1
|
Gupta T, Chahota R. Unique ankyrin repeat proteins in the genome of poxviruses-Boon or Wane, a critical review. Gene 2024; 927:148759. [PMID: 38992761 DOI: 10.1016/j.gene.2024.148759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/29/2024] [Accepted: 07/08/2024] [Indexed: 07/13/2024]
Abstract
Ankyrin repeat is a 33-amino acid motif commonly observed in eukaryotes and, to a lesser extent, in prokaryotes and archaea and rarely in viruses. This motif plays a crucial role in regulating various cellular processes like the cell cycle, transcription, cell signaling, and inflammatory responses through interactions between proteins. Poxviruses exhibit a distinctive feature of containing multiple ankyrin repeat proteins within their genomes. All the genera of poxviruses possess these proteins except molluscipox virus, crocodylidpox virus, and red squirrel poxvirus. An intriguing characteristic has generated notable interest in studying the functions of these proteins within poxvirus biology. Within poxviruses, ankyrin repeat proteins exhibit a distinct configuration, featuring ankyrin repeats in the N-terminal region and a cellular F-box homolog in the C-terminal region, which enables interactions with the cellular Skp, Cullin, F-box containing ubiquitin ligase complex. Through the examination of experimental evidences and discussions from current literature, this review elucidates the organization and role of ankyrin repeat proteins in poxviruses. Various research studies have highlighted the significant importance of these proteins in poxviral pathogenesis and, acting as factors that enhance virulence. Consequently, they represent viable targets for developing genetically altered viruses with decreased virulence, thus displaying potential as candidates for vaccines and antiviral therapeutic development contributing to safer and more effective strategies against poxviral infections.
Collapse
Affiliation(s)
- Tania Gupta
- Department of Veterinary Microbiology, Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab, 141012 India; Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062 India
| | - Rajesh Chahota
- Department of Veterinary Microbiology, DGCN College of Veterinary and Animal Sciences, CSK Himachal Pradesh Agricultural University, Palampur, 176062 India.
| |
Collapse
|
2
|
Yang Y, Liu M, Huang Z. Genomic and Expression Analysis of Cassava ( Manihot esculenta Crantz) Chalcone Synthase Genes in Defense against Tetranychus cinnabarinus Infestation. Genes (Basel) 2024; 15:336. [PMID: 38540395 PMCID: PMC10970205 DOI: 10.3390/genes15030336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 06/14/2024] Open
Abstract
Cassava is susceptible to mites, especially Tetranychus cinnabarinus. Secondary metabolism products such as flavonoids play an important role as antimicrobial metabolites protecting plants against biotic stressors including fungal, pathogen, bacterial, and pest defense. The chalcone synthase (CHS) is the initial step of the phenylpropanoid pathway for producing flavonoids and is the gatekeeper of the pathway. Until recently, the CHS genes family has not been systematically studied in cassava. Thirty-nine CHS genes were identified from the cassava genome database. Based on phylogenetic and sequence composition analysis, these CHSs were divided into 3 subfamilies. Within the same subfamily, the gene structure and motif compositions of these CHS genes were found to be quite conserved. Duplication events, particularly segmental duplication of the cassava CHS genes, were identified as one of the main driving force of its expansion. Various cis-elements contained in the promoter might regulate the gene expression patterns of MeCHS. Protein-protein interaction (PPI) network analysis showed that MeCHS1 and MeCHS10 protein are more closely related to other family members. The expression of MeCHS genes in young leaves was higher than that in other tissues, and their expression varies even within the same tissue. Coincidentally, these CHS genes of most LAP subclasses were highly expressed in young leaves. The verified MeCHS genes showed consistent with the real-time reverse transcription quantitative PCR (RT-qPCR) and proteomic expression in protected and affected leaves respectively, indicating that these MeCHS genes play crucial roles in the response to T. cinnabarinus. This study is the first to comprehensively expatiate the information on MeCHS family members. These data will further enhance our understanding both the molecular mechanisms and the effects of CHS genes. In addition, the results will help to further clarify the effects on T. cinnabarinus and provide a theoretical basis for the potential functions of the specific CHS gene in resistance to mites and other biotic stress.
Collapse
Affiliation(s)
- Yanni Yang
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China;
- College of Agronomy, Guangxi University, Nanning 530004, China
| | - Ming Liu
- Guangxi Key Laboratory of Plant Functional Phytochemicals and Sustainable Utilization, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, China;
| | - Zenghui Huang
- Nanning New Technology Entrepreneur Center, Nanning 530007, China;
| |
Collapse
|
3
|
Iqbal M, Lewis SL, Padhye S, Jinwal UK. Updates on Aβ Processing by Hsp90, BRICHOS, and Newly Reported Distinctive Chaperones. Biomolecules 2023; 14:16. [PMID: 38254616 PMCID: PMC10812967 DOI: 10.3390/biom14010016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease (AD) is an extremely devastating neurodegenerative disease, and there is no cure for it. AD is specified as the misfolding and aggregation of amyloid-β protein (Aβ) and abnormalities in hyperphosphorylated tau protein. Current approaches to treat Alzheimer's disease have had some success in slowing down the disease's progression. However, attempts to find a cure have been largely unsuccessful, most likely due to the complexity associated with AD pathogenesis. Hence, a shift in focus to better understand the molecular mechanism of Aβ processing and to consider alternative options such as chaperone proteins seems promising. Chaperone proteins act as molecular caretakers to facilitate cellular homeostasis under standard conditions. Chaperone proteins like heat shock proteins (Hsps) serve a pivotal role in correctly folding amyloid peptides, inhibiting mitochondrial dysfunction, and peptide aggregation. For instance, Hsp90 plays a significant role in maintaining cellular homeostasis through its protein folding mechanisms. In this review, we analyze the most recent studies from 2020 to 2023 and provide updates on Aβ regulation by Hsp90, BRICHOS domain chaperone, and distinctive newly reported chaperones.
Collapse
Affiliation(s)
| | | | | | - Umesh Kumar Jinwal
- Department of Pharmaceutical Sciences, USF-Health Taneja College of Pharmacy, University of South Florida, Tampa, FL 33612, USA; (M.I.)
| |
Collapse
|
4
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Diversity and features of proteins with structural repeats. Biophys Rev 2023; 15:1159-1169. [PMID: 37974986 PMCID: PMC10643770 DOI: 10.1007/s12551-023-01130-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 11/19/2023] Open
Abstract
The review provides information on proteins with structural repeats, including their classification, characteristics, functions, and relevance in disease development. It explores methods for identifying structural repeats and specialized databases. The review also highlights the potential use of repeat proteins as drug design scaffolds and discusses their evolutionary mechanisms.
Collapse
Affiliation(s)
- Evgeniya I. Deryusheva
- Institute for Biological Instrumentation, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Andrey V. Machulin
- Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences”, Pushchino, Russia
| | - Oxana V. Galzitskaya
- Institute of Protein Research of the Russian Academy of Sciences, Pushchino, Russia
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
5
|
Sequence and Structure-Based Analyses of Human Ankyrin Repeats. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020423. [PMID: 35056738 PMCID: PMC8781854 DOI: 10.3390/molecules27020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
Abstract
Ankyrin is one of the most abundant protein repeat families found across all forms of life. It is found in a variety of multi-domain and single domain proteins in humans with diverse number of repeating units. They are observed to occur in several functionally diverse proteins, such as transcriptional initiators, cell cycle regulators, cytoskeletal organizers, ion transporters, signal transducers, developmental regulators, and toxins, and, consequently, defects in ankyrin repeat proteins have been associated with a number of human diseases. In this study, we have classified the human ankyrin proteins into clusters based on the sequence similarity in their ankyrin repeat domains. We analyzed the amino acid compositional bias and consensus ankyrin motif sequence of the clusters to understand the diversity of the human ankyrin proteins. We carried out network-based structural analysis of human ankyrin proteins across different clusters and showed the association of conserved residues with topologically important residues identified by network centrality measures. The analysis of conserved and structurally important residues helps in understanding their role in structural stability and function of these proteins. In this paper, we also discuss the significance of these conserved residues in disease association across the human ankyrin protein clusters.
Collapse
|
6
|
Chakrabarty B, Parekh N. DbStRiPs: Database of structural repeats in proteins. Protein Sci 2022; 31:23-36. [PMID: 33641184 PMCID: PMC8740836 DOI: 10.1002/pro.4052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 01/03/2023]
Abstract
Recent interest in repeat proteins has arisen due to stable structural folds, high evolutionary conservation and repertoire of functions provided by these proteins. However, repeat proteins are poorly characterized because of high sequence variation between repeating units and structure-based identification and classification of repeats is desirable. Using a robust network-based pipeline, manual curation and Kajava's structure-based classification schema, we have developed a database of tandem structural repeats, Database of Structural Repeats in Proteins (DbStRiPs). A unique feature of this database is that available knowledge on sequence repeat families is incorporated by mapping Pfam classification scheme onto structural classification. Integration of sequence and structure-based classifications help in identifying different functional groups within the same structural subclass, leading to refinement in the annotation of repeat proteins. Analysis of complete Protein Data Bank revealed 16,472 repeat annotations in 15,141 protein chains, one previously uncharacterized novel protein repeat family (PRF), named left-handed beta helix, and 33 protein repeat clusters (PRCs). Based on their unique structural motif, ~79% of these repeat proteins are classified in one of the 14 PRFs or 33 PRCs, and the remaining are grouped as unclassified repeat proteins. Each repeat protein is provided with a detailed annotation in DbStRiPs that includes start and end boundaries of repeating units, copy number, secondary and tertiary structure view, repeat class/subclass, disease association, MSA of repeating units and cross-references to various protein pattern databases, human protein atlas and interaction resources. DbStRiPs provides easy search and download options to high-quality annotations of structural repeat proteins (URL: http://bioinf.iiit.ac.in/dbstrips/).
Collapse
Affiliation(s)
- Broto Chakrabarty
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information TechnologyHyderabadIndia
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information TechnologyHyderabadIndia
| |
Collapse
|
7
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Mol Biol 2021. [DOI: 10.1134/s0026893321040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
Rudenko V, Korotkov E. Search for Highly Divergent Tandem Repeats in Amino Acid Sequences. Int J Mol Sci 2021; 22:ijms22137096. [PMID: 34281150 PMCID: PMC8269118 DOI: 10.3390/ijms22137096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/29/2022] Open
Abstract
We report a Method to Search for Highly Divergent Tandem Repeats (MSHDTR) in protein sequences which considers pairwise correlations between adjacent residues. MSHDTR was compared with some previously developed methods for searching for tandem repeats (TRs) in amino acid sequences, such as T-REKS and XSTREAM, which focus on the identification of TRs with significant sequence similarity, whereas MSHDTR detects repeats that significantly diverged during evolution, accumulating deletions, insertions, and substitutions. The application of MSHDTR to a search of the Swiss-Prot databank revealed over 15 thousand TR-containing amino acid sequences that were difficult to find using the other methods. Among the detected TRs, the most representative were those with consensus lengths of two and seven residues; these TRs were subjected to cluster analysis and the classes of patterns were identified. All TRs detected in this study have been combined into a databank accessible over the WWW.
Collapse
Affiliation(s)
- Valentina Rudenko
- Center of Bioengineering Research Center of Biotechnology RAS, 119071 Moscow, Russia;
- Correspondence: ; Tel.: +7-926-7248271
| | - Eugene Korotkov
- Center of Bioengineering Research Center of Biotechnology RAS, 119071 Moscow, Russia;
- Moscow Engineering Physics Institute, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| |
Collapse
|
9
|
|
10
|
Chakrabarty B, Naganathan V, Garg K, Agarwal Y, Parekh N. NAPS update: network analysis of molecular dynamics data and protein-nucleic acid complexes. Nucleic Acids Res 2020; 47:W462-W470. [PMID: 31106363 PMCID: PMC6602509 DOI: 10.1093/nar/gkz399] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/30/2019] [Accepted: 05/07/2019] [Indexed: 02/04/2023] Open
Abstract
Network theory is now a method of choice to gain insights in understanding protein structure, folding and function. In combination with molecular dynamics (MD) simulations, it is an invaluable tool with widespread applications such as analyzing subtle conformational changes and flexibility regions in proteins, dynamic correlation analysis across distant regions for allosteric communications, in drug design to reveal alternative binding pockets for drugs, etc. Updated version of NAPS now facilitates network analysis of the complete repertoire of these biomolecules, i.e., proteins, protein–protein/nucleic acid complexes, MD trajectories, and RNA. Various options provided for analysis of MD trajectories include individual network construction and analysis of intermediate time-steps, comparative analysis of these networks, construction and analysis of average network of the ensemble of trajectories and dynamic cross-correlations. For protein–nucleic acid complexes, networks of the whole complex as well as that of the interface can be constructed and analyzed. For analysis of proteins, protein–protein complexes and MD trajectories, network construction based on inter-residue interaction energies with realistic edge-weights obtained from standard force fields is provided to capture the atomistic details. Updated version of NAPS also provides improved visualization features, interactive plots and bulk execution. URL: http://bioinf.iiit.ac.in/NAPS/
Collapse
Affiliation(s)
- Broto Chakrabarty
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| | - Varun Naganathan
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| | - Kanak Garg
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| | - Yash Agarwal
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology - Hyderabad 500032, India
| |
Collapse
|
11
|
Lopez-Ortiz C, Peña-Garcia Y, Natarajan P, Bhandari M, Abburi V, Dutta SK, Yadav L, Stommel J, Nimmakayala P, Reddy UK. The ankyrin repeat gene family in Capsicum spp: Genome-wide survey, characterization and gene expression profile. Sci Rep 2020; 10:4044. [PMID: 32132613 PMCID: PMC7055287 DOI: 10.1038/s41598-020-61057-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/20/2020] [Indexed: 11/09/2022] Open
Abstract
The ankyrin (ANK) repeat protein family is largely distributed across plants and has been found to participate in multiple processes such as plant growth and development, hormone response, response to biotic and abiotic stresses. It is considered as one of the major markers of capsaicin content in pepper fruits. In this study, we performed a genome-wide identification and expression analysis of genes encoding ANK proteins in three Capsicum species: Capsicum baccatum, Capsicum annuum and Capsicum chinense. We identified a total of 87, 85 and 96 ANK genes in C. baccatum, C. annuum and C. chinense genomes, respectively. Next, we performed a comprehensive bioinformatics analysis of the Capsicum ANK gene family including gene chromosomal localization, Cis-elements, conserved motif identification, intron/exon structural patterns and gene ontology classification as well as profile expression. Phylogenetic and domain organization analysis grouped the Capsicum ANK gene family into ten subfamilies distributed across all 12 pepper chromosomes at different densities. Analysis of the expression of ANK genes in leaf and pepper fruits suggested that the ANKs have specific expression patterns at various developmental stages in placenta tissue. Our results provide valuable information for further studies of the evolution, classification and putative functions of ANK genes in pepper.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Yadira Peña-Garcia
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America.,Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, 603203, India
| | - Menuka Bhandari
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Venkata Abburi
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - Sudip Kumar Dutta
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America.,ICAR RC NEH Region, Mizoram Centre, Kolasib, Mizoram, India
| | - Lav Yadav
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America
| | - John Stommel
- Genetic Improvement of Fruits and Vegetables Laboratory (USDA, ARS), Beltsville, MD, 20705, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America.
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, West Virginia, United States of America.
| |
Collapse
|
12
|
Pan T, Liu J, Xu S, Yu Q, Wang H, Sun H, Wu J, Zhu Y, Zhou J, Zhu Y. ANKRD22, a novel tumor microenvironment-induced mitochondrial protein promotes metabolic reprogramming of colorectal cancer cells. Theranostics 2020; 10:516-536. [PMID: 31903135 PMCID: PMC6929986 DOI: 10.7150/thno.37472] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 10/09/2019] [Indexed: 12/20/2022] Open
Abstract
Background: The leading cause of poor prognosis in colorectal cancer (CRC) is the presence of colorectal cancer-initiating cells (CCICs). The interplay between the tumor microenvironment (TME) and CRC cells induces reacquisition of initiating cell characteristics, but the underlying mechanisms remain elusive. Methods: Candidate molecules were screened by global differential cDNA expression profiles of CCICs, which were enriched from patient-derived tumor xenograft models. Luciferase reporters and chromatin immunoprecipitation assays were used to explore the mechanism of TME factors regulating the transcription of ANKRD22. The effects of Ankyrin repeat domain-containing protein 22 (ANKRD22) on energy metabolism were monitored by extracellular flux and 13C-based metabolic flux analysis. Mass spectrometry was used to identify the interacting partners of ANKRD22. Morphological changes of CCICs overexpressing ANKRD22 were observed by electron microscopy. The effects of ANKRD22 on mitochondrial lipid metabolism were analyzed by lipidomics. Results: We identified a novel nucleus-encoded mitochondrial membrane protein, ANKRD22, which was upregulated in CCICs. We found that ANKRD22 was induced by the p38/MAX pathway activated by different TME stimuli. As a key transcription factor, MAX promoted the transcription of ANKRD22. Expression of ANKRD22 promoted glycolysis associated with a decrease in ATP/ADP and an increase in AMP/ATP levels, which were related to its interaction with pyruvate dehydrogenase kinase isoform 1 (PDK1) and multiple subunits of ATP synthase. Further, in CCICs, ANKRD22 cooperated with the lipid transport protein, Extended Synaptotagmin-1 (E-Syt1), to transport excess lipids into mitochondria and reduced the number of mitochondria in an autophagy-independent manner, thus meeting the metabolic requirements of CCICs. Conclusion: ANKRD22 induced by TME promotes the metabolic reprogramming of CRC cells. Our study has identified ANKRD22/E-Syt1 as a potential target for eradicating CCICs.
Collapse
|
13
|
Qiu Y, Yang S, Pan T, Yu L, Liu J, Zhu Y, Wang H. ANKRD22 is involved in the progression of prostate cancer. Oncol Lett 2019; 18:4106-4113. [PMID: 31516611 PMCID: PMC6732940 DOI: 10.3892/ol.2019.10738] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 07/11/2019] [Indexed: 12/26/2022] Open
Abstract
Prostate cancer is a common malignant tumor in elderly men. As a novel metabolic-reprogramming molecule, the role of ankyrin repeat domain 22 (ANKRD22) in the tumorigenesis and progression of prostate cancer remains unknown. In the present study, mouse monoclonal antibodies against human ANKRD22 were prepared using recombinant ANKRD22 from prokaryotic expression and validated. Subsequently, these antibodies were used to evaluate ANKRD22 levels via immunohistochemical staining in prostate cancer tissues. Finally, the association between ANKRD22 levels and prostate cancer progression was analyzed in 636 samples of prostate cancer using The Cancer Genome Atlas (TCGA) database. A total of four anti-ANKRD22 monoclonal antibodies were generated and validated, which could be effectively blocked by recombinant ANKRD22 protein. Using these antibodies for immunohistochemical staining, ANKRD22 was detected in prostate cancer cells in both the cytoplasm and nucleus. Bioinformatics analysis demonstrated that the mRNA level of ANKRD22 was inversely associated with prostate cancer stage (P<0.05) and Gleason score (P<0.01) in TCGA database. Patients with higher ANKRD22 mRNA levels exhibited longer disease-free survival following radical prostatectomy. These findings suggest that ANKRD22 may negatively regulate the progression of prostate cancer. The prepared ANKRD22 antibodies with high specificity provide a powerful tool in ANKRD22 research.
Collapse
Affiliation(s)
- Yiqing Qiu
- Department of Urology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Saisai Yang
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Tianhui Pan
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Lin Yu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Jingwen Liu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| | - Hongping Wang
- Department of Gerontology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
14
|
ANKRD22 promotes progression of non-small cell lung cancer through transcriptional up-regulation of E2F1. Sci Rep 2017; 7:4430. [PMID: 28667340 PMCID: PMC5493668 DOI: 10.1038/s41598-017-04818-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is the leading cause of death among all malignancies due to rapid tumor progression and relapse; however, the underlying molecular mechanisms of tumor progression are unclear. In the present study, we identified ANKRD22 as a novel tumor-associated gene in non-small cell lung cancer (NSCLC). According to the clinical correlation analysis, ANKRD22 was highly expressed in primary cancerous tissue compared with adjacent cancerous tissue, and high expression levels of ANKRD22 were significantly correlated with relapse and short overall survival time. Knockdown and overexpression analysis revealed that ANKRD22 promoted tumor progression by increasing cell proliferation. In xenograft assays, knockdown of ANKRD22 or in vivo treatment with ANKRD22 siRNA inhibited tumor growth. Furthermore, ANKRD22 was shown to participate in the transcriptional regulation of E2F1, and ANKRD22 promoted cell proliferation by up-regulating the expression of E2F1 which enhanced cell cycle progression. Therefore, our studies indicated that ANKRD22 up-regulated the transcription of E2F1 and promoted the progression of NSCLC by enhancing cell proliferation. These findings suggest that ANKRD22 could potentially act as a novel therapeutic target for NSCLC.
Collapse
|
15
|
Platania CBM, Giurdanella G, Di Paola L, Leggio GM, Drago F, Salomone S, Bucolo C. P2X7 receptor antagonism: Implications in diabetic retinopathy. Biochem Pharmacol 2017; 138:130-139. [PMID: 28479300 DOI: 10.1016/j.bcp.2017.05.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 05/02/2017] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is the most frequent complication of diabetes and one of leading causes of blindness worldwide. Early phases of DR are characterized by retinal pericyte loss mainly related to concurrent inflammatory process. Recently, an important link between P2X7 receptor (P2X7R) and inflammation has been demonstrated indicating this receptor as potential pharmacological target in DR. Here we first carried out an in silico molecular modeling study in order to characterize the allosteric pocket in P2X7R, and identify a suitable P2X7R antagonist through molecular docking. JNJ47965567 was identified as the hit compound in docking calculations, as well as for its absorption, distribution, metabolism and excretion (ADME) profile. As an in vitro model of early diabetic retinopathy, human retinal pericytes were exposed to high glucose (25mM, 48h) that caused a significant (p<0.05) release of IL-1β and LDH. The block of P2X7R by JNJ47965567 significantly (p<0.05) reverted the damage elicited by high glucose, detected as IL-1β and LDH release. Overall, our findings suggest that the P2X7R represents an attractive pharmacological target to manage the early phase of diabetic retinopathy, and the compound JNJ47965567 is a good template to discover other P2X7R selective antagonists.
Collapse
Affiliation(s)
- Chiara Bianca Maria Platania
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Giovanni Giurdanella
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy
| | - Luisa Di Paola
- School of Engineering, University Campus BioMedico, Roma, Italy
| | - Gian Marco Leggio
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Filippo Drago
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Salvatore Salomone
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy
| | - Claudio Bucolo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, Catania, Italy; Center for Research in Ocular Pharmacology - CERFO, University of Catania, Catania, Italy.
| |
Collapse
|
16
|
Wisitponchai T, Shoombuatong W, Lee VS, Kitidee K, Tayapiwatana C. AnkPlex: algorithmic structure for refinement of near-native ankyrin-protein docking. BMC Bioinformatics 2017; 18:220. [PMID: 28424069 PMCID: PMC5395911 DOI: 10.1186/s12859-017-1628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 04/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Computational analysis of protein-protein interaction provided the crucial information to increase the binding affinity without a change in basic conformation. Several docking programs were used to predict the near-native poses of the protein-protein complex in 10 top-rankings. The universal criteria for discriminating the near-native pose are not available since there are several classes of recognition protein. Currently, the explicit criteria for identifying the near-native pose of ankyrin-protein complexes (APKs) have not been reported yet. RESULTS In this study, we established an ensemble computational model for discriminating the near-native docking pose of APKs named "AnkPlex". A dataset of APKs was generated from seven X-ray APKs, which consisted of 3 internal domains, using the reliable docking tool ZDOCK. The dataset was composed of 669 and 44,334 near-native and non-near-native poses, respectively, and it was used to generate eleven informative features. Subsequently, a re-scoring rank was generated by AnkPlex using a combination of a decision tree algorithm and logistic regression. AnkPlex achieved superior efficiency with ≥1 near-native complexes in the 10 top-rankings for nine X-ray complexes compared to ZDOCK, which only obtained six X-ray complexes. In addition, feature analysis demonstrated that the van der Waals feature was the dominant near-native pose out of the potential ankyrin-protein docking poses. CONCLUSION The AnkPlex model achieved a success at predicting near-native docking poses and led to the discovery of informative characteristics that could further improve our understanding of the ankyrin-protein complex. Our computational study could be useful for predicting the near-native poses of binding proteins and desired targets, especially for ankyrin-protein complexes. The AnkPlex web server is freely accessible at http://ankplex.ams.cmu.ac.th .
Collapse
Affiliation(s)
- Tanchanok Wisitponchai
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Vannajan Sanghiran Lee
- Thailand Center of Excellence in Physics, Commission on Higher Education, Bangkok, 10400, Thailand.,Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Kuntida Kitidee
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand.
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand. .,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
17
|
Kosaloglu Z, Bitzer J, Halama N, Huang Z, Zapatka M, Schneeweiss A, Jäger D, Zörnig I. In silico SNP analysis of the breast cancer antigen NY-BR-1. BMC Cancer 2016; 16:901. [PMID: 27863482 PMCID: PMC5116164 DOI: 10.1186/s12885-016-2924-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/03/2016] [Indexed: 11/10/2022] Open
Abstract
Background Breast cancer is one of the most common malignancies with increasing incidences every year and a leading cause of death among women. Although early stage breast cancer can be effectively treated, there are limited numbers of treatment options available for patients with advanced and metastatic disease. The novel breast cancer associated antigen NY-BR-1 was identified by SEREX analysis and is expressed in the majority (>70%) of breast tumors as well as metastases, in normal breast tissue, in testis and occasionally in prostate tissue. The biological function and regulation of NY-BR-1 is up to date unknown. Methods We performed an in silico analysis on the genetic variations of the NY-BR-1 gene using data available in public SNP databases and the tools SIFT, Polyphen and Provean to find possible functional SNPs. Additionally, we considered the allele frequency of the found damaging SNPs and also analyzed data from an in-house sequencing project of 55 breast cancer samples for recurring SNPs, recorded in dbSNP. Results Over 2800 SNPs are recorded in the dbSNP and NHLBI ESP databases for the NY-BR-1 gene. Of these, 65 (2.07%) are synonymous SNPs, 191 (6.09%) are non-synoymous SNPs, and 2430 (77.48%) are noncoding intronic SNPs. As a result, 69 non-synoymous SNPs were predicted to be damaging by at least two, and 16 SNPs were predicted as damaging by all three of the used tools. The SNPs rs200639888, rs367841401 and rs377750885 were categorized as highly damaging by all three tools. Eight damaging SNPs are located in the ankyrin repeat domain (ANK), a domain known for its frequent involvement in protein-protein interactions. No distinctive features could be observed in the allele frequency of the analyzed SNPs. Conclusion Considering these results we expect to gain more insights into the variations of the NY-BR-1 gene and their possible impact on giving rise to splice variants and therefore influence the function of NY-BR-1 in healthy tissue as well as in breast cancer.
Collapse
Affiliation(s)
- Zeynep Kosaloglu
- Clinical Cooperation Unit "Applied Tumor Immunity", National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Julia Bitzer
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany.,, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Niels Halama
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany.,, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Zhiqin Huang
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Marc Zapatka
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany.,, Im Neuenheimer Feld 580, 69120, Heidelberg, Germany
| | - Andreas Schneeweiss
- Department of Obstetrics and Gynecology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany.,, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Dirk Jäger
- Clinical Cooperation Unit "Applied Tumor Immunity", National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany.,, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Inka Zörnig
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and University Hospital Heidelberg, Heidelberg, Germany. .,, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Chakrabarty B, Parekh N. NAPS: Network Analysis of Protein Structures. Nucleic Acids Res 2016; 44:W375-82. [PMID: 27151201 PMCID: PMC4987928 DOI: 10.1093/nar/gkw383] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 04/25/2016] [Indexed: 12/29/2022] Open
Abstract
Traditionally, protein structures have been analysed by the secondary structure architecture and fold arrangement. An alternative approach that has shown promise is modelling proteins as a network of non-covalent interactions between amino acid residues. The network representation of proteins provide a systems approach to topological analysis of complex three-dimensional structures irrespective of secondary structure and fold type and provide insights into structure-function relationship. We have developed a web server for network based analysis of protein structures, NAPS, that facilitates quantitative and qualitative (visual) analysis of residue-residue interactions in: single chains, protein complex, modelled protein structures and trajectories (e.g. from molecular dynamics simulations). The user can specify atom type for network construction, distance range (in Å) and minimal amino acid separation along the sequence. NAPS provides users selection of node(s) and its neighbourhood based on centrality measures, physicochemical properties of amino acids or cluster of well-connected residues (k-cliques) for further analysis. Visual analysis of interacting domains and protein chains, and shortest path lengths between pair of residues are additional features that aid in functional analysis. NAPS support various analyses and visualization views for identifying functional residues, provide insight into mechanisms of protein folding, domain-domain and protein-protein interactions for understanding communication within and between proteins. URL:http://bioinf.iiit.ac.in/NAPS/.
Collapse
Affiliation(s)
- Broto Chakrabarty
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Nita Parekh
- Centre for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| |
Collapse
|
19
|
Parra RG, Espada R, Verstraete N, Ferreiro DU. Structural and Energetic Characterization of the Ankyrin Repeat Protein Family. PLoS Comput Biol 2015; 11:e1004659. [PMID: 26691182 PMCID: PMC4687027 DOI: 10.1371/journal.pcbi.1004659] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/10/2015] [Indexed: 11/21/2022] Open
Abstract
Ankyrin repeat containing proteins are one of the most abundant solenoid folds. Usually implicated in specific protein-protein interactions, these proteins are readily amenable for design, with promising biotechnological and biomedical applications. Studying repeat protein families presents technical challenges due to the high sequence divergence among the repeating units. We developed and applied a systematic method to consistently identify and annotate the structural repetitions over the members of the complete Ankyrin Repeat Protein Family, with increased sensitivity over previous studies. We statistically characterized the number of repeats, the folding of the repeat-arrays, their structural variations, insertions and deletions. An energetic analysis of the local frustration patterns reveal the basic features underlying fold stability and its relation to the functional binding regions. We found a strong linear correlation between the conservation of the energetic features in the repeat arrays and their sequence variations, and discuss new insights into the organization and function of these ubiquitous proteins. Some natural proteins are formed with repetitions of similar amino acid stretches. Ankyrin-repeat proteins constitute one of the most abundant families of this class of proteins that serve as model systems to analyze how variations in sequences exert effects in structures and biological functions. We present an in-depth analysis of the ankyrin repeat protein family, characterizing the variations in the repeating arrays both at the structural and energetic level. We introduce a consistent annotation for the repeat characteristics and describe how the structural differences are related to the sequences by their underlying energetic signatures.
Collapse
Affiliation(s)
- R. Gonzalo Parra
- Protein Physiology Lab, Dep de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA-CONICET-IQUIBICEN, Buenos Aires, Argentina
| | - Rocío Espada
- Protein Physiology Lab, Dep de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA-CONICET-IQUIBICEN, Buenos Aires, Argentina
| | - Nina Verstraete
- Protein Physiology Lab, Dep de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA-CONICET-IQUIBICEN, Buenos Aires, Argentina
| | - Diego U. Ferreiro
- Protein Physiology Lab, Dep de Química Biológica, Facultad de Ciencias Exactas y Naturales, UBA-CONICET-IQUIBICEN, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
20
|
Do Viet P, Roche DB, Kajava AV. TAPO: A combined method for the identification of tandem repeats in protein structures. FEBS Lett 2015; 589:2611-9. [PMID: 26320412 DOI: 10.1016/j.febslet.2015.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/10/2015] [Accepted: 08/13/2015] [Indexed: 10/23/2022]
Abstract
In recent years, there has been an emergence of new 3D structures of proteins containing tandem repeats (TRs), as a result of improved expression and crystallization strategies. Databases focused on structure classifications (PDB, SCOP, CATH) do not provide an easy solution for selection of these structures from PDB. Several approaches have been developed, but no best approach exists to identify the whole range of 3D TRs. Here we describe the TAndem PrOtein detector (TAPO) that uses periodicities of atomic coordinates and other types of structural representation, including strings generated by conformational alphabets, residue contact maps, and arrangements of vectors of secondary structure elements. The benchmarking shows the superior performance of TAPO over the existing programs. In accordance with our analysis of PDB using TAPO, 19% of proteins contain 3D TRs. This analysis allowed us to identify new families of 3D TRs, suggesting that TAPO can be used to regularly update the collection and classification of existing repetitive structures.
Collapse
Affiliation(s)
- Phuong Do Viet
- Centre de Recherche de Biochimie Macromoléculaire, UMR 5237 CNRS, Université Montpellier, 1919, Route de Mende, 34293 Montpellier Cedex 5, France; Institut de Biologie Computationnelle, Université Montpellier, Bat. 5, 860, rue St Priest, 34095 Montpellier Cedex 5, France
| | - Daniel B Roche
- Centre de Recherche de Biochimie Macromoléculaire, UMR 5237 CNRS, Université Montpellier, 1919, Route de Mende, 34293 Montpellier Cedex 5, France; Institut de Biologie Computationnelle, Université Montpellier, Bat. 5, 860, rue St Priest, 34095 Montpellier Cedex 5, France
| | - Andrey V Kajava
- Centre de Recherche de Biochimie Macromoléculaire, UMR 5237 CNRS, Université Montpellier, 1919, Route de Mende, 34293 Montpellier Cedex 5, France; Institut de Biologie Computationnelle, Université Montpellier, Bat. 5, 860, rue St Priest, 34095 Montpellier Cedex 5, France.
| |
Collapse
|