1
|
Khalid AQ, Zaidan TN, Bhuvanendran S, Magalingam KB, Mohamedahmed SM, Ramdas P, Radhakrishnan AK. Insights into the Anticancer Mechanisms Modulated by Gamma and Delta Tocotrienols in Colorectal Cancers. Nutr Rev 2025; 83:e1295-e1310. [PMID: 39181121 PMCID: PMC11819494 DOI: 10.1093/nutrit/nuae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Colorectal cancer (CRC) is a growing concern all over the world. There has been a concerted effort to identify natural bioactive compounds that can be used to prevent or overcome this condition. Tocotrienols (T3s) are a naturally occurring form of vitamin E known for various therapeutic effects, such as anticancer, antioxidant, neuroprotective, and anti-inflammatory activities. The literature evidence suggests that two T3 analogues, ie, gamma (γ)- and delta (δ)-T3, can modulate cancers via several cancer-related signaling pathways. The aim of this review was to compile and analyze the existing literature on the diverse anticancer mechanisms of γT3 and δT3 exhibited in CRC cells, to showcase the anticancer potential of T3s. Medline was searched for research articles on anticancer effects of γT3 and δT3 in CRC published in the past 2 decades. A total of 38 articles (26 cell-based, 9 animal studies, 2 randomized clinical trials, and 1 scoping review) that report anticancer effects of γT3 and δT3 in CRC were identified. The findings reported in those articles indicate that γT3 and δT3 inhibit the proliferation of CRC cells, induce cell cycle arrest and apoptosis, suppress metastasis, and produce synergistic anticancer effects when combined with well-established anticancer agents. There is preliminary evidence that shows that T3s affect telomerase functions and support anticancer immune responses. γT3 and δT3 have the potential for development as anticancer agents.
Collapse
Affiliation(s)
- Ali Qusay Khalid
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Tabarek Najeeb Zaidan
- Department of Food Science and Nutrition, Faculty of Applied Sciences, UCSI University, UCSI Heights, Cheras, 56000 Kuala Lumpur, Malaysia
| | - Saatheeyavaane Bhuvanendran
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Kasthuri B Magalingam
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Shaza M Mohamedahmed
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Premdass Ramdas
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| | - Ammu K Radhakrishnan
- Food as Medicine Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500 Bandar Sunway, Malaysia
| |
Collapse
|
2
|
Kumareswaran A, Ekeuku SO, Mohamed N, Muhammad N, Hanafiah A, Pang KL, Wong SK, Chew DCH, Chin KY. The Effects of Tocotrienol on Gut Microbiota: A Scoping Review. Life (Basel) 2023; 13:1882. [PMID: 37763286 PMCID: PMC10532613 DOI: 10.3390/life13091882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Gut dysbiosis has been associated with many chronic diseases, such as obesity, inflammatory bowel disease, and cancer. Gut dysbiosis triggers these diseases through the activation of the immune system by the endotoxins produced by gut microbiota, which leads to systemic inflammation. In addition to pre-/pro-/postbiotics, many natural products can restore healthy gut microbiota composition. Tocotrienol, which is a subfamily of vitamin E, has been demonstrated to have such effects. This scoping review presents an overview of the effects of tocotrienol on gut microbiota according to the existing scientific literature. A literature search to identify relevant studies was conducted using PubMed, Scopus, and Web of Science. Only original research articles which aligned with the review's objective were examined. Six relevant studies investigating the effects of tocotrienol on gut microbiota were included. All of the studies used animal models to demonstrate that tocotrienol altered the gut microbiota composition, but none demonstrated the mechanism by which this occurred. The studies induced diseases known to be associated with gut dysbiosis in rats. Tocotrienol partially restored the gut microbiota compositions of the diseased rats so that they resembled those of the healthy rats. Tocotrienol also demonstrated strong anti-inflammatory effects in these animals. In conclusion, tocotrienol could exert anti-inflammatory effects by suppressing inflammation directly or partially by altering the gut microbiota composition, thus achieving its therapeutic effects.
Collapse
Affiliation(s)
- Aswini Kumareswaran
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Sophia Ogechi Ekeuku
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia;
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Alfizah Hanafiah
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia;
| | - Kok-Lun Pang
- Newcastle University Medicine Malaysia, Iskandar Puteri 79200, Malaysia;
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| | - Deborah Chia Hsin Chew
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia; (A.K.); (N.M.); (N.M.); (S.K.W.)
| |
Collapse
|
3
|
Mathew AM, Bhuvanendran S, Nair RS, K Radhakrishnan A. Exploring the anti-inflammatory activities, mechanism of action and prospective drug delivery systems of tocotrienol to target neurodegenerative diseases. F1000Res 2023; 12:338. [PMID: 39291146 PMCID: PMC11406131 DOI: 10.12688/f1000research.131863.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 09/19/2024] Open
Abstract
A major cause of death in the elderly worldwide is attributed to neurodegenerative diseases, such as AD (Alzheimer's disease), PD (Parkinson's disease), ALS (Amyotrophic lateral sclerosis), FRDA (Friedreich's ataxia), VaD (Vascular dementia) etc. These can be caused due to multiple factors such as genetic, physiological problems like stroke or tumor, or even external causes like viruses, toxins, or chemicals. T3s (tocotrienols) exhibit various bioactive properties where it acts as an antioxidant, anti-inflammatory, anti-tumorigenic, and cholesterol lowering agent. Since T3 interferes with and influences several anti-inflammatory mechanisms, it aids in combating inflammatory responses that lead to disease progression. T3s are found to have a profound neuroprotective ability, however, due to their poor oral bioavailability, their full potential could not be exploited. Hence there is a need to explore other drug delivery techniques, especially focusing on aspects of nanotechnology. In this review paper we explore the anti-inflammatory mechanisms of T3 to apply it in the treatment of neurodegenerative diseases and also discusses the possibilities of nano methods of administering tocotrienols to target neurodegenerative diseases.
Collapse
Affiliation(s)
- Angela Maria Mathew
- Department of Life Sciences, CHRIST (Deemed to be University), Bangalore, Karnataka, 560029, India
| | - Saatheeyavaane Bhuvanendran
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Rajesh Sreedharan Nair
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| | - Ammu K Radhakrishnan
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, 47500, Malaysia
| |
Collapse
|
4
|
Borges GSM, Sicard P, de Mello Gomides Loures C, Evangelista FGC, Sales CC, de Paula Sabino A, Fernandes C, Ferreira LAM, Richard S. Tocotrienols-enriched Self-nanoemulsifying Drug Delivery System Enhances the Antileukemic Activity of All-trans Retinoic Acid but not Electrocardiogram Alterations Evoked by Its Combination with Arsenic Trioxide. AAPS PharmSciTech 2023; 24:79. [PMID: 36918482 DOI: 10.1208/s12249-023-02531-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 03/16/2023] Open
Abstract
All-trans retinoic acid and arsenic trioxide are the leading choices for the treatment of acute promyelocytic leukemia. Notwithstanding the impressive differentiative properties of all-trans retinoic acid and the apoptotic properties of arsenic trioxide, some problems still occur in acute promyelocytic leukemia treatment. These problems are due to patients' relapses, mainly related to changes in the ligand-binding domain of RARα (retinoic acid receptor α) and the cardiotoxic effects caused by arsenic trioxide. We previously developed a self-nanoemulsifying drug delivery system enriched with tocotrienols to deliver all-trans retinoic acid (SNEDDS-TRF-ATRA). Herein, we have evaluated if tocotrienols can help revert ATRA resistance in an APL cell line (NB4-R2 compared to sensitive NB4 cells) and mitigate the cardiotoxic effects of arsenic trioxide in a murine model. SNEDDS-TRF-ATRA enhanced all-trans retinoic acid cytotoxicity in NB4-R2 (resistant) cells but not in NB4 (sensitive) cells. Moreover, SNEDDS-TRF-ATRA did not significantly change the differentiative properties of all-trans retinoic acid in both NB4 and NB4-R2 cells. Combined administration of SNEDDS-TRF-ATRA and arsenic trioxide could revert QTc interval prolongation caused by ATO but evoked other electrocardiogram alterations in mice, such as T wave flattening. Therefore, SNEDDS-TRF-ATRA may enhance the antileukemic properties of all-trans retinoic acid but may influence ECG changes caused by arsenic trioxide administration. SNEDDS-TRF-ATRA presents cytotoxicity in resistant APL cells (NB4-R2). Combined administration of ATO and SNEDDS-TRF-ATRA in mice prevented the prolongation of the QTc interval caused by ATO but evoked ECG abnormalities such as T wave flattening.
Collapse
Affiliation(s)
- Gabriel Silva Marques Borges
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Campus Pampulha, Belo Horizonte, Minas Gerais, 6627CEP 31270-901, Brazil.,PhyMedExp, Inserm, University of Montpellier, Montpellier, France
| | - Pierre Sicard
- PhyMedExp, Inserm, University of Montpellier, Montpellier, France.,IPAM, Biocampus, INSERM, CNRS, University of Montpellier, Montpellier, France
| | - Cristina de Mello Gomides Loures
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Camila Campos Sales
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adriano de Paula Sabino
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Christian Fernandes
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Campus Pampulha, Belo Horizonte, Minas Gerais, 6627CEP 31270-901, Brazil
| | - Lucas Antônio Miranda Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais (UFMG), Avenida Antônio Carlos, Campus Pampulha, Belo Horizonte, Minas Gerais, 6627CEP 31270-901, Brazil.
| | - Sylvain Richard
- PhyMedExp, Inserm, University of Montpellier, Montpellier, France. .,IPAM, Biocampus, INSERM, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
5
|
Gao H, Gao L, Rao Y, Qian L, Li M, Wang W. The Gengnianchun recipe attenuates insulin resistance-induced diminished ovarian reserve through inhibiting the senescence of granulosa cells. Front Endocrinol (Lausanne) 2023; 14:1133280. [PMID: 36936173 PMCID: PMC10016225 DOI: 10.3389/fendo.2023.1133280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
INTRODUCTION Insulin resistance (IR) is found in patients with polycystic ovary syndrome (PCOS), but the effects and mechanisms of IR on diminished ovarian reserve (DOR) remain unclear. This study set out to investigate the effects of IR on ovarian reserve; to explore the effects of high concentrations of insulin on the function of ovarian cells in vitro; and to validate the hypothesis that the Gengnianchun recipe (GNC) helps to attenuate DOR caused by IR through reducing the senescence of granulosa cells. METHODS Estrus cycle, follicle count, and sex hormone levels were detected to evaluate ovarian function in mice with IR caused by feeding a high-fat diet (HFD). In addition, KGN cells (human granulosa cell line) were treated with high concentrations of insulin. The staining for senescence-associatedβ-galactosidase (SA-β-gal), cell cycle, and expression levels of mRNA and gene proteins related to cell aging were detected in KGN cells treated with high concentrations of insulin. Mice treated with an HFD were fed metformin, GNC, or saline solution for 6 weeks by oral gavage. HOMA-IR, the area under the curve (AUC) of the oral glucose tolerance test (OGTT), levels of fasting blood glucose (FBG), and fasting serum insulin (FINS) were examined to confirm the IR status. Then estrus cycle, follicle count, and sex hormone levels were detected to evaluate ovarian function. Expression levels of mRNA and gene proteins related to cell aging were detected in the ovarian tissue of mice in each group. RESULTS The results demonstrated that IR reduced murine ovarian reserves, and high doses of insulin caused granulosa cells to senesce. There was a considerable improvement in HFD-induced IR status in the metformin (Met) and GNC treatment groups. In addition, the expression levels of aging-associated biomarkers were much lower in GNC mice than Met mice; and both the latter groups had considerably lower levels than the HFD group. Moreover, higher follicle counts in different stages and shorter diestrus in the Met or GNC groups compared to the HFD group indicated that ovarian aging could be largely reversed. DISCUSSION This work showed that: IR impaired ovarian reserve; high concentrations of insulin induced granulosa cell aging; and GNC attenuated ovarian function through inhibiting IR-induced cell aging.
Collapse
Affiliation(s)
- Hongna Gao
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Integrated Traditional & Western Medicine, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Lingyun Gao
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Integrated Traditional & Western Medicine, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yanqiu Rao
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Integrated Traditional & Western Medicine, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Laidi Qian
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Integrated Traditional & Western Medicine, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Mingqing Li
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Integrated Traditional & Western Medicine, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Mingqing Li, ; Wenjun Wang,
| | - Wenjun Wang
- Department of Integrated Traditional & Western Medicine, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
- Department of Integrated Traditional & Western Medicine, Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
- *Correspondence: Mingqing Li, ; Wenjun Wang,
| |
Collapse
|
6
|
Wong SK, Fikri NIA, Munesveran K, Hisham NSN, Lau SHJ, Chin KY, Fahami NAM, Saad QHM, Kamisah Y, Abdullah A, Masbah N, Ima-Nirwana S. Effects of tocotrienol on osteocyte-mediated phosphate metabolism in high-carbohydrate high-fat diet-induced osteoporotic rats. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
7
|
Ranasinghe R, Mathai M, Zulli A. Revisiting the therapeutic potential of tocotrienol. Biofactors 2022; 48:813-856. [PMID: 35719120 PMCID: PMC9544065 DOI: 10.1002/biof.1873] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/13/2022] [Indexed: 12/14/2022]
Abstract
The therapeutic potential of the tocotrienol group stems from its nutraceutical properties as a dietary supplement. It is largely considered to be safe when consumed at low doses for attenuating pathophysiology as shown by animal models, in vitro assays, and ongoing human trials. Medical researchers and the allied sciences have experimented with tocotrienols for many decades, but its therapeutic potential was limited to adjuvant or concurrent treatment regimens. Recent studies have focused on targeted drug delivery by enhancing the bioavailability through carriers, self-sustained emulsions, nanoparticles, and ethosomes. Epigenetic modulation and computer remodeling are other means that will help increase chemosensitivity. This review will focus on the systemic intracellular anti-cancer, antioxidant, and anti-inflammatory mechanisms that are stimulated and/or regulated by tocotrienols while highlighting its potent therapeutic properties in a diverse group of clinical diseases.
Collapse
Affiliation(s)
- Ranmali Ranasinghe
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Michael Mathai
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| | - Anthony Zulli
- Institute of Health and Sport, College of Health and MedicineVictoria UniversityMelbourneVictoriaAustralia
| |
Collapse
|
8
|
Enjoy Carefully: The Multifaceted Role of Vitamin E in Neuro-Nutrition. Int J Mol Sci 2021; 22:ijms221810087. [PMID: 34576251 PMCID: PMC8466828 DOI: 10.3390/ijms221810087] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Vitamin E is often associated with health benefits, such as antioxidant, anti-inflammatory and cholesterol-lowering effects. These properties make its supplementation a suitable therapeutic approach in neurodegenerative disorders, for example, Alzheimer’s or Parkinson’s disease. However, trials evaluating the effects of vitamin E supplementation are inconsistent. In randomized controlled trials, the observed associations often cannot be substantiated. This could be due to the wide variety of study designs regarding the dosage and duration of vitamin E supplementation. Furthermore, genetic variants can influence vitamin E uptake and/or metabolism, thereby distorting its overall effect. Recent studies also show adverse effects of vitamin E supplementation regarding Alzheimer’s disease due to the increased synthesis of amyloid β. These diverse effects may underline the inhomogeneous outcomes associated with its supplementation and argue for a more thoughtful usage of vitamin E. Specifically, the genetic and nutritional profile should be taken into consideration to identify suitable candidates who will benefit from supplementation. In this review, we will provide an overview of the current knowledge of vitamin E supplementation in neurodegenerative disease and give an outlook on individualized, sustainable neuro-nutrition, with a focus on vitamin E supplementation.
Collapse
|
9
|
Dietary Annatto-Extracted Tocotrienol Reduces Inflammation and Oxidative Stress, and Improves Macronutrient Metabolism in Obese Mice: A Metabolic Profiling Study. Nutrients 2021; 13:nu13041267. [PMID: 33924335 PMCID: PMC8069008 DOI: 10.3390/nu13041267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 02/07/2023] Open
Abstract
Obesity and its related complications are a world-wide health problem. Dietary tocotrienols (TT) have been shown to improve obesity-associated metabolic disorders, such as hypercholesterolemia, hyperglycemia, and gut dysbiosis. This study examined the hypothesis that the antioxidant capacity of TT alters metabolites of oxidative stress and improves systemic metabolism. C57BL/6J mice were fed either a high-fat diet (HFD control) or HFD supplemented with 800 mg annatto-extracted TT/kg (HFD+TT800) for 14 weeks. Sera from obese mice were examined by non-targeted metabolite analysis using UHPLC/MS. Compared to the HFD group, the HFD+TT800 group had higher levels of serum metabolites, essential amino acids (lysine and methionine), sphingomyelins, phosphatidylcholine, lysophospholipids, and vitamins (pantothenate, pyridoxamine, pyridoxal, and retinol). TT-treated mice had lowered levels of serum metabolites, dicarboxylic fatty acids, and inflammatory/oxidative stress markers (trimethylamine N-oxide, kynurenate, 12,13-DiHOME, and 13-HODE + 9-HODE) compared to the control. The results suggest that TT supplementation lowered inflammation and oxidative stress (oxidized glutathione and GSH/GSSH) and improved macronutrient metabolism (carbohydrates) in obese mice. Thus, TT actions on metabolites were beneficial in reducing obesity-associated hypercholesterolemia/hyperglycemia. The effects of a non-toxic dose of TT in mice support the potential for clinical applications in obesity and metabolic disease.
Collapse
|
10
|
Gómez-Linton DR, Alavez S, Navarro-Ocaña A, Román-Guerrero A, Pinzón-López L, Pérez-Flores LJ. Achiote (Bixa orellana) Lipophilic Extract, Bixin, and δ-tocotrienol Effects on Lifespan and Stress Resistance in Caenorhabditis elegans. PLANTA MEDICA 2021; 87:368-374. [PMID: 33124008 DOI: 10.1055/a-1266-6674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The onset of many degenerative diseases related to aging has been associated with a decrease in the activity of antistress systems, and pharmacological interventions increasing stress resistance could be effective to prevent the development of such diseases. Achiote is a valuable source of carotenoid and tocotrienols, which have antioxidant activity. In this work, we explore the capacity of an achiote seed extract and its main compounds to modulate the lifespan and antistress responses on Caenorhabditis elegans, as well as the mechanisms involved in these effects. Achiote lipophilic extract, bixin, and δ-tocotrienol were applied on nematodes to carry out lifespan, stress resistance, and fertility assays. The achiote seed extract increased the median and maximum lifespan up to 35% and 27% and increased resistance against oxidative and thermal stresses without adverse effects on fertility. The beneficial effects were mimicked by a bixin+δ-tocotrienol mixture. All the effects on lifespan and stress resistance were independent of caloric restriction but dependent on the insulin/insulin growth factor-1 pathway. This study could provide insights for further research on a new beneficial use of this important crop in health and nutraceutical applications beyond its use as a source of natural pigments.
Collapse
Affiliation(s)
- Darío R Gómez-Linton
- Programa de Doctorado en Biotecnología, Universidad Autónoma Metropolitana-I, Iztapalapa, Ciudad de México, México
| | - Silvestre Alavez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-L, Lerma de Villada, Estado de México, México
| | - Arturo Navarro-Ocaña
- Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angélica Román-Guerrero
- Departamento de Biotecnología, Universidad Autónoma Metropolitana-I, Iztapalapa, Ciudad de México, México
| | | | - Laura J Pérez-Flores
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-I, Iztapalapa, Ciudad de México, México
| |
Collapse
|
11
|
Janubova M, Hatok J, Konarikova K, Zitnanova I. γ- and δ-Tocotrienols interfere with senescence leading to decreased viability of cells. Mol Cell Biochem 2020; 476:897-908. [PMID: 33128213 DOI: 10.1007/s11010-020-03954-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/15/2020] [Indexed: 11/30/2022]
Abstract
Senescence is an irreversible permanent cell cycle arrest accompanied by changes in cell morphology and physiology. Bioactive compounds including tocotrienols (vitamin E) can affect important biological functions. The aim of this study was to investigate how γ- and δ-tocotrienols can affect stress-induced premature senescence. We established two different models of premature stress senescence by induction of senescence with either hydrogen peroxide or etoposide in human lung fibroblasts MRC-5 (ECACC, England). We observed increased percentage of cells with increased SA-β-galactosidase activity, decreased cell viability/proliferation and increased level of p21 in both models. In addition, γ-tocotrienol or δ-tocotrienol (both at concentrations of 150, 200 and 300 μM) were added to the cells along with the inductor of senescence (cotreatment). We have found that this cotreatment led to the decrease of cell viability/proliferation in both models of premature stress senescence, but did not change the percentage of senescent cells. Moreover, we detected no expression of caspase-3 or apoptotic DNA fragmentation in any models of premature stress senescence after the cotreatment with γ- as well as δ-tocotrienols. However, an increased level of autophagic protein LC-3 II was detected in cells with hydrogen peroxide-induced senescence after the cotreatment with γ-tocotrienol as well as δ-tocotrienol. In case of etoposide-induced senescence only δ-tocotrienol cotreatment led to an increased level of LC-3 II protein in cells. According to our work δ-tocotrienol is more effective compound than γ-tocotrienol.
Collapse
Affiliation(s)
- Maria Janubova
- Faculty of Medicine, Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Bratislava, Slovakia.
| | - Jozef Hatok
- Jessenius Faculty of Medicine, Department of Medical Biochemistry, Comenius University, Bratislava, Martin, Slovakia
| | - Katarina Konarikova
- Faculty of Medicine, Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Bratislava, Slovakia
| | - Ingrid Zitnanova
- Faculty of Medicine, Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Comenius University, Bratislava, Slovakia
| |
Collapse
|