Wang ZH, Yang X, Yang MY, Wei XS, Wu ZH. Transcriptomic and metabolomic reveals silicon enhances adaptation of rice under dry cultivation by improving flavonoid biosynthesis, osmoregulation, and photosynthesis. FRONTIERS IN PLANT SCIENCE 2022; 13:967537. [PMID: 35991391 PMCID: PMC9386530 DOI: 10.3389/fpls.2022.967537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Dry cultivation is a new rice crop mode used to alleviate water shortage and develop water-saving agriculture. There is obvious genetic difference compared with drought-tolerant rice. Silicon (Si) plays an important role in plant adaptation to adverse environmental conditions and can significantly improve the drought tolerance and yield of rice. However, the regulatory mechanism via which Si provides plant tolerance or adaptation under dry cultivation is not well understood. The present study investigated the changes in plant growth, photosynthetic gas exchange, and oxidative stress of the rice cultivar "Suijing 18" under dry cultivation. Si improved photosynthetic performance and antioxidant enzyme activity and subsequently reduced lipid peroxidation of rice seedlings, promoted LAI and promoted leaf growth under dry cultivation. Further, transcriptomics combined with quasi-targeted metabolomics detected 1416 and 520 differentially expressed genes (DEGs), 38 and 41 differentially accumulated metabolites (DAMs) in the rice leaves and roots, respectively. Among them, 13 DEGs were involved in flavonoid biosynthesis, promoting the accumulation of flavonoids, anthocyanins, and flavonols in the roots and leaves of rice under dry cultivation. Meanwhile, 14 DEGs were involved in photosynthesis, promoting photosystem I and photosystem II responses, increasing the abundance of metabolites in leaves. On the other hand, 24 DAMs were identified involved in osmoregulatory processes, significantly increasing amino acids and carbohydrates and their derivatives in roots. These results provide new insight into the role of Si in alleviating to adverse environmental, Si enhanced the accumulation of flavonoids and osmoregulatory metabolites, thereby alleviating drought effect on the roots. On the other hand, improving dehydration resistance of leaves, guaranteeing normal photosynthesis and downward transport of organic matter. In conclusion, Si promoted the coordinated action between the above-ground and below-ground plant parts, improved the root/shoot ratio (R/S) of rice and increased the sugar content and enhancing rice adaptability under dry cultivation conditions. The establishment of the system for increasing the yield of rice under dry cultivation provides theoretical and technical support thereby promoting the rapid development of rice in Northeast China, and ensuring national food security.
Collapse
Affiliation(s)
- Hao Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Ze Song
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Qing-Wang Su
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhi-Heng Wei
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Wan-Chun Li
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zi-Xian Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Ping Tian
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhen-Hui Wang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Xue Yang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Mei-Ying Yang
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Xiao-Shuang Wei
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhi-Hai Wu
- College of Agronomy, Jilin Agricultural University, Changchun, China
- National Crop Variety Approval and Characteristic Identification Station, Jilin Agricultural University, Changchun, China
| |
Collapse
|