1
|
Banos G, Girma M, Solomon B, Davoudi P, Esatu W, Dessie T, Psifidi A, Watson K, Hanotte O, Sánchez-Molano E. Growth resilience to weather variation in commercial free-ranging chickens in Ethiopia. BMC Genomics 2025; 26:371. [PMID: 40229704 PMCID: PMC11998408 DOI: 10.1186/s12864-025-11561-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
BACKGROUND The poultry industry in sub-Saharan Africa is a rapidly developing sector mostly based on smallholder farming. Increased demand for poultry-derived products, driven by the growing economy and population, has intensified importations of highly productive exotic breeds and crossbreeding with local ecotypes. However, commercial chickens with exotic genes often struggle to adapt to the local climate under smallholder farmers management. Understanding the chicken response to weather changes is crucial for developing selection schemes that ensure proper adaptation. In the present study, we derived individual phenotypes for growth resilience of commercial free-ranging chickens to changing weather conditions in Ethiopia. In addition, we performed genomic association analyses to assess the genetic background of these phenotypes and identify potential candidate genes of interest. RESULTS Novel resilience phenotypes describing changes in chicken growth profiles in response to weather fluctuation were developed. Variations in daily air temperature, relative humidity and amount of precipitation had the strongest impact on growth. Significant genomic variance was detected for growth resilience to changes in air temperature measurements and a temperature-humidity index. Genomic markers correlated with these resilience traits were mostly located within or near candidate genes associated with lipid metabolism and adipocyte homeostasis. Some of these genes have been previously linked to animal responses to environmental stressors in other species. CONCLUSIONS The phenotypes of growth resilience of chickens to changing weather conditions exhibited significant genomic variation. The outcomes of this study may facilitate the genomic selection of commercial chickens that are not only highly productive, but also capable of maintaining their production levels under varying weather conditions.
Collapse
Grants
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- Grant Agreements OPP1127286 and INV-040641 Bill and Melinda Gates Foundation and with aid from UK Foreign, Commonwealth and Development Office
- 13760629_13760631 Roslin ISP Pump Priming Grant (BBSRC)
Collapse
Affiliation(s)
- Georgios Banos
- Centre for Tropical Livestock Genetics and Health (CTLGH), Scotland's Rural College, Animal and Veterinary Sciences, Easter Bush, Midlothian, EH25 9RG, UK.
| | - Mekonnen Girma
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Bersabhe Solomon
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Pourya Davoudi
- Centre for Tropical Livestock Genetics and Health (CTLGH), Scotland's Rural College, Animal and Veterinary Sciences, Easter Bush, Midlothian, EH25 9RG, UK
| | - Wondmeneh Esatu
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Tadelle Dessie
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
| | - Androniki Psifidi
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- Royal Veterinary College, University of London, London, NW1 0TU, UK
| | - Kellie Watson
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK
| | - Olivier Hanotte
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI, P.O. Box 5689, Addis Ababa, Ethiopia
- School of Life Sciences, University Park, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Enrique Sánchez-Molano
- Centre for Tropical Livestock Genetics and Health (CTLGH), Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, UK.
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, UK.
| |
Collapse
|
2
|
Zhang Y, Zheng Y, Yu W, Yang L, Zhang C, Li S, Li S. ZFAT (isoform-specific) and its antisense RNA 1 (ZFAT-AS1) are two allele-specific monoallelically expressed genes in cattle. Anim Genet 2024; 55:820-824. [PMID: 39231103 DOI: 10.1111/age.13473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/06/2024]
Abstract
In mammals, imprinted genes are characterised by a monoallelic expression, which is based on parental origin and is essential for both foetal and placental development. The ZFAT gene encodes a transcriptional factor, and its non-coding antisense RNA, ZFAT-AS1, overlaps with the ZFAT locus. Both ZFAT and ZFAT-AS1 are maternally imprinted in human placentas. In bovines, the imprinting status of the ZFAT and ZFAT-AS1 genes has yet to be reported. In this study, we analysed the allelic expression of three transcript variants (X1-X3) of the bovine ZFAT and ZFAT-AS1 genes in somatic tissues and placentas using a single nucleotide polymorphism-based method. The results showed that bovine ZFAT exhibited isoform-specific paternal expression. The ZFAT X2 variant exhibited monoallelic expression in the bovine placentas and biallelic expression in the six bovine somatic tissues (heart, liver, spleen, lung, kidney and brain). However, the ZFAT X1 and X3 variants were biallelically expressed in both bovine tissues and placentas. A 311 bp bovine ZFAT-AS1 complementary DNA (cDNA) sequence was obtained by aligning the human ZFAT-AS1 cDNA sequence with the bovine genome and conducting reverse transcription polymerase chain reaction amplification. Bovine ZFAT-AS1 have monoallelic expression in bovine placentas and somatic tissues. In addition, the DNA methylation of two regions was characterised, including the partial promoter, and exon 1 and intron 1 regions of ZFAT, and there were no differentially methylated regions.
Collapse
Affiliation(s)
- Yinjiao Zhang
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - Yunchang Zheng
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - Wenli Yu
- Hebei Cattle Industry Technology Research Institute, Shijiazhuang, China
| | - Lidan Yang
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - Cui Zhang
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| | - Shujing Li
- Hebei Provincial Dairy Cow Breeding Engineering Technology Research Center, Shijiazhuang, China
| | - Shijie Li
- College of Life Science, Agricultural University of Hebei, Baoding, Hebei, China
| |
Collapse
|
3
|
Subramanian S. Purifying Selection Influences the Comparison of Heterozygosities between Populations. BIOLOGY 2024; 13:810. [PMID: 39452119 PMCID: PMC11505596 DOI: 10.3390/biology13100810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024]
Abstract
Heterozygosity is a fundamental measure routinely used to compare between populations to infer the level of genetic variation and their relative effective population sizes. However, such comparison is highly influenced by the magnitude of selection pressure on the genomic regions used. Using over 2 million Single Nucleotide Variants (SNVs) from chimpanzee and mouse populations, this study shows that the heterozygosities estimated using neutrally evolving sites of large populations were two times higher than those of small populations. However, this difference was only ~1.6 times for the heterozygosities estimated using nonsynonymous sites. This suggests an excess in the nonsynonymous heterozygosities due to the segregation of deleterious variants in small populations. This excess in the nonsynonymous heterozygosities of the small populations was estimated to be 23-31%. Further analysis revealed that the magnitude of the excess is modulated by effective population size (Ne) and selection intensity (s). Using chimpanzee populations, this investigation found that the excess in nonsynonymous diversity in the small population was little (6%) when the difference between the Ne values of large and small populations was small (2.4 times). Conversely, this was high (23%) when the difference in Ne was large (5.9 times). Analysis using mouse populations showed that the excess in the nonsynonymous diversity of highly constrained genes of the small population was much higher (38%) than that observed for the genes under relaxed selective constraints (21%). Similar results were observed when the expression levels of genes were used as a proxy for selection intensity. These results emphasize the use of neutral regions, less constrained genes, or lowly expressed genes when comparing the heterozygosities between populations.
Collapse
Affiliation(s)
- Sankar Subramanian
- Centre for Bioinnovation, School of Science, Technology, and Engineering, The University of the Sunshine Coast, Moreton Bay, QLD 4502, Australia
| |
Collapse
|
4
|
Ramasamy U, Elizur A, Subramanian S. Deleterious mutation load in the admixed mice population. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2023.1084502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023] Open
Abstract
Deleterious mutation loads are known to correlate negatively with effective population size (Ne). Due to this reason, previous studies observed a higher proportion of harmful mutations in small populations than that in large populations. However, the mutational load in an admixed population that derived from introgression between individuals from two populations with vastly different Ne is not known. We investigated this using the whole genome data from two subspecies of the mouse (Mus musculus castaneus and Mus musculus musculus) with significantly different Ne. We used the ratio of diversities at nonsynonymous and synonymous sites (dN/dS) to measure the harmful mutation load. Our results showed that this ratio observed for the admixed population was intermediate between those of the parental populations. The dN/dS ratio of the hybrid population was significantly higher than that of M. m. castaneus but lower than that of M. m. musculus. Our analysis revealed a significant positive correlation between the proportion of M. m. musculus ancestry in admixed individuals and their dN/dS ratio. This suggests that the admixed individuals with high proportions of M. m. musculus ancestry have large dN/dS ratios. We also used the proportion of deleterious nonsynonymous SNVs as a proxy for deleterious mutation load, which also produced similar results. The observed results were in concordance with those expected by theory. We also show a shift in the distribution of fitness effects of nonsynonymous SNVs in the admixed genomes compared to the parental populations. These findings suggest that the deleterious mutation load of the admixed population is determined by the proportion of the ancestries of the subspecies. Therefore, it is important to consider the status and the level of genetic admixture of the populations whilst estimating the mutation loads.
Collapse
|
5
|
Yao Y, Liu S, Xia C, Gao Y, Pan Z, Canela-Xandri O, Khamseh A, Rawlik K, Wang S, Li B, Zhang Y, Pairo-Castineira E, D’Mellow K, Li X, Yan Z, Li CJ, Yu Y, Zhang S, Ma L, Cole JB, Ross PJ, Zhou H, Haley C, Liu GE, Fang L, Tenesa A. Comparative transcriptome in large-scale human and cattle populations. Genome Biol 2022; 23:176. [PMID: 35996157 PMCID: PMC9394047 DOI: 10.1186/s13059-022-02745-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cross-species comparison of transcriptomes is important for elucidating evolutionary molecular mechanisms underpinning phenotypic variation between and within species, yet to date it has been essentially limited to model organisms with relatively small sample sizes. RESULTS Here, we systematically analyze and compare 10,830 and 4866 publicly available RNA-seq samples in humans and cattle, respectively, representing 20 common tissues. Focusing on 17,315 orthologous genes, we demonstrate that mean/median gene expression, inter-individual variation of expression, expression quantitative trait loci, and gene co-expression networks are generally conserved between humans and cattle. By examining large-scale genome-wide association studies for 46 human traits (average n = 327,973) and 45 cattle traits (average n = 24,635), we reveal that the heritability of complex traits in both species is significantly more enriched in transcriptionally conserved than diverged genes across tissues. CONCLUSIONS In summary, our study provides a comprehensive comparison of transcriptomes between humans and cattle, which might help decipher the genetic and evolutionary basis of complex traits in both species.
Collapse
Affiliation(s)
- Yuelin Yao
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, EH4 2XU Edinburgh, UK
- School of Informatics, The University of Edinburgh, Edinburgh, EH8 9AB UK
| | - Shuli Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland 20705 USA
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Charley Xia
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG UK
- Department of Psychology, 7 George Square, The University of Edinburgh, Edinburgh, EH8 9JZ UK
| | - Yahui Gao
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland 20705 USA
- Department of Animal and Avian Sciences, University of Maryland, College Park, MA 20742 USA
| | - Zhangyuan Pan
- Department of Animal Science, University of California, Davis, CA 95616 USA
- Present address: Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Oriol Canela-Xandri
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Ava Khamseh
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, EH4 2XU Edinburgh, UK
- School of Informatics, The University of Edinburgh, Edinburgh, EH8 9AB UK
| | - Konrad Rawlik
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG UK
| | - Sheng Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223 Yunnan China
| | - Bingjie Li
- Scotland’s Rural College (SRUC), Roslin Institute Building, Midlothian, EH25 9RG UK
| | - Yi Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Erola Pairo-Castineira
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, EH4 2XU Edinburgh, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG UK
| | - Kenton D’Mellow
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, EH4 2XU Edinburgh, UK
| | - Xiujin Li
- Guangdong Provincial Key Laboratory of Waterfowl Healthy Breeding, College of Animal Science & Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225 Guangdong China
| | - Ze Yan
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Cong-jun Li
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland 20705 USA
| | - Ying Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Shengli Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Li Ma
- Department of Animal and Avian Sciences, University of Maryland, College Park, MA 20742 USA
| | - John B. Cole
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland 20705 USA
| | - Pablo J. Ross
- Department of Animal Science, University of California, Davis, CA 95616 USA
| | - Huaijun Zhou
- Department of Animal Science, University of California, Davis, CA 95616 USA
| | - Chris Haley
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, EH4 2XU Edinburgh, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG UK
| | - George E. Liu
- Animal Genomics and Improvement Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, Agricultural Research Service, USDA, Beltsville, Maryland 20705 USA
| | - Lingzhao Fang
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, EH4 2XU Edinburgh, UK
- Present address: Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Albert Tenesa
- MRC Human Genetics Unit at the Institute of Genetics and Cancer, The University of Edinburgh, EH4 2XU Edinburgh, UK
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG UK
| |
Collapse
|