1
|
Feng B, Zhang J, Liu Z, Xu Y, Hu H. Discovery and biological evaluation of novel dual PTP1B and ACP1 inhibitors for the treatment of insulin resistance. Bioorg Med Chem 2024; 97:117545. [PMID: 38070352 DOI: 10.1016/j.bmc.2023.117545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 12/30/2023]
Abstract
In this study, a virtual screening pipeline comprising ligand-based and structure-based approaches was established and applied for the identification of dual PTP1B and ACP1 inhibitors. As a result, a series of benzoic acid derivatives was discovered, and compound H3 and S6 demonstrated PTP1B and ACP1 inhibitory activity, with IC50 values of 3.5 and 8.2 μM for PTP1B, and 2.5 and 5.2 μM for ACP1, respectively. Molecular dynamics simulations illustrated that H3 interacted with critical residues in the active site, such as Cys215 and Arg221 for PTP1B, and Cys17 and Arg18 for ACP1. Enzymatic kinetic research indicated that identified inhibitors competitively inhibited PTP1B and ACP1. Additionally, cellular assays demonstrated that H3 and S6 effectively increased glucose uptake in insulin-resistant HepG2 cells while displaying very limited cytotoxicity at their effective concentrations. In summary, H3 and S6 represent novel dual-target inhibitors for PTP1B and ACP1, warranting further investigation as potential agents for the treatment of diabetes.
Collapse
Affiliation(s)
- Bo Feng
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Jie Zhang
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhen Liu
- Department of Neurology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Yuan Xu
- Department of Pharmacy, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China.
| | - Huabin Hu
- Centre for Cancer Drug Discovery, Division of Cancer Therapeutics, The Institute of Cancer Research, London, UK; Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, BMC, Box 596, SE-751 24 Uppsala, Sweden.
| |
Collapse
|
2
|
Macalalad MAB, Gonzales AA. In Silico Screening and Identification of Antidiabetic Inhibitors Sourced from Phytochemicals of Philippine Plants against Four Protein Targets of Diabetes (PTP1B, DPP-4, SGLT-2, and FBPase). Molecules 2023; 28:5301. [PMID: 37513175 PMCID: PMC10384415 DOI: 10.3390/molecules28145301] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Current oral medications for type 2 diabetes target a single main physiological mechanism. They either activate or inhibit receptors to enhance insulin sensitivity, increase insulin secretion, inhibit glucose absorption, or inhibit glucose production. In advanced stages, combination therapy may be required because of the limited efficacy of single-target drugs; however, medications are becoming more costly, and there is also the risk of developing the combined side effects of each drug. Thus, identifying a multi-target drug may be the best strategy to improve treatment efficacy. This study sees the potential of 2657 Filipino phytochemicals as a source of natural inhibitors against four targets of diabetes: PTP1B, DPP-4, SGLT-2, and FBPase. Different computer-aided drug discovery techniques, including ADMET profiling, DFT optimization, molecular docking, MD simulations, and MM/PBSA energy calculations, were employed to elucidate the stability and determine the binding affinity of the candidate ligands. Through in silico methods, we have identified seven potential natural inhibitors against PTP1B, DPP-4, and FBPase, and ten against SGLT-2. Eight plants containing at least one natural inhibitor of each protein target were also identified. It is recommended to further investigate the plants' potential to be transformed into a safe and scientifically validated multi-target drug for diabetes therapies.
Collapse
Affiliation(s)
- Mark Andrian B Macalalad
- Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Metro Manila, Philippines
| | - Arthur A Gonzales
- Department of Chemical Engineering, University of the Philippines Diliman, Quezon City 1101, Metro Manila, Philippines
| |
Collapse
|
3
|
The Structure, Function and Regulation of Protein Tyrosine Phosphatase Receptor Type J and Its Role in Diseases. Cells 2022; 12:cells12010008. [PMID: 36611803 PMCID: PMC9818648 DOI: 10.3390/cells12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Protein tyrosine phosphatase receptor type J (PTPRJ), also known as DEP-1, HPTPη, or CD148, belongs to the R3 subfamily of receptor protein tyrosine phosphatases (RPTPs). It was first identified as an antioncogene due to its protein level being significantly downregulated in most epithelial tumors and cancer cell lines (e.g., colon, lung, thyroid, breast, and pancreas). PTPRJ regulates mouse optic nerve projection by inhibiting the phosphorylation of the erythropoietin-producing hepatocellular carcinoma (Eph) receptor and abelson murine leukemia viral oncogene homolog 1 (c-Abl). PTPRJ is crucial for metabolism. Recent studies have demonstrated that PTPRJ dephosphorylates JAK2 at positions Y813 and Y868 to inhibit leptin signaling. Akt is more phosphorylated at the Ser473 and Thr308 sites in Ptprj-/- mice, suggesting that PTPRJ may be a novel negative regulator of insulin signaling. PTPRJ also plays an important role in balancing the pro- and anti-osteoclastogenic activity of the M-CSF receptor (M-CSFR), and in maintaining NFATc1 expression during the late stages of osteoclastogenesis to promote bone-resorbing osteoclast (OCL) maturation. Furthermore, multiple receptor tyrosine kinases (RTKs) as substrates of PTPRJ are probably a potential therapeutic target for many types of diseases, such as cancer, neurodegenerative diseases, and metabolic diseases, by inhibiting their phosphorylation activity. In light of the important roles that PTPRJ plays in many diseases, this review summarizes the structural features of the protein, its expression pattern, and the physiological and pathological functions of PTPRJ, to provide new ideas for treating PTPRJ as a potential therapeutic target for related metabolic diseases and cancer.
Collapse
|
4
|
Recent Updates on Development of Protein-Tyrosine Phosphatase 1B Inhibitors for Treatment of Diabetes, Obesity and Related Disorders. Bioorg Chem 2022; 121:105626. [DOI: 10.1016/j.bioorg.2022.105626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/19/2021] [Accepted: 01/13/2022] [Indexed: 01/30/2023]
|
5
|
Salinero S, Uranga L, Talipov M. Efficient Protocol for Expression and Purification of DUSP5. NEW MEXICO JOURNAL OF SCIENCE 2021; 55:12-19. [PMID: 36594902 PMCID: PMC9799713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Dual Specificity Phosphatase 5 (DUSP5) is a human protein that targets specific kinases and dephosphorylates phosphoserine/threonine and phosphotyrosine residues. DUSP5 is found to be involved in cardiovascular diseases and many cancer pathways, including skin and breast cancer. For this reason, availability of an efficient protocol of expression and purification of DUSP proteins can play a crucial role in their studies towards better understanding of the disease process and development of better therapeutic approaches. For example, purification of DUSP5 could be used for the in vitro assays of the inhibitors of DUSP5 identified from the in-silico studies. This report provides the full procedure for protein purification thereby allowing the collection of desired amounts of DUSP5 using Glutathione S-transferase (GST) tag. The described method shows an efficient way to solubilize and purify DUSP5 for further protein studies.
Collapse
Affiliation(s)
| | | | - Marat Talipov
- Corresponding Author: Dr. Marat Talipov, Department of Chemistry, New Mexico State University, 1175 N Horseshoe Dr. Las Cruces, New Mexico 88003,
| |
Collapse
|
6
|
Gupta A, Brahmbhatt J, Syrlybaeva R, Bodnar C, Bodnar N, Bongard R, Pokkuluri PR, Sem DS, Ramchandran R, Rathore R, Talipov MR. Role of Conserved Histidine and Serine in the HCXXXXXRS Motif of Human Dual-Specificity Phosphatase 5. J Chem Inf Model 2019; 59:1563-1574. [PMID: 30835471 DOI: 10.1021/acs.jcim.8b00919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The mitogen-activated protein kinase (MAPK) pathway is functionally generic and critical in maintaining physiological homeostasis and normal tissue development. This pathway is under tight regulation, which is in part mediated by dual-specific phosphatases (DUSPs), which dephosphorylate serine, threonine, and tyrosine residues of the ERK family of proteins. DUSP5 is of high clinical interest because of mutations we identified in this protein in patients with vascular anomalies. Unlike other DUSPs, DUSP5 has unique specificity toward substrate pERK1/2. Using molecular docking and simulation strategies, we previously showed that DUSP5 has two pockets, which are utilized in a specific fashion to facilitate specificity toward catalysis of its substrate pERK1/2. Remarkably, most DUSPs share high similarity in their catalytic sites. Studying the catalytic domain of DUSP5 and identifying amino acid residues that are important for dephosphorylating pERK1/2 could be critical in developing small molecules for therapies targeting DUSP5. RESULTS In this study, we utilized computational modeling to identify and predict the importance of two conserved amino acid residues, H262 and S270, in the DUSP5 catalytic site. Modeling studies predicted that catalytic activity of DUSP5 would be altered if these critical conserved residues were mutated. We next generated independent Glutathione-S-Transferase (GST)-tagged full-length DUSP5 mutant proteins carrying specific mutations H262F and S270A in the phosphatase domain. Biochemical analysis was performed on these purified proteins, and consistent with our computational prediction, we observed altered enzyme activity kinetic profiles for both mutants with a synthetic small molecule substrate (pNPP) and the physiological relevant substrate (pERK) when compared to wild type GST-DUSP5 protein. CONCLUSION Our molecular modeling and biochemical studies combined demonstrate that enzymatic activity of phosphatases can be manipulated by mutating specific conserved amino acid residues in the catalytic site (phosphatase domain). This strategy could facilitate generation of small molecules that will serve as agonists/antagonists of DUSP5 activity.
Collapse
Affiliation(s)
- Ankan Gupta
- Department of Pediatrics, Division of Neonatology, Children's Research Institute (CRI), Developmental Vascular Biology Program , Translational and Biomedical Research Center , 8701 Watertown Plank Road , P.O. Box 26509, Milwaukee , Wisconsin 53226 , United States
| | - Jaladhi Brahmbhatt
- BioTechnology Discovery Research, Lilly Research Laboratories , Eli Lilly and Company , Indianapolis , Indiana 46221 , United States
| | - Raulia Syrlybaeva
- Department of Chemistry & Biochemistry , New Mexico State University , 1175 N. Horseshoe Drive , Las Cruces , New Mexico 88003 , United States
| | - Catherine Bodnar
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences , Concordia University Wisconsin , 12800 North Lake Shore Drive , Mequon , Wisconsin 53907 , United States
| | - Natalia Bodnar
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences , Concordia University Wisconsin , 12800 North Lake Shore Drive , Mequon , Wisconsin 53907 , United States
| | - Robert Bongard
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences , Concordia University Wisconsin , 12800 North Lake Shore Drive , Mequon , Wisconsin 53907 , United States
| | - Phani Raj Pokkuluri
- Biosciences Division , Argonne National Laboratory , Lemont , Illinois 60439 United States
| | - Daniel S Sem
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences , Concordia University Wisconsin , 12800 North Lake Shore Drive , Mequon , Wisconsin 53907 , United States
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Children's Research Institute (CRI), Developmental Vascular Biology Program , Translational and Biomedical Research Center , 8701 Watertown Plank Road , P.O. Box 26509, Milwaukee , Wisconsin 53226 , United States.,Department of Obstetrics and Gynecology , 8701 Watertown Plank Road , P.O. Box 26509, Milwaukee , Wisconsin 53226 , United States
| | - Rajendra Rathore
- Department of Chemistry , Marquette University , Wehr Chemistry Building, P.O. Box 1881, 535 N. 14th Street , Milwaukee , Wisconsin 53201 , United States
| | - Marat R Talipov
- Department of Chemistry & Biochemistry , New Mexico State University , 1175 N. Horseshoe Drive , Las Cruces , New Mexico 88003 , United States
| |
Collapse
|
7
|
Kutty RG, Talipov MR, Bongard RD, Lipinski RAJ, Sweeney NL, Sem DS, Rathore R, Ramchandran R. Dual Specificity Phosphatase 5-Substrate Interaction: A Mechanistic Perspective. Compr Physiol 2017; 7:1449-1461. [PMID: 28915331 DOI: 10.1002/cphy.c170007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The mammalian genome contains approximately 200 phosphatases that are responsible for catalytically removing phosphate groups from proteins. In this review, we discuss dual specificity phosphatase 5 (DUSP5). DUSP5 belongs to the dual specificity phosphatase (DUSP) family, so named after the family members' abilities to remove phosphate groups from serine/threonine and tyrosine residues. We provide a comparison of DUSP5's structure to other DUSPs and, using molecular modeling studies, provide an explanation for DUSP5's mechanistic interaction and specificity toward phospho-extracellular regulated kinase, its only known substrate. We also discuss new insights from molecular modeling studies that will influence our current thinking of mitogen-activated protein kinase signaling. Finally, we discuss the lessons learned from identifying small molecules that target DUSP5, which might benefit targeting efforts for other phosphatases. © 2017 American Physiological Society. Compr Physiol 7:1449-1461, 2017.
Collapse
Affiliation(s)
- Raman G Kutty
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, Wisconsin, USA
| | - Marat R Talipov
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, New Mexico, USA
| | - Robert D Bongard
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, Wisconsin, USA
| | - Rachel A Jones Lipinski
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, Wisconsin, USA.,Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Noreena L Sweeney
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, Wisconsin, USA
| | - Daniel S Sem
- Center for Structure-based Drug Design and Development, Department of Pharmaceutical Sciences, Concordia University of Wisconsin, Mequon, Wisconsin, USA
| | - Rajendra Rathore
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin, USA
| | - Ramani Ramchandran
- Department of Pediatrics, Division of Neonatology, Department of Obstetrics and Gynecology, Developmental Vascular Biology Program, Translational and Biomedical Research Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
8
|
Potential of Icariin Metabolites from Epimedium koreanum Nakai as Antidiabetic Therapeutic Agents. Molecules 2017; 22:molecules22060986. [PMID: 28608833 PMCID: PMC6152727 DOI: 10.3390/molecules22060986] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 01/31/2023] Open
Abstract
The therapeutic properties of Epimedium koreanum are presumed to be due to the flavonoid component icariin, which has been reported to have broad pharmacological potential and has demonstrated anti-diabetic, anti-Alzheimer’s disease, anti-tumor, and hepatoprotective activities. Considering these therapeutic properties of icariin, its deglycosylated icaritin and glycosylated flavonoids (icaeriside II, epimedin A, epimedin B, and epimedin C) were evaluated for their ability to inhibit protein tyrosine phosphatase 1B (PTP1B) and α-glucosidase. The results show that icaritin and icariside II exhibit potent inhibitory activities, with 50% inhibition concentration (IC50) values of 11.59 ± 1.39 μM and 9.94 ± 0.15 μM against PTP1B and 74.42 ± 0.01 and 106.59 ± 0.44 μM against α-glucosidase, respectively. With the exceptions of icaritin and icariside II, glycosylated flavonoids did not exhibit any inhibitory effects in the two assays. Enzyme kinetics analyses revealed that icaritin and icariside II demonstrated noncompetitive-type inhibition against PTP1B, with inhibition constant (Ki) values of 11.41 and 11.66 μM, respectively. Moreover, molecular docking analysis confirmed that icaritin and icariside II both occupy the same site as allosteric ligand. Thus, the molecular docking simulation results were in close agreement with the experimental data with respect to inhibition activity. In conclusion, deglycosylated metabolites of icariin from E. koreanum might offer therapeutic potential for the treatment of type 2 diabetes mellitus.
Collapse
|