1
|
Rodas PI, Álamos-Musre AS, Álvarez FP, Escobar A, Tapia CV, Osorio E, Otero C, Calderón IL, Fuentes JA, Gil F, Paredes-Sabja D, Christodoulides M. The NarE protein of Neisseria gonorrhoeae catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion. FEMS Microbiol Lett 2016; 363:fnw181. [PMID: 27465490 PMCID: PMC5812539 DOI: 10.1093/femsle/fnw181] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/12/2016] [Accepted: 07/21/2016] [Indexed: 12/18/2022] Open
Abstract
The ADP-ribosylating enzymes are encoded in many pathogenic bacteria in order to affect essential functions of the host. In this study, we show that Neisseria gonorrhoeae possess a locus that corresponds to the ADP-ribosyltransferase NarE, a previously characterized enzyme in N. meningitidis The 291 bp coding sequence of gonococcal narE shares 100% identity with part of the coding sequence of the meningococcal narE gene due to a frameshift previously described, thus leading to a 49-amino-acid deletion at the N-terminus of gonococcal NarE protein. However, we found a promoter region and a GTG start codon, which allowed expression of the protein as demonstrated by RT-PCR and western blot analyses. Using a gonococcal NarE-6xHis fusion protein, we demonstrated that the gonococcal enzyme underwent auto-ADP-ribosylation but to a lower extent than meningococcal NarE. We also observed that gonoccocal NarE exhibited ADP-ribosyltransferase activity using agmatine and cell-free host proteins as ADP-ribose acceptors, but its activity was inhibited by human β-defensins. Taken together, our results showed that NarE of Neisseria gonorrhoeae is a functional enzyme that possesses key features of bacterial ADP-ribosylating enzymes.
Collapse
Affiliation(s)
- Paula I Rodas
- Center for Integrative Medicine and Innovative Sciences, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - A Said Álamos-Musre
- Center for Integrative Medicine and Innovative Sciences, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Francisca P Álvarez
- Center for Integrative Medicine and Innovative Sciences, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Escobar
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Cecilia V Tapia
- Laboratorio Clínica Dávila, Santiago, Chile Laboratorio de Micología Médica, Programa de Microbiología y Micología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Eduardo Osorio
- Servicio de Ginecología y Obstetricia, Clínica Dávila, Santiago, Chile
| | - Carolina Otero
- Center for Integrative Medicine and Innovative Sciences, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile
| | - Iván L Calderón
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Juan A Fuentes
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Fernando Gil
- Laboratorio de Genética y Patogénesis Bacteriana, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Daniel Paredes-Sabja
- Microbiota-Host Interactions and Clostridia Research Group, Departamento de Ciencias Biológicas, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile Center for Bioinformatics and Integrative Biology, Facultad de Ciencias Biológicas, Universidad Andres Bello, Santiago, Chile
| | - Myron Christodoulides
- Neisseria Research Group, Molecular Microbiology, Sir Henry Wellcome Laboratories, Clinical and Experimental Sciences, University of Southampton Faculty of Medicine, Southampton, England
| |
Collapse
|
2
|
Interleukin-1β effect on the endogenous ADP-ribosylation and phosphorylation of eukaryotic elongation factor 2. Cytotechnology 2016; 68:2659-2666. [PMID: 27510652 DOI: 10.1007/s10616-016-9990-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 05/26/2016] [Indexed: 10/21/2022] Open
Abstract
Eukaryotic elongation factor 2 (eEF2) plays an important role in eukaryotic polypeptide chain elongation. Adenosine diphosphate (ADP)-ribosylation is a post-translational modification reaction that catalyzes the transfer of ADP-ribose group to eEF2 and this causes the inhibition of protein synthesis. Indeed, in the absence of diptheria toxin, endogenous ADP-ribosylation can occur. eEF2 is phosphorylated by eEF2 kinase which prevents binding to ribosomes thus inhibiting its activity. Increase in endogenous ADP-ribosylation level approximately 70-75 % was observed in IL-1β treated HUVECs. Moreover, a 70 % rise of phosphorylation of eEF2 was measured. Alteration of endogenous ADP-ribosylation of eEF2 activity was related with cellular mono-ADP-ribosyltransferases (ADPrT). Increment of endogenous ADP-ribosylation on eEF2 did not seem to occur as a direct effect of IL-1β; it arises from the activation of ADPrT. This 2.5 fold increase was abolished by ADPrT inhibitors. Due to these post-translational modifications, global protein synthesis is inhibited. After dephosphorylation of phospho-eEF2, around 20 % increase in protein synthesis was observed. In conclusion, systemic IL-1β has an important role in the regulation of global protein synthesis.
Collapse
|
3
|
Sung VMH. Mechanistic overview of ADP-ribosylation reactions. Biochimie 2015; 113:35-46. [PMID: 25828806 DOI: 10.1016/j.biochi.2015.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 03/20/2015] [Indexed: 10/23/2022]
Abstract
ADP-ribosylation reactions consist of mono-ADP-ribosylation, poly-ADP-ribosylation and cyclic ADP-ribosylation. These reactions play essential roles in many important physiological and pathophysiological events. The types of chemical linkages, the evolutionarily conserved motif within the enzymes to determine the target specificity, stereochemistry of the ADP-ribosylated products, and the chemical reactions taking place among the enzymes and substrates are discussed.
Collapse
Affiliation(s)
- Vicky M-H Sung
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Harvard University, MA 02115, USA.
| |
Collapse
|