1
|
Wu A, Kuforiji A, Zhang Y, Xu D, Perez-Zoghbi J, Emala C, Danielsson J. TMEM16A Antagonism: Therapeutic Potential with Desensitization of β-Agonist Responsiveness in Asthma. Am J Respir Cell Mol Biol 2025; 72:510-519. [PMID: 39560606 PMCID: PMC12051930 DOI: 10.1165/rcmb.2024-0231oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024] Open
Abstract
The efficacy of β-agonists in asthma is severely limited by β-adrenoceptor desensitization, which results in poorly managed symptoms and refractory bronchoconstriction. Thus, there is a need to identify novel therapeutic pathways and to clarify the relationship between novel therapeutics and functional β-adrenoceptor responsiveness. We have previously demonstrated that acute antagonism of the calcium-activated chloride channel, transmembrane member 16A (TMEM16A), relaxes airway smooth muscle (ASM). We sought to determine the efficacy and role of TMEM16A antagonism in the context of desensitization β-adrenoceptor responsiveness. For these studies, we exposed murine tracheal rings on wire myography and precision-cut lung slices to contractile mediators in the presence or absence of TMEM16A antagonists and β-agonists with or without prior β-adrenoceptor desensitization. Contractile studies were also performed with human tracheal and bronchial ASM. Finally, the ability of TMEM16A antagonism to prevent desensitization of β2-adrenoceptor-induced cAMP synthesis was measured in human ASM cells. From these studies, we demonstrate that acute TMEM16A antagonism is effective in relaxing β-agonist-desensitized ASM in central and peripheral murine ASM and human ASM. Furthermore, we demonstrate that chronic pretreatment with TMEM16A antagonists prevents functional desensitization of β-agonist responsiveness in mouse and human upper airways and prevents desensitization of β-agonist-mediated cAMP production in human ASM cells. Taken together, the present study demonstrates a favorable therapeutic profile of TMEM16A antagonism for ASM relaxation despite functional desensitization of β-agonist responsiveness, which may be a novel therapeutic approach in the face of β-adrenoceptor tachyphylaxis.
Collapse
Affiliation(s)
- Amy Wu
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Aisha Kuforiji
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Yi Zhang
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Dingbang Xu
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Jose Perez-Zoghbi
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Charles Emala
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| | - Jennifer Danielsson
- Department of Anesthesiology, Columbia University Vagelos College of Physicians and Surgeons, New York, New York
| |
Collapse
|
2
|
Siricilla S, Hansen CJ, Rogers JH, De D, Simpson CL, Waterson AG, Sulikowski GA, Crockett SL, Boatwright N, Reese J, Paria BC, Newton J, Herington JL. Arrest of mouse preterm labor until term delivery by combination therapy with atosiban and mundulone, a natural product with tocolytic efficacy. Pharmacol Res 2023; 195:106876. [PMID: 37536638 PMCID: PMC10712649 DOI: 10.1016/j.phrs.2023.106876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 07/17/2023] [Accepted: 07/28/2023] [Indexed: 08/05/2023]
Abstract
There is a lack of FDA-approved tocolytics for the management of preterm labor (PL). In prior drug discovery efforts, we identified mundulone and mundulone acetate (MA) as inhibitors of in vitro intracellular Ca2+-regulated myometrial contractility. In this study, we probed the tocolytic potential of these compounds using human myometrial samples and a mouse model of preterm birth. In a phenotypic assay, mundulone displayed greater efficacy, while MA showed greater potency and uterine-selectivity in the inhibition of intracellular-Ca2+ mobilization. Cell viability assays revealed that MA was significantly less cytotoxic. Organ bath and vessel myography studies showed that only mundulone exerted inhibition of myometrial contractions and that neither compounds affected vasoreactivity of ductus arteriosus. A high-throughput combination screen identified that mundulone exhibits synergism with two clinical-tocolytics (atosiban and nifedipine), and MA displayed synergistic efficacy with nifedipine. Of these combinations, mundulone+atosiban demonstrated a significant improvement in the in vitro therapeutic index compared to mundulone alone. The ex vivo and in vivo synergism of mundulone+atosiban was substantiated, yielding greater tocolytic efficacy and potency on myometrial tissue and reduced preterm birth rates in a mouse model of PL compared to each single agent. Treatment with mundulone after mifepristone administration dose-dependently delayed the timing of delivery. Importantly, mundulone+atosiban permitted long-term management of PL, allowing 71% dams to deliver viable pups at term (>day 19, 4-5 days post-mifepristone exposure) without visible maternal and fetal consequences. Collectively, these studies provide a strong foundation for the development of mundulone as a single or combination tocolytic for management of PL.
Collapse
Affiliation(s)
- Shajila Siricilla
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christopher J Hansen
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Jackson H Rogers
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Debasmita De
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Carolyn L Simpson
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alex G Waterson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Gary A Sulikowski
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Stacey L Crockett
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Naoko Boatwright
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeff Reese
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA; Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Bibhash C Paria
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - J Newton
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jennifer L Herington
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
3
|
Siricilla S, Hansen CJ, Rogers JH, De D, Simpson CL, Waterson AG, Sulikowski GA, Crockett SL, Boatwright N, Reese J, Paria BC, Newton J, Herington JL. Arrest of mouse preterm labor until term delivery by combination therapy with atosiban and mundulone, a natural product with tocolytic efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.06.543921. [PMID: 37333338 PMCID: PMC10274706 DOI: 10.1101/2023.06.06.543921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Currently, there is a lack of FDA-approved tocolytics for the management of preterm labor (PL). In prior drug discovery efforts, we identified mundulone and its analog mundulone acetate (MA) as inhibitors of in vitro intracellular Ca 2+ -regulated myometrial contractility. In this study, we probed the tocolytic and therapeutic potential of these small molecules using myometrial cells and tissues obtained from patients receiving cesarean deliveries, as well as a mouse model of PL resulting in preterm birth. In a phenotypic assay, mundulone displayed greater efficacy in the inhibition of intracellular-Ca 2+ from myometrial cells; however, MA showed greater potency and uterine-selectivity, based IC 50 and E max values between myometrial cells compared to aorta vascular smooth muscle cells, a major maternal off-target site of current tocolytics. Cell viability assays revealed that MA was significantly less cytotoxic. Organ bath and vessel myography studies showed that only mundulone exerted concentration-dependent inhibition of ex vivo myometrial contractions and that neither mundulone or MA affected vasoreactivity of ductus arteriosus, a major fetal off-target of current tocolytics. A high-throughput combination screen of in vitro intracellular Ca 2+ -mobilization identified that mundulone exhibits synergism with two clinical-tocolytics (atosiban and nifedipine), and MA displayed synergistic efficacy with nifedipine. Of these synergistic combinations, mundulone + atosiban demonstrated a favorable in vitro therapeutic index (TI)=10, a substantial improvement compared to TI=0.8 for mundulone alone. The ex vivo and in vivo synergism of mundulone and atosiban was substantiated, yielding greater tocolytic efficacy and potency on isolated mouse and human myometrial tissue and reduced preterm birth rates in a mouse model of PL compared to each single agent. Treatment with mundulone 5hrs after mifepristone administration (and PL induction) dose-dependently delayed the timing of delivery. Importantly, mundulone in combination with atosiban (FR 3.7:1, 6.5mg/kg + 1.75mg/kg) permitted long-term management of PL after induction with 30 μg mifepristone, allowing 71% dams to deliver viable pups at term (> day 19, 4-5 days post-mifepristone exposure) without any visible maternal and fetal consequences. Collectively, these studies provide a strong foundation for the future development of mundulone as a stand-alone single- and/or combination-tocolytic therapy for management of PL.
Collapse
|
4
|
ANO4 Expression Is a Potential Prognostic Biomarker in Non-Metastasized Clear Cell Renal Cell Carcinoma. J Pers Med 2023; 13:jpm13020295. [PMID: 36836529 PMCID: PMC9965005 DOI: 10.3390/jpm13020295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Background: Over the past decade, transcriptome profiling has elucidated many pivotal pathways involved in oncogenesis. However, a detailed comprehensive map of tumorigenesis remains an enigma to solve. Propelled research has been devoted to investigating the molecular drivers of clear cell renal cell carcinoma (ccRCC). To add another piece to the puzzle, we evaluated the role of anoctamin 4 (ANO4) expression as a potential prognostic biomarker in non-metastasized ccRCC. Methods: A total of 422 ccRCC patients with the corresponding ANO4 expression and clinicopathological data were obtained from The Cancer Genome Atlas Program (TCGA). Differential expression across several clinicopathological variables was performed. The Kaplan-Meier method was used to assess the impact of ANO4 expression on the overall survival (OS), progression-free interval (PFI), disease-free interval (DFI), and disease-specific survival (DSS). Univariate and multivariate Cox logistic regression analyses were conducted to identify independent factors modulating the aforementioned outcomes. Gene set enrichment analysis (GSEA) was used to discern a set of molecular mechanisms involved in the prognostic signature. Tumor immune microenvironment was estimated using xCell. Results: ANO4 expression was upregulated in tumor samples compared to normal kidney tissue. Albeit the latter finding, low ANO4 expression is associated with advanced clinicopathological variables such as tumor grade, stage, and pT. In addition, low ANO4 expression is linked to shorter OS, PFI, and DSS. Multivariate Cox logistic regression analysis identified ANO4 expression as an independent prognostic variable in OS (HR: 1.686, 95% CI: 1.120-2.540, p = 0.012), PFI (HR: 1.727, 95% CI: 1.103-2.704, p = 0.017), and DSS (HR: 2.688, 95% CI: 1.465-4.934, p = 0.001). GSEA identified the following pathways to be enriched within the low ANO4 expression group: epithelial-mesenchymal transition, G2-M checkpoint, E2F targets, estrogen response, apical junction, glycolysis, hypoxia, coagulation, KRAS, complement, p53, myogenesis, and TNF-α signaling via NF-κB pathways. ANO4 expression correlates significantly with monocyte (ρ = -0.1429, p = 0.0033) and mast cell (ρ = 0.1598, p = 0.001) infiltration. Conclusions: In the presented work, low ANO4 expression is portrayed as a potential poor prognostic factor in non-metastasized ccRCC. Further experimental studies should be directed to shed new light on the exact molecular mechanisms involved.
Collapse
|
5
|
Al-Hosni R, Ilkan Z, Agostinelli E, Tammaro P. The pharmacology of the TMEM16A channel: therapeutic opportunities. Trends Pharmacol Sci 2022; 43:712-725. [PMID: 35811176 DOI: 10.1016/j.tips.2022.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 12/15/2022]
Abstract
The TMEM16A Ca2+-gated Cl- channel is involved in a variety of vital physiological functions and may be targeted pharmacologically for therapeutic benefit in diseases such as hypertension, stroke, and cystic fibrosis (CF). The determination of the TMEM16A structure and high-throughput screening efforts, alongside ex vivo and in vivo animal studies and clinical investigations, are hastening our understanding of the physiology and pharmacology of this channel. Here, we offer a critical analysis of recent developments in TMEM16A pharmacology and reflect on the therapeutic opportunities provided by this target.
Collapse
Affiliation(s)
- Rumaitha Al-Hosni
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Zeki Ilkan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Emilio Agostinelli
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK
| | - Paolo Tammaro
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, UK.
| |
Collapse
|