1
|
Yang X, Wang C. SGPP2 is activated by SP1 and promotes lung adenocarcinoma progression. Anticancer Drugs 2024; 35:943-951. [PMID: 39514710 DOI: 10.1097/cad.0000000000001648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The late diagnosis and easy metastasis of lung adenocarcinoma (LADC) remains a challenge. SGPP2 is reported to modulate cell processes in many cancers. However, the roles and molecular mechanisms of SGPP2 in LADC are unclear. Online bioinformatics tools GEPIA, CPTAC, and K-M plotter were used to analyze the expression of SGPP2 and the prognosis in LADC. JASPAR and PROMO were used to predict the transcription factors of SGPP2. Real-time quantitative reverse transcription PCR and western blot were used to detect the levels of SGPP2 in LADC cell lines and tissues. Cell counting kit-8, colony formation, flow cytometry, and transwell assay were used to detect cell proliferation, apoptosis, and invasion. The anti-cancer effect of SGPP2 silence was evaluated in the LADC xenograft model. It was found that SGPP2 was highly expressed and related to the poor prognosis of LADC patients. Elevated SGPP2 expression was detected in LADC cell lines and tissues. The chi-square test indicated that the expression of SGPP2 was positively related to tumor, node, metastasis grades and lymph node metastasis. Knocking down SGPP2 significantly inhibited LADC cell viability, and invasion, but induced apoptosis. The anti-tumor effects of SGPP2 were verified in vivo. The upstream transcription factor of SGPP2 was predicted to be SP1, which was highly expressed in LADC tissues and cell lines. Overexpression of SP1 partly rescued the inhibition of SGPP2-shRNA in cell growth, colony formation, and invasion capabilities, and decreased apoptotic cell number in LADC cells. This study demonstrated that SGPP2, activated by SP1, promotes LADC cell proliferation and invasion, and suppresses apoptosis in LADC.
Collapse
Affiliation(s)
- Xi Yang
- Department of Pulmonary and Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang Province, China
| | - Chen Wang
- Department of Respiratory Medicine, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
2
|
Shchulkin AV, Abalenikhina YV, Kosmachevskaya OV, Topunov AF, Yakusheva EN. Regulation of P-Glycoprotein during Oxidative Stress. Antioxidants (Basel) 2024; 13:215. [PMID: 38397813 PMCID: PMC10885963 DOI: 10.3390/antiox13020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
P-glycoprotein (Pgp, ABCB1, MDR1) is an efflux transporter protein that removes molecules from the cells (outflow) into the extracellular space. Pgp plays an important role in pharmacokinetics, ensuring the absorption, distribution, and excretion of drugs and its substrates, as well as in the transport of endogenous molecules (steroid and thyroid hormones). It also contributes to tumor cell resistance to chemotherapy. In this review, we summarize the mechanisms of Pgp regulation during oxidative stress. The currently available data suggest that Pgp has a complex variety of regulatory mechanisms under oxidative stress, involving many transcription factors, the main ones being Nrf2 and Nf-kB. These factors often overlap, and some can be activated under certain conditions, such as the deposition of oxidation products, depending on the severity of oxidative stress. In most cases, the expression of Pgp increases due to increased transcription and translation, but under severe oxidative stress, it can also decrease due to the oxidation of amino acids in its molecule. At the same time, Pgp acts as a protector against oxidative stress, eliminating the causative factors and removing its by-products, as well as participating in signaling pathways.
Collapse
Affiliation(s)
- Aleksey V. Shchulkin
- Pharmacology Department, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (E.N.Y.)
| | - Yulia V. Abalenikhina
- Pharmacology Department, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (E.N.Y.)
| | - Olga V. Kosmachevskaya
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (O.V.K.); (A.F.T.)
| | - Alexey F. Topunov
- Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (O.V.K.); (A.F.T.)
| | - Elena N. Yakusheva
- Pharmacology Department, Ryazan State Medical University, 390026 Ryazan, Russia; (Y.V.A.); (E.N.Y.)
| |
Collapse
|
3
|
Huang Y, Chen F, Sun H, Zhong C. Exploring gene-patient association to identify personalized cancer driver genes by linear neighborhood propagation. BMC Bioinformatics 2024; 25:34. [PMID: 38254011 PMCID: PMC10804660 DOI: 10.1186/s12859-024-05662-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
BACKGROUND Driver genes play a vital role in the development of cancer. Identifying driver genes is critical for diagnosing and understanding cancer. However, challenges remain in identifying personalized driver genes due to tumor heterogeneity of cancer. Although many computational methods have been developed to solve this problem, few efforts have been undertaken to explore gene-patient associations to identify personalized driver genes. RESULTS Here we propose a method called LPDriver to identify personalized cancer driver genes by employing linear neighborhood propagation model on individual genetic data. LPDriver builds personalized gene network based on the genetic data of individual patients, extracts the gene-patient associations from the bipartite graph of the personalized gene network and utilizes a linear neighborhood propagation model to mine gene-patient associations to detect personalized driver genes. The experimental results demonstrate that as compared to the existing methods, our method shows competitive performance and can predict cancer driver genes in a more accurate way. Furthermore, these results also show that besides revealing novel driver genes that have been reported to be related with cancer, LPDriver is also able to identify personalized cancer driver genes for individual patients by their network characteristics even if the mutation data of genes are hidden. CONCLUSIONS LPDriver can provide an effective approach to predict personalized cancer driver genes, which could promote the diagnosis and treatment of cancer. The source code and data are freely available at https://github.com/hyr0771/LPDriver .
Collapse
Affiliation(s)
- Yiran Huang
- School of Computer, Electronics and Information, Guangxi University, Nanning, 530004, China
- Key Laboratory of Parallel, Distributed and Intelligent Computing in Guangxi Universities and Colleges, Guangxi University, Nanning, 530004, China
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, 530004, China
| | - Fuhao Chen
- School of Computer, Electronics and Information, Guangxi University, Nanning, 530004, China
| | - Hongtao Sun
- School of Computer, Electronics and Information, Guangxi University, Nanning, 530004, China
| | - Cheng Zhong
- School of Computer, Electronics and Information, Guangxi University, Nanning, 530004, China.
- Key Laboratory of Parallel, Distributed and Intelligent Computing in Guangxi Universities and Colleges, Guangxi University, Nanning, 530004, China.
- Guangxi Key Laboratory of Multimedia Communications and Network Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
4
|
Malsy M, Graf B, Bruendl E, Maier-Stocker C, Bundscherer A. Effect of NFATc2- and Sp1-mediated TNFalpha Regulation on the Proliferation and Migration Behavior of Pancreatic Cancer Cells. Cancer Genomics Proteomics 2023; 20:706-711. [PMID: 38035702 PMCID: PMC10687727 DOI: 10.21873/cgp.20417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND/AIM One in two people will develop a tumor during their lifetime. Adenocarcinoma of the pancreas is one of the most aggressive types of cancer in humans with very poor long-term survival. A central role in the carcinogenesis of pancreatic cancer has been attributed to NFAT transcription factors. Previous studies have identified the transcription factor Sp1 as a binding partner of NFATc2 in pancreatic cancer. Using expression profile analysis, our group was able to identify the tumor necrosis factor TNFalpha as a target gene of the interaction between NFATc2 and Sp1. The present study investigated the effect of TNFalpha over-expression via the transcription factors NFATc2 and Sp1 on the pancreatic cancer cell lines PaTu 8988t and PANC-1. MATERIALS AND METHODS Transient transfection of NFATc2, Sp1, and TNFalpha siRNAs and their effects on the expression were investigated with immunoblot. Cell proliferation was measured with the ELISA BrdU assay. Cell migration was assayed with a Cell Migration Assay Kit using a Boyden chamber. RESULTS Inhibition of the transfection factors NFATc2, Sp1, or TNFalpha by siRNA significantly inhibited proliferation, which was exacerbated when using the combination of NFATc2 and Sp1. TNFalpha was able to counterbalance this effect. In contrast to proliferation, migration of pancreatic cancer cells was increased by inhibiting these transfection factors. CONCLUSION Tumor progression is strongly influenced by transcriptional changes in signaling cascades and oncogene mutations as well as by changes in tumor suppressor genes. Further studies are needed to understand the underlying mechanisms of these processes.
Collapse
Affiliation(s)
- Manuela Malsy
- Department of Anesthesiology, University Medical Center, Regensburg, Germany;
| | - Bernhard Graf
- Department of Anesthesiology, University Medical Center, Regensburg, Germany
| | - Elisabeth Bruendl
- Department of Neurosurgery, University Medical Center, Regensburg, Germany
| | | | - Anika Bundscherer
- Department of Anesthesiology, University Medical Center, Regensburg, Germany
| |
Collapse
|
5
|
Xi P, Ma X, Hu F, Li L, Liu H, Zhou J, Wu W. ROS-Sp1 axis is involved in thermochemotherapy-enhanced sensitivity of pancreatic cancer cells to gemcitabine. Cell Biol Int 2023; 47:1825-1834. [PMID: 37545170 DOI: 10.1002/cbin.12073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/19/2023] [Accepted: 07/09/2023] [Indexed: 08/08/2023]
Abstract
Gemcitabine (GEM)-based chemotherapy represents the first choice for locally unresectable advanced pancreatic cancer, while the benefit is limited due to acquired chemoresistance or drug delivery insufficiency. Hyperthermia treatment potentially improves the clinical efficacy of GEM. However, the underlying mechanism is incompletely revealed. Our study aims to investigate the effect and involved mechanism of thermochemotherapy on cell survival. Pancreatic cancer cells PANC-1 and ASPC-1 were either treated with GEM or thermochemotherapy, then cell viability, apoptosis, migration, invasion, reactive oxygen species (ROS) production, and Sp1 expression were evaluated. The results showed that GEM dose and time-dependently affected cell viability, and 30 μM GEM achieved favorable effect in suppressing cancer cell growth. Meanwhile, hyperthermia preconditioning (43°C for 60 min) 24 h before GEM treatment yielded superior effect than other treatment sequence. GEM caused significant cell apoptosis and proapoptotic genes of both cancer cells, and thermochemotherapy further promoted apoptosis and genes transcription, accompanied by excessive ROS production. Thermochemotherapy was superior to GEM in suppressing cell migration and invasion of pancreatic cancer cells. Meanwhile, GEM significantly reduced Sp1 mRNA and protein and its downstream gene Cox-2, and thermochemotherapy further suppressed their expressions. ROS elimination with N-acetyl-l-cysteine notably neutralizes the suppressive effect of GEM and thermochemotherapy on cell growth and expressions of Sp1 and Cox-2. In conclusion, thermochemotherapy inhibited pancreatic cell viability, migration and invasion, and promoted cell apoptosis by inducing excessive ROS production, which subsequently suppressed Sp1 expression and the downstream Cox-2.
Collapse
Affiliation(s)
- Pan Xi
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi'an, China
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaojuan Ma
- Clinical Medical Research Center, Xi'an No. 3 Hospital, Northwest University Affiliated Hospital, Xi'an, China
| | - Fuquan Hu
- College of Medicine, Bethel University, St. Paul, Minnesota, USA
| | - Liang Li
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Huijuan Liu
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Jing Zhou
- Department of Oncology, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Wenan Wu
- Department of Radiotherapy, Shaanxi Provincial Cancer Hospital, Xi'an, China
| |
Collapse
|
6
|
Meng P, Wang G, Guo H, Jiang T. Identifying cancer driver genes using a two-stage random walk with restart on a gene interaction network. Comput Biol Med 2023; 158:106810. [PMID: 37011433 DOI: 10.1016/j.compbiomed.2023.106810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/08/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
Cancer development and progression are significantly influenced by cancer driver genes. Understanding cancer driver genes and their mechanisms of action is essential for developing effective cancer treatments. As a result, identifying driver genes is important for drug development, cancer diagnosis, and treatment. Here, we present an algorithm to discover driver genes based on the two-stage random walk with restart (RWR), and the modified method for calculating the transition probability matrix in random walk algorithm. First, we performed the first stage of RWR on the whole gene interaction network, in which we employ a new method for calculating the transition probability matrix and extracted the subnetwork based on nodes that had a high correlation with the seed nodes. The subnetwork was then applied to the second stage of RWR and the nodes were re-ranked in the subnetwork. Our approach outperformed existing methods in identifying driver genes. The outcome of the effect of three gene interaction networks, two rounds of random walk, and the seed nodes' sensitivity were all compared at the same time. In addition, we identified several potential driver genes, some of which are involved in driving cancer development. Overall, our method is efficient in various cancer types, significantly outperforms existing methods, and can identify possible driver genes.
Collapse
|
7
|
Development of a 3-MicroRNA Signature and Nomogram for Predicting the Survival of Patients with Uveal Melanoma Based on TCGA and GEO Databases. J Ophthalmol 2022; 2022:9724160. [DOI: 10.1155/2022/9724160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/02/2022] [Accepted: 11/12/2022] [Indexed: 11/24/2022] Open
Abstract
Background. The aim of this study was to apply bioinformatic analysis to develop a robust miRNA signature and construct a nomogram model in uveal melanoma (UM) to improve prognosis prediction. Methods. miRNA and mRNA sequencing data for 80 UM patients were obtained from The Cancer Genome Atlas (TCGA) database. The patients were further randomly assigned to a training set (n = 40, used to identify key miRNAs) and a testing set (n = 40, used to internally verify the signature). Then, miRNAs data of GSE84976 and GSE68828 were downloaded from Gene Expression Omnibus (GEO) database for outside verification. Combining univariate analysis and LASSO methods for identifying a robust miRNA biomarker in training set and the signature was validated in testing set and outside dataset. A prognostic nomogram was constructed and combined with decision curve as well as reduction curve analyses to assess the application of clinical usefulness. Finally, we constructed a miRNA-mRNA regulator network in UM and conducted pathway enrichment analysis according to the mRNAs in the network. Results. In total, a 3-miRNA was identified and validated that can robustly predict UM patients’ survival. According to univariate and multivariate cox analyses, age at diagnosis, tumor node metastasis (TNM) classification, stage, and the 3-miRNA signature significantly correlated with the survival outcomes. These characteristics were used to establish nomogram. The nomogram worked well for predicting 1 and 3 years of overall survival time. The decision curve of nomogram revealed a good clinical usefulness of our nomogram. What’s more, a miRNA-mRNA network was constructed. Pathway enrichment showed that this network was largely involved in mRNA processing, the mRNA surveillance pathway, the spliceosome, and so on. Conclusions. We developed a 3-miRNA biomarker and constructed a prognostic nomogram, which may afford a quantitative tool for predicting the survival of UM. Our finding also provided some new potential targets for the treatment of UM.
Collapse
|
8
|
Deng T, Wang H, Yang C, Zuo M, Ji Z, Bai M, Ning T, Liu R, Wang J, Ge S, Zhang L, Ba Y, Zhang H. Single cell sequencing revealed the mechanism of PD-1 resistance affected by the expression profile of peripheral blood immune cells in ESCC. Front Immunol 2022; 13:1004345. [PMID: 36466860 PMCID: PMC9712746 DOI: 10.3389/fimmu.2022.1004345] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/31/2022] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND Esophageal squamous carcinoma (ESCC) is a highly lethal malignancy with poor prognosis. The effect of transcriptome characteristics of patient immune microenvironment (TME) on the efficacy of immunosuppressive agents is still poorly understood. METHODS Here we extracted and isolated immune cells from peripheral blood of patients with PD-1 monoclonal antibody sensitivity and resistance, and conducted deep single-cell RNA sequencing to describe the baseline landscape of the composition, lineage, and functional status of infiltrating immune cells in peripheral blood of patients with esophageal cancer. RESULTS The transcriptome characteristics of immune cells were comprehensively analyzed, and the dynamic changes of cell percentage, heterogeneity of cell subtypes and interactions between cells were explained. Co-expression and pedigree tracking based on T-cell antigen receptors revealed a significant proportion of highly migratory intertissue-effector T cells. GO and KEGG enrichment pathway Analysis of CD8+ effect-T cells ESCC_S group and ESCC_D1,2 group, found that in the up-regulated enrichment pathway, ESCC_S group enriched more PD-L1 and PD-1 checkpoint pathways expressed in tumors (JUN/NFKBIA/FOS/KRAS/IFNG), which also exist in T cell receptor signaling pathways. MT2A, MT1X and MT1E were differentially expressed in ESCC patients with PD-1 monoclonal antibody resistance, which may be related to the resistance of PD-1 mMAB. CONCLUSIONS This study has an in-depth understanding of the influence of peripheral immune cell infiltration on the sensitivity of monoclonal antibody PD-1 in patients with esophageal cancer, which is helpful to promote the immunotherapy of patients with esophageal cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Haiyang Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin’s Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
9
|
Aberrant transcription factors in the cancers of the pancreas. Semin Cancer Biol 2022; 86:28-45. [PMID: 36058426 DOI: 10.1016/j.semcancer.2022.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/15/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022]
Abstract
Transcription factors (TFs) are essential for proper activation of gene set during the process of organogenesis, differentiation, lineage specificity. Reactivation or dysregulation of TFs regulatory networks could lead to deformation of organs, diseases including various malignancies. Currently, understanding the mechanism of oncogenesis became necessity for the development of targeted therapeutic strategy for different cancer types. It is evident that many TFs go awry in cancers of the pancreas such as pancreatic ductal adenocarcinoma (PDAC) and pancreatic neuroendocrine neoplasms (PanNENs). These mutated or dysregulated TFs abnormally controls various signaling pathways in PDAC and PanNENs including RTK, PI3K-PTEN-AKT-mTOR, JNK, TGF-β/SMAD, WNT/β-catenin, SHH, NOTCH and VEGF which in turn regulate different hallmarks of cancer. Aberrant regulation of such pathways have been linked to the initiation, progression, metastasis, and resistance in pancreatic cancer. As of today, a number of TFs has been identified as crucial regulators of pancreatic cancer and a handful of them shown to have potential as therapeutic targets in pre-clinical and clinical settings. In this review, we have summarized the current knowledge on the role and therapeutic usefulness of TFs in PDAC and PanNENs.
Collapse
|
10
|
Malsy M, Hofer V, Schmidbauer S, Graf B, Bundscherer A. Effects of Ketamine, S-Ketamine and MK 801 on Integrin Beta-3-mediated Cell Migration in Pancreatic Carcinoma. JOURNAL OF CANCER SCIENCE AND CLINICAL THERAPEUTICS 2022; 6:446-451. [PMID: 36777697 PMCID: PMC9910313 DOI: 10.26502/jcsct.5079183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction Pancreatic ductal adenocarcinoma is one of the most aggressive malignancies in humans. The main reason for its unfavourable prognosis is the combination of rapid tumour growth, early-onset metastasis and currently still inadequate diagnostic and therapeutic options. Thus, only very few patients are eligible for radical resection of the primary tumour as the only curative treatment option available so far. In the perioperative period, tumour progression and metastasis are facilitated by the activation of key signalling pathways and the altered regulation of transcription factors. Various tumour entities have shown increased expression of the integrin-3 receptor subunit, which correlates with more rapid tumour progression and metastasis through advanced migration, invasion and proliferation. The influence of perioperative medication and postoperative pain management remains unclear. To investigate the effects of ketamine, s-ketamine and MK 801 on integrin beta-3-mediated cell migration in pancreatic cancer cells in vitro. Methods The effects of ketamine, s-ketamine and MK 801 on integrin beta-3 expression were investigated with immunoblot. Cell migratory potentials were analysed using a Cell Migration Assay Kit with a Boyden chamber, in which cells migrate through a semipermeable membrane under different stimuli. Results Stimulation with ketamine and MK 801 significantly promoted migration in pancreatic cancer cells, increasing the expression of integrin beta-3. Conclusion Novel therapeutic approaches target the effective modulation of specific signalling and transcription pathways. The prerequisite for such 'target therapies' is comprehensive knowledge about the respective carcinogenesis. Further studies are required to identify the underlying disease mechanisms of pancreatic carcinoma.
Collapse
Affiliation(s)
- Manuela Malsy
- Department of Anesthesiology, University Medical Center Regensburg, Germany
| | - Veronika Hofer
- Department of Anesthesiology, University Medical Center Regensburg, Germany
| | | | - Bernhard Graf
- Department of Anesthesiology, University Medical Center Regensburg, Germany
| | - Anika Bundscherer
- Department of Anesthesiology, University Medical Center Regensburg, Germany
| |
Collapse
|
11
|
Expression and Impact of C1GalT1 in Cancer Development and Progression. Cancers (Basel) 2021; 13:cancers13246305. [PMID: 34944925 PMCID: PMC8699795 DOI: 10.3390/cancers13246305] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary C1GalT1 is one of the enzymes that catalyze the addition of sugar residues to proteins (protein glycosylation). It specifically controls the synthesis and formation of a special disaccharide structure Galβ1,3GalNAcα-, which occurs predominately in cancer but rarely in normal cells. Recent studies have shown that C1GalT1 is overexpressed in many common cancers including colon, breast, gastric, lung, head and neck, pancreatic, esophageal, prostate, and hepatocellular cancer. C1GalT1 overexpression is also often associated with poorer prognosis and poorer patient survival. This review summarizes our current understanding of the expression of C1GalT1 in various cancers and discusses the impact of C1GalT change on cancer cell activities in cancer development and progression. Abstract C1GalT1 (T-synthase) is one of the key glycosyltransferases in the biosynthesis of O-linked mucin-type glycans of glycoproteins. It controls the formation of Core-1 disaccharide Galβ1,3GalNAcα- (Thomsen–Friedenreich oncofetal antigen, T or TF antigen) and Core-1-associated carbohydrate structures. Recent studies have shown that C1GalT1 is overexpressed in many cancers of epithelial origin including colon, breast, gastric, head and neck, pancreatic, esophageal, prostate, and hepatocellular cancer. Overexpression of C1GalT1 is often seen to also be associated with poorer prognosis and poorer patient survival. Change of C1GalT1 expression causes glycosylation changes of many cell membrane glycoproteins including mucin proteins, growth factor receptors, adhesion molecules, and death receptors. This leads to alteration of the interactions of these cell surface molecules with their binding ligands, resulting in changes of cancer cell activity and behaviors. This review summarizes our current understanding of the expression of C1GalT1 in various cancers and discusses the impact of C1GalT change on cancer cell activities in cancer development and progression.
Collapse
|
12
|
Rohini M, Vairamani M, Selvamurugan N. TGF-β1-stimulation of NFATC2 and ATF3 proteins and their interaction for matrix metalloproteinase 13 expression in human breast cancer cells. Int J Biol Macromol 2021; 192:1325-1330. [PMID: 34687766 DOI: 10.1016/j.ijbiomac.2021.10.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 09/30/2021] [Accepted: 10/14/2021] [Indexed: 01/25/2023]
Abstract
Activating transcription factor 3 (ATF3), an inducible stress gene, is stimulated by transforming growth factor-beta1 (TGF-β1) in a protracted and relentless manner in human mammary cancer cells (hBC cells; MDA-MB231). The molecular mechanism behind this stable expression of ATF3 via TGF-β1 in MDA-MB231 cells is unknown. This study found that TGF-β1 stimulated the expression of the nuclear factor of activated T Cells 2 (NFATC2) in MDA-MB231 cells and provided evidence of its interaction with ATF3. The functional characterization of NFATC2 in association with ATF3 was determined by silencing of NFATC2 using siRNA. Knock-down of NFATC2 decreased the expression of both ATF3 and its target gene MMP13 (matrix metalloproteinase 13, a critical invasive gene) in hBC cells. Chromatin immunoprecipitation revealed that TGF-β1 promoted NFATC2 binding and NFATC2-ATF3 complex binding at the MMP13 promoter region, whereas silencing of NFATC2 decreased their binding in hBC cells. Thus, we uncovered the mechanism of interaction between NFATC2 and ATF3 regulated by TGF-β1, and NFATC2 acted as a pivotal factor in providing ATF3 stability and further drove MMP13 transcription. Targeting NFATC2 and blocking its association with ATF3 could therefore help to slow the progression of breast cancer.
Collapse
Affiliation(s)
- M Rohini
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - M Vairamani
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India.
| |
Collapse
|
13
|
Lei C, Hou Y, Chen J. Specificity protein 1-activated bone marrow stromal cell antigen 2 accelerates pancreatic cancer cell proliferation and migration. Exp Ther Med 2021; 22:1459. [PMID: 34737799 PMCID: PMC8561758 DOI: 10.3892/etm.2021.10894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Bone marrow stromal cell antigen 2 (BST2) has been reported to act as an oncogene in the tumorigenesis of numerous types of cancer. Bioinformatics analysis has predicted the binding interaction between BST2 and specificity protein 1 (SP1) and the involvement of SP1 in pancreatic cancer. Therefore, the present study set out to verify this interaction and determine how it may affect pancreatic cancer progression. Normal human pancreatic duct epithelial cells (HPDE6-C7) and pancreatic cancer cell lines (SW1990, BxPC3, PANC1 and PSN-1) were selected for western blotting and reverse transcription-quantitative PCR detection of BST2 expression. Colony formation, Cell Counting Kit-8 and wound healing assays were performed to detect the proliferative and migratory abilities of PANC1 cells following transfection with small interfering RNA against BST2. The expression of proliferation and migration markers were assayed using western blotting. Chromatin immunoprecipitation and luciferase reporter assays were employed to verify the bioinformatics prediction of BST2-SP1 binding. PANC1 cell proliferation and migration were analyzed following BST2 knockdown and SP1 overexpression. In comparison with HPDE6-C7 cells, all four pancreatic cancer cell lines were found to exhibit increased BST2 expression levels to varying degrees, with the highest levels observed in PANC1 cells. BST2 knockdown inhibited PANC1 cell colony formation, proliferation and migration. Additionally, SP1 was shown to bind to the BST2 promoter and could promote PANC1 cell proliferation and migration when overexpressed. However, BST2 knockdown rescued SP1 overexpression-induced PANC1 cell colony formation, proliferation and migration. In conclusion, activation of BST2 by the transcription factor SP1 was shown to accelerate pancreatic cancer cell proliferation and migration, suggesting that BST2 and SP1 may be plausible therapeutic targets in targeted therapy for pancreatic cancer.
Collapse
Affiliation(s)
- Chun Lei
- Department of General Surgery, Tongling People's Hospital, Tongling, Anhui 244009, P.R. China.,Department of General Surgery, Tongling People's Hospital Affiliated to Wannan Medical College, Tongling, Anhui 244009, P.R. China.,Department of General Surgery, Tongling Branch of the First Affiliated Hospital of University of Science and Technology of China, Tongling, Anhui 244009, P.R. China
| | - Yafeng Hou
- Department of General Surgery, Tongling People's Hospital, Tongling, Anhui 244009, P.R. China.,Department of General Surgery, Tongling People's Hospital Affiliated to Wannan Medical College, Tongling, Anhui 244009, P.R. China.,Department of General Surgery, Tongling Branch of the First Affiliated Hospital of University of Science and Technology of China, Tongling, Anhui 244009, P.R. China
| | - Jiong Chen
- Department of General Surgery, The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, Anhui 230001, P.R. China
| |
Collapse
|
14
|
Yu Y, Cao F, Xiong Y, Zhou H. SP1 transcriptionally activates NLRP6 inflammasome and induces immune evasion and radioresistance in glioma cells. Int Immunopharmacol 2021; 98:107858. [PMID: 34147913 DOI: 10.1016/j.intimp.2021.107858] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022]
Abstract
Glioma accounts for approximately 80% of all malignant brain tumors. This study aimed to investigate the interaction between specificity protein 1 (SP1) and NLR family pyrin domain containing 6 (NLRP6) and their roles in the activity of glioma cells. Differentially expressed genes in glioma were identified using transcriptome analysis tools, and a protein-protein-interaction network was performed based on the DEGs. SP1 and NLRP6 were abundantly expressed in glioma cells and indicated unfavorable prognosis of patients according to the GEO datasets. SP1could bind to the promoter of NLRP6 and induce its transcriptional activity. Downregulation of SP1 reduced proliferation, migration and invasion of glioma U87 cells in vitro as well as tumorigenesis in vivo. The malignancy of cells was restored after NLRP6 upregulation. Downregulation of SP1 in glioma cells also increased proliferation of CD8+ T cells and the immune activity in U87 cells, and it reduced the radioresistance of U87 cells. However, the immune evasion and radioresistance of glioma cells were restored upon NLRP6 upregulation. NLRP6 mediated the innate immune pathway through an ASC/caspase-1/IL-1β axis. To conclude, this study suggested that SP1 interacts with NLRP6 inflammasome to enhance malignant behaviors, immune evasion and radioresistance in glioma cells.
Collapse
Affiliation(s)
- Yunhu Yu
- Clinical Research Center for Neurological Disease, People's Hospital of Honghuagang District of Zunyi, Zunyi 563000, Guizhou, PR China.
| | - Fang Cao
- Department of Cerebrovascular Disease, The First Affiliated Hospital of Zunyi Medical College, Zunyi 563000, Guizhou, PR China
| | - Yanquan Xiong
- Clinical Research Center for Neurological Disease, People's Hospital of Honghuagang District of Zunyi, Zunyi 563000, Guizhou, PR China
| | - Hang Zhou
- Clinical Research Center for Neurological Disease, People's Hospital of Honghuagang District of Zunyi, Zunyi 563000, Guizhou, PR China
| |
Collapse
|
15
|
Yang J, Wang J, Zhang H, Li C, Chen C, Zhu T. Transcription factor Sp1 is upregulated by PKCι to drive the expression of YAP1 during pancreatic carcinogenesis. Carcinogenesis 2021; 42:344-356. [PMID: 33146712 DOI: 10.1093/carcin/bgaa113] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022] Open
Abstract
Recently, we identified that the atypical protein kinase C isoform ι (PKCι) enhances the expression of Yes-associated protein 1 (YAP1) to promote the tumorigenesis of pancreatic adenocarcinoma harboring mutant KRAS (mu-KRAS). To advance our understanding about underlying mechanisms, we analyze the transcription of YAP1 in pancreatic cancer cells and reveal that transcription factor specificity protein 1 (Sp1) is upregulated by PKCι and subsequently binds to multiple sites in YAP1 promoter to drive the transactivation of YAP1 in pancreatic cancer cells carrying mu-KRAS. The bioinformatics analysis further substantiates that the expression of PKCι, Sp1 and YAP1 is correlated and associated with the stages and prognosis of pancreatic tumors. Moreover, our apoptotic detection data demonstrate that combination of PKCι and Sp1 inhibitors at subtoxic doses displays synergistic effects on inducing apoptosis and reversing the immunosuppression of pancreatic cancer cells, establishing the combination of PKCι and Sp1 inhibitors as a promising novel therapeutic approach, or an adjuvant strategy to potentiate the antitumor effects of other immunotherapeutic agents in pancreatic cancer treatment.
Collapse
Affiliation(s)
- Jinhe Yang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Junli Wang
- Department of Biochemistry, West China School of Basic Medical Sciences & Forensic Medicine, Sichan University, Chengdu, Sichuan, PR China
| | - Hongmei Zhang
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| | - Changlong Li
- Department of Biochemistry, West China School of Basic Medical Sciences & Forensic Medicine, Sichan University, Chengdu, Sichuan, PR China
| | - Changyan Chen
- The Center of Drug Discovery, Northeastern University, Boston, MA, USA
| | - Tongbo Zhu
- Department of Immunology, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan, PR China
| |
Collapse
|
16
|
Mansour MA. SP3 is associated with migration, invasion, and Akt/PKB signalling in MDA-MB-231 breast cancer cells. J Biochem Mol Toxicol 2020; 35:e22657. [PMID: 33113244 DOI: 10.1002/jbt.22657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/06/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022]
Abstract
Specificity proteins (SPs) have pro-oncogenic functions in cancer cells, ranging from cancer cell proliferation, migration, invasion, and angiogenesis. There is strong evidence that several antineoplastic drugs target depletion of SP proteins via different pathways. However, the mode of action of SP3 and the underlying consequences of its depletion are not well understood. Here, we demonstrate that SP3 is overexpressed in invasive breast cancer cells vs normal counterparts. The gene expression analysis from The Cancer Genome Atlas datasets indicated that SP3 is strongly correlated with Akt signalling-related proteins, G protein subunit alpha 13, and RAB33B (RAB33B, member RAS oncogene family). RNA interference of SP3 decreased active phosphorylation of Akt at serine and threonine sites. These findings indicate that SP3 exhibits a pro-oncogenic function, which clearly fits the description of an nononcogene addiction gene. Future analyses are prompted to uncover the SP3 gene regulation function and to reveal downstream targets of SP3 in breast cancer.
Collapse
Affiliation(s)
- Mohammed A Mansour
- Division of Human Sciences, School of Applied Sciences, London South Bank University, London, UK.,Biochemistry Division, Department of Chemistry, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
17
|
Lohse I, Brothers SP. Pathogenesis and Treatment of Pancreatic Cancer Related Pain. Anticancer Res 2020; 40:1789-1796. [PMID: 32234867 DOI: 10.21873/anticanres.14133] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is often diagnosed due to the patient seeking medical attention for abdominal pain. It is among the most painful cancers, with pain severity strongly correlating with prognosis. Perineural invasion is a prominent feature of pancreatic cancer and often the first route of metastasis resulting in neuropathic pain. While surgical pain is present, it is generally short-lived; chemo- and radio-therapy associated side effect pain is often longer lasting and more difficult to manage. Treatment-induced mucositis in response to chemotherapy occurs throughout the GI tract resulting in infection-prone ulcers on the lip, buccal mucosa, palate or tongue. Cisplatin treatment is associated with axonal neuropathy in the dorsal root ganglion, although other large sensory fibers can be affected. Opioid-induced hyperalgesia can also emerge in patients. Along with traditional means to address pain, neurolytic celiac plexus block of afferent nociceptive fibers has been reported to be effective in 74% of patients. Moreover, as cancer treatments become more effective and result in improved survival, treatment-related side effects become more prevalent. Here, pancreatic cancer and treatment associated pain are reviewed along with current treatment strategies. Potential future therapeutic strategies to target the pathophysiology underlying pancreatic cancer and pain induction are also presented.
Collapse
Affiliation(s)
- Ines Lohse
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, U.S.A.,Department of Psychiatry and Behavioral Sciences, University of Miami, FL, U.S.A.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, FL, U.S.A
| | - Shaun P Brothers
- Center for Therapeutic Innovation, Miller School of Medicine, University of Miami, Miami, FL, U.S.A. .,Department of Psychiatry and Behavioral Sciences, University of Miami, FL, U.S.A.,Molecular Therapeutics Shared Resource, Sylvester Comprehensive Cancer Center, University of Miami, FL, U.S.A
| |
Collapse
|
18
|
Liang F, Fu X, Wang L. miR-5590-3p-YY1 feedback loop promotes the proliferation and migration of triple-negative breast cancer cells. J Cell Biochem 2019; 120:18415-18424. [PMID: 31190375 DOI: 10.1002/jcb.29158] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 01/13/2023]
Abstract
Lacking of diagnostic and prognostic biomarkers is a significant reason for the poor prognosis of patients with triple-negative breast cancer (TNBC). MicroRNAs (miRNAs) have been discovered to engage in the tumorigenesis and development of TNBC. miR-5590-3p has been found to be involved in the development of gastric cancer, but its role and underlying mechanism in TNBC remain obscure. In this study, it was discovered that miR-5590-3p was downregulated in TNBC tissues and cells. Function assays confirmed that miR-5590-3p overexpression inhibited cell proliferation, migration, and epithelial-mesenchymal transition (EMT) process as well as promoted cell apoptosis in TNBC. Moreover, YY1 could bind with the promoter of miR-5590-3p and overexpression of YY1 inhibited the transcription of miR-5590-3p. It was found that YY1 acted as a downstream target gene to bind with miR-5590-3p and was negatively regulated by miR-5590-3p. Finally, it was discovered that overexpression of YY1 could partially rescue the miR-5590-3p overexpression-mediated inhibitive effect on TNBC progression. Taken together these results, it can be concluded that miR-5590-3p-YY1 feedback loop promoted the proliferation and migration of TNBC.
Collapse
Affiliation(s)
- Feng Liang
- Department of Anaesthesia, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Xin Fu
- Department of Anaesthesia, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Linlin Wang
- Department of Ultrasonography, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| |
Collapse
|