1
|
Compagnoni C, Capelli R, Zelli V, Corrente A, Vecchiotti D, Flati I, Di Vito Nolfi M, Angelucci A, Alesse E, Zazzeroni F, Tessitore A. MiR-182-5p Is Upregulated in Hepatic Tissues from a Diet-Induced NAFLD/NASH/HCC C57BL/6J Mouse Model and Modulates Cyld and Foxo1 Expression. Int J Mol Sci 2023; 24:ijms24119239. [PMID: 37298191 DOI: 10.3390/ijms24119239] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered a relevant liver chronic disease. Variable percentages of NAFLD cases progress from steatosis to steatohepatitis (NASH), cirrhosis and, eventually, hepatocellular carcinoma (HCC). In this study, we aimed to deepen our understanding of expression levels and functional relationships between miR-182-5p and Cyld-Foxo1 in hepatic tissues from C57BL/6J mouse models of diet-induced NAFL/NASH/HCC progression. A miR-182-5p increase was detected early in livers as NAFLD damage progressed, and in tumors compared to peritumor normal tissues. An in vitro assay on HepG2 cells confirmed Cyld and Foxo1, both tumor-suppressor, as miR-182-5p target genes. According to miR-182-5p expression, decreased protein levels were observed in tumors compared to peritumor tissues. Analysis of miR-182-5p, Cyld and Foxo1 expression levels, based on datasets from human HCC samples, showed results consistent with those from our mouse models, and also highlighted the ability of miR-182-5p to distinguish between normal and tumor tissues (AUC 0.83). Overall, this study shows, for the first time, miR-182-5p overexpression and Cyld-Foxo1 downregulation in hepatic tissues and tumors from a diet-induced NAFLD/HCC mouse model. These data were confirmed by the analysis of datasets from human HCC samples, highlighting miR-182-5p diagnostic accuracy and demonstrating the need for further studies to assess its potential role as a biomarker or therapeutic target.
Collapse
Affiliation(s)
- Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L'Aquila, Via Petrini, 67100 L'Aquila, Italy
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Irene Flati
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Mauro Di Vito Nolfi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100 L'Aquila, Italy
- Center for Molecular Diagnostics and Advanced Therapies, University of L'Aquila, Via Petrini, 67100 L'Aquila, Italy
| |
Collapse
|
2
|
Classification of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma Based on Radiomic Analysis. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:5334095. [PMID: 35237341 PMCID: PMC8885247 DOI: 10.1155/2022/5334095] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/22/2022] [Accepted: 02/02/2022] [Indexed: 12/17/2022]
Abstract
Introduction Considering the narrow window of surgery, early diagnosis of liver cancer is still a fundamental issue to explore. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICCA) are considered as two different types of liver cancer because of their distinct pathogenesis, pathological features, prognosis, and responses to adjuvant therapies. Qualitative analysis of image is not enough to make a discrimination of liver cancer, especially early-stage HCC or ICCA. Methods This retrospective study developed a radiomic-based model in a training cohort of 122 patients. Radiomic features were extracted from computed tomography (CT) scans. Feature selection was operated with the least absolute shrinkage and operator (LASSO) logistic method. The support vector machine (SVM) was selected to build a model. An internal validation was conducted in 89 patients. Results In the training set, the AUC of the evaluation of the radiomics was 0.855 higher than for radiologists at 0.689. In the valuation cohorts, the AUC of the evaluation was 0.847 and the validation was 0.659, which indicated that the established model has a significantly better performance in distinguishing the HCC from ICCA. Conclusion We developed a radiomic diagnosis model based on CT image that can quickly distinguish HCC from ICCA, which may facilitate the differential diagnosis of HCC and ICCA in the future.
Collapse
|
3
|
Salah RA, Nasr MA, El-Derby AM, Abd Elkodous M, Mohamed RH, El-Ekiaby N, Osama A, Elshenawy SE, Hamad MHM, Magdeldin S, Gabr MM, Abdelaziz AI, El-Badri NS. Hepatocellular carcinoma cell line-microenvironment induced cancer-associated phenotype, genotype and functionality in mesenchymal stem cells. Life Sci 2022; 288:120168. [PMID: 34826437 DOI: 10.1016/j.lfs.2021.120168] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022]
Abstract
Mesenchymal stromal cells (MSCs) have shown promise in liver cancer treatment. However, when MSCs are recruited to hepatic site of injury, they acquire cancerous promoting phenotype. AIMS To assess the influence of Hepatocellular carcinoma (HCC) microenvironment on human adipose MSCs (hA-MSCs) and predict hA-MSCs intracellular miRNAs role. MATERIALS AND METHODS After indirect co-culturing with Huh-7 cells, hA-MSCs were characterized via cell cycle profile, proliferation and migration potentials by MTT and scratch assays respectively. Functional enrichment analysis of deregulated proteins and miRNA targets was also analyzed. KEY FINDINGS Co-cultured hA-MSCs could acquire a cancer-associated phenotype as shown by upregulation of CAF, cancer markers, and downregulation of differentiation markers. Migration of these cancer-associated cells was increased concomitantly with upregulation of adhesion molecules, but not epithelial to mesenchymal transition markers. Co-cultured cells showed increased proliferation confirmed by downregulation in cell percentage in G0/G1, G2/M and upregulation in S phases of cell cycle. Upregulation of miR-17-5p and 615-5p in co-cultured hA-MSCs was also observed. Functional enrichment analysis of dysregulated proteins in co-cultured hA-MSCs, including our selected miRNAs targets, showed their involvement in development of cancer-associated characteristics. SIGNIFICANCE This study suggests an interaction between tumor cells and surrounding stromal components to generate cancer associated phenotype of some CAF-like characteristics, known to favor cancer progression. This sheds the light on the use of hA-MSCs in HCC therapy. hA-MSCs modulation may be partially achieved via dysregulation of intracellular miR17-5P and 615-5p expression, suggesting an important role for miRNAs in HCC pathogenesis, and as a possible therapeutic candidate.
Collapse
Affiliation(s)
- Radwa Ayman Salah
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Mohamed A Nasr
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Azza M El-Derby
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - M Abd Elkodous
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | - Rania Hassan Mohamed
- Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nada El-Ekiaby
- School of Medicine NewGiza University (NGU), Cairo, Egypt
| | - Aya Osama
- Proteomics and metabolomics Research Program, Basic Research Department, Children Cancer Hospital Egypt, 57357 Cairo, Egypt
| | - Shimaa E Elshenawy
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt
| | | | - Sameh Magdeldin
- Proteomics and metabolomics Research Program, Basic Research Department, Children Cancer Hospital Egypt, 57357 Cairo, Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Mahmoud M Gabr
- Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | | | - Nagwa S El-Badri
- Center of Excellence for Stem Cells and Regenerative Medicine, Zewail City of Science and Technology, Egypt.
| |
Collapse
|
4
|
Zelli V, Compagnoni C, Capelli R, Corrente A, Cornice J, Vecchiotti D, Di Padova M, Zazzeroni F, Alesse E, Tessitore A. Emerging Role of isomiRs in Cancer: State of the Art and Recent Advances. Genes (Basel) 2021; 12:genes12091447. [PMID: 34573429 PMCID: PMC8469436 DOI: 10.3390/genes12091447] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 12/12/2022] Open
Abstract
The advent of Next Generation Sequencing technologies brought with it the discovery of several microRNA (miRNA) variants of heterogeneous lengths and/or sequences. Initially ascribed to sequencing errors/artifacts, these isoforms, named isomiRs, are now considered non-canonical variants that originate from physiological processes affecting the canonical miRNA biogenesis. To date, accurate IsomiRs abundance, biological activity, and functions are not completely understood; however, the study of isomiR biology is an area of great interest due to their high frequency in the human miRNome, their putative functions in cooperating with the canonical miRNAs, and potential for exhibiting novel functional roles. The discovery of isomiRs highlighted the complexity of the small RNA transcriptional landscape in several diseases, including cancer. In this field, the study of isomiRs could provide further insights into the miRNA biology and its implication in oncogenesis, possibly providing putative new cancer diagnostic, prognostic, and predictive biomarkers as well. In this review, a comprehensive overview of the state of research on isomiRs in different cancer types, including the most common tumors such as breast cancer, colorectal cancer, melanoma, and prostate cancer, as well as in the less frequent tumors, as for example brain tumors and hematological malignancies, will be summarized and discussed.
Collapse
Affiliation(s)
- Veronica Zelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
| | - Chiara Compagnoni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Roberta Capelli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Alessandra Corrente
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Jessica Cornice
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Davide Vecchiotti
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Monica Di Padova
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
| | - Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio, 67100 L’Aquila, Italy; (V.Z.); (C.C.); (R.C.); (A.C.); (J.C.); (D.V.); (M.D.P.); (F.Z.); (E.A.)
- Center for Molecular Diagnostics and Advanced Therapies, University of L’Aquila, Via Petrini, 67100 L’Aquila, Italy
- Correspondence: ; Tel.: +39-0862433518; Fax: +39-0862433131
| |
Collapse
|
5
|
Pourteymourfard Tabrizi Z, Jami MS. Selection of suitable bioinformatic tools in micro-RNA research. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Zhao J, Wang Y, Han M, Lu H, Chen X, Liu S, Yuan X, Han K, Liang P, Cheng J. P7TP3 inhibits tumor development, migration, invasion and adhesion of liver cancer through the Wnt/β-catenin signaling pathway. Cancer Sci 2020; 111:994-1007. [PMID: 31746531 PMCID: PMC7060470 DOI: 10.1111/cas.14243] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 01/30/2023] Open
Abstract
The effect of hepatitis C virus p7 trans‐regulated protein 3 (P7TP3) in the development of hepatocellular carcinoma (HCC) is still unknown. The present study aimed to investigate the role and mechanism of P7TP3 in HCC. P7TP3 was significantly decreased in HCC tissues when compared with corresponding liver tissues immediately around the tumor (LAT) from seven HCC patients. Fewer and smaller colonies originated from HepG2‐P7TP3 cells when compared to HepG2‐NC cells. Overexpression of P7TP3 in HepG2 cells significantly repressed the growth of HCC xenografts in nude mice. Furthermore, wound‐healing tests, Transwell assays, Matrigel Transwell assays, adhesion assays, CCK‐8 assays, flow cytometry and western blotting analysis showed that P7TP3 protein expression inhibited migration, invasion, adhesion, proliferation and cell cycle progression in HCC cell lines. Moreover, P7TP3 suppressed the activity of the Wnt/β‐catenin signaling pathway, and was restored by Wnt3a, which is an activator of the Wnt/β‐catenin signaling pathway. Consistently, β‐catenin was highly expressed by P7TP3 silencing, and restored by XAV939, an inhibitor of the Wnt/β‐catenin signaling pathway. Finally, microRNA (miR)‐182‐5p suppressed the expression of target gene P7TP3 by directly interacting with the 3′‐UTR region. Taken together, P7TP3, the direct target gene of miR‐182‐5p, inhibited HCC by regulating migration, invasion, adhesion, proliferation and cell cycle progression of liver cancer cell through the Wnt/β‐catenin signaling pathway. These findings provide strong evidence that P7TP3 functions as a new promising tumor suppressor in HCC.
Collapse
Affiliation(s)
- Jing Zhao
- Peking University Ditan Teaching Hospital, Beijing, China.,Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University/Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Yun Wang
- Peking University Ditan Teaching Hospital, Beijing, China.,Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University/Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Ming Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University/Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Hongping Lu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University/Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Xiaofan Chen
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University/Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,Department of Infectious Diseases, Center for Liver Diseases, Peking University, First Hospital, Beijing, China
| | - Shunai Liu
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University/Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Xiaoxue Yuan
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University/Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Kai Han
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University/Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Pu Liang
- Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University/Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China
| | - Jun Cheng
- Peking University Ditan Teaching Hospital, Beijing, China.,Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University/Beijing Key Laboratory of Emerging Infectious Diseases, Beijing, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University and Capital Medical University, Beijing, China
| |
Collapse
|
7
|
Tanshinone IIA protects hypoxia-induced injury by preventing microRNA-28 up-regulation in PC-12 cells. Eur J Pharmacol 2019; 854:265-271. [DOI: 10.1016/j.ejphar.2019.04.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 04/03/2019] [Accepted: 04/15/2019] [Indexed: 02/06/2023]
|
8
|
Wu J, Jin S, Gu W, Wan F, Zhang H, Shi G, Qu Y, Ye D. Construction and Validation of a 9-Gene Signature for Predicting Prognosis in Stage III Clear Cell Renal Cell Carcinoma. Front Oncol 2019; 9:152. [PMID: 30941304 PMCID: PMC6433707 DOI: 10.3389/fonc.2019.00152] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/22/2019] [Indexed: 12/15/2022] Open
Abstract
Purpose: Aim of this study was to develop a multi-gene signature to help better predict prognosis for stage III renal cell carcinoma (RCC) patients. Methods: Fourteen pairs of stage III tumor and normal tissues mRNA expression data from GSE53757 and 16 pairs mRNA expression data from TCGA clear cell RCC database were used to analyze differentially expressed genes between tumor and normal tissues. Common different expressed genes in both datasets were used for further modeling. Lasso Cox regression analysis was performed to select and build prognostic multi-gene signature in TCGA stage III kidney cancer patients (N = 122). Then, the multi-gene signature was validated in stage III renal cancer cases in Fudan University Shanghai Cancer Center (N = 77). C-index and time-dependent ROC were used to test the efficiency of this signature in predicting overall survival. Results: In total, 1,370 common different expressed genes were found between tumor and normal tissues in both datasets. After Lasso Cox modeling, nine mRNAs were finally identified to build a classifier. Using this classifier, we could classify stage III clear cell RCC patients into high-risk group and low-risk group. Prognosis was significantly different between these groups in discovery TCGA cohort, validation FUSCC cohort and entire set (All P < 0.001). Multivariate cox regression in entire set (N = 199) revealed that risk group classified by 9-gene signature, age of diagnosis, pN stage and ISUP grade were independent prognostic factor of overall survival in stage III kidney cancer patients. Conclusion: We developed a robust multi-gene classifier that can effectively classify stage III RCC patients into groups with low and high risk of poor prognosis. This signature may help select high-risk patients who require more aggressive adjuvant target therapy or immune therapy.
Collapse
Affiliation(s)
- Junlong Wu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shengming Jin
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weijie Gu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fangning Wan
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hailiang Zhang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guohai Shi
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yuanyuan Qu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Dingwei Ye
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Zavadil JA, Herzig MCS, Hildreth K, Foroushani A, Boswell W, Walter R, Reddick R, White H, Zare H, Walter CA. C3HeB/FeJ Mice mimic many aspects of gene expression and pathobiological features of human hepatocellular carcinoma. Mol Carcinog 2018; 58:309-320. [PMID: 30365185 DOI: 10.1002/mc.22929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 10/23/2018] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) remains a deadly cancer, underscoring the need for relevant preclinical models. Male C3HeB/FeJ mice model spontaneous HCC with some hepatocarcinogenesis susceptibility loci corresponding to syntenic regions of human chromosomes altered in HCC. We tested other properties of C3HeB/FeJ tumors for similarity to human HCC. C3HeB/FeJ tumors were grossly visible at 4 months of age, with prevalence and size increasing until about 11 months of age. Histologic features shared with human HCC include hepatosteatosis, tumor progression from dysplasia to poorly differentiated, vascular invasion, and trabecular, oncocytic, vacuolar, and clear cell variants. More tumor cells displayed cytoplasmic APE1 staining versus normal liver. Ultrasound effectively detected and monitored tumors, with 85.7% sensitivity. Over 5000 genes were differentially expressed based on the GSE62232 and GSE63898 human HCC datasets. Of these, 158 and 198 genes, respectively, were also differentially expressed in C3HeB/FeJ. Common cancer pathways, cell cycle, p53 signaling and other molecular aspects, were shared between human and mouse differentially expressed genes. We established eigengenes that distinguish HCC from normal liver in the C3HeB/FeJ model and a subset of human HCC. These features extend the relevance and improve the utility of the C3HeB/FeJ line for HCC studies.
Collapse
Affiliation(s)
- Jessica A Zavadil
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| | - Maryanne C S Herzig
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| | - Kim Hildreth
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| | - Amir Foroushani
- Department of Computer Science, Texas State University, San Marcos, Texas
| | - William Boswell
- Chemistry & Biochemistry Department, Texas State University, San Marcos, Texas
| | - Ronald Walter
- Chemistry & Biochemistry Department, Texas State University, San Marcos, Texas
| | - Robert Reddick
- Pathology Department, University of Texas Health Science Center, San Antonio, Texas
| | - Hugh White
- Radiology Department, University of Texas Health Science Center, San Antonio, Texas.,Radiology Department, Audie L. Murphy Memorial Veterans Affairs Hospital, San Antonio, Texas
| | - Habil Zare
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| | - Christi A Walter
- Department of Cell Systems & Anatomy, University of Texas Health Science Center, San Antonio, Texas
| |
Collapse
|
10
|
Hepatitis B virus promotes proliferation and metastasis in male Chinese hepatocellular carcinoma patients through the LEF-1/miR-371a-5p/SRCIN1/pleiotrophin/Slug pathway. Exp Cell Res 2018; 370:174-188. [DOI: 10.1016/j.yexcr.2018.06.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 06/14/2018] [Accepted: 06/16/2018] [Indexed: 12/13/2022]
|
11
|
Moniri M, Boroumand Moghaddam A, Azizi S, Abdul Rahim R, Zuhainis Saad W, Navaderi M, Arulselvan P, Mohamad R. Molecular study of wound healing after using biosynthesized BNC/Fe 3O 4 nanocomposites assisted with a bioinformatics approach. Int J Nanomedicine 2018; 13:2955-2971. [PMID: 29861630 PMCID: PMC5968787 DOI: 10.2147/ijn.s159637] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background Molecular investigation of wound healing has allowed better understanding about interaction of genes and pathways involved in healing progression. Objectives The aim of this study was to prepare magnetic/bacterial nanocellulose (Fe3O4/BNC) nanocomposite films as ecofriendly wound dressing in order to evaluate their physical, cytotoxicity and antimicrobial properties. The molecular study was carried out to evaluate expression of genes involved in healing of wounds after treatment with BNC/Fe3O4 films. Study design, materials, and methods Magnetic nanoparticles were biosynthesized by using Aloe vera extract in new isolated bacterial nanocellulose (BNC) RM1. The nanocomposites were characterized using X-ray diffraction, Fourier transform infrared, and field emission scanning electron microscopy. Moreover, swelling property and metal ions release profile of the nanocomposites were investigated. The ability of nanocomposites to promote wound healing of human dermal fibroblast cells in vitro was examined. Bioinformatics databases were used to identify genes with important healing effect. Key genes which interfered with healing were studied by quantitative real time PCR. Results Spherical magnetic nanoparticles (15–30 nm) were formed and immobilized within the structure of BNC. The BNC/Fe3O4 was nontoxic (IC50>500 μg/mL) with excellent wound healing efficiency after 48 hours. The nanocomposites showed good antibacterial activity ranging from 6±0.2 to 13.40±0.10 mm against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa. The effective genes for the wound healing process were TGF-B1, MMP2, MMP9, Wnt4, CTNNB1, hsa-miR-29b, and hsa-miR-29c with time dependent manner. BNC/Fe3O4 has an effect on microRNA by reducing its expression and therefore causing an increase in the gene expression of other genes, which consequently resulted in wound healing. Conclusion This eco-friendly nanocomposite with excellent healing properties can be used as an effective wound dressing for treatment of cutaneous wounds.
Collapse
Affiliation(s)
- Mona Moniri
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Young Researcher and Elite Club, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Amin Boroumand Moghaddam
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Young Researcher and Elite Club, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran
| | - Susan Azizi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wan Zuhainis Saad
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohammad Navaderi
- Young Research and Elite Club, Parand Branch, Islamic Azad University, Parand, Iran.,Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Palanisamy Arulselvan
- Muthayammal Centre for Advanced Research, Muthayammal College of Arts and Science, Rasipuram, Tamilnadu, India
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Zhou L, Du Y, Kong L, Zhang X, Chen Q. Identification of molecular target genes and key pathways in hepatocellular carcinoma by bioinformatics analysis. Onco Targets Ther 2018; 11:1861-1869. [PMID: 29670361 PMCID: PMC5894727 DOI: 10.2147/ott.s156737] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Background and aim Hepatocellular carcinoma (HCC) is a major cause of cancer mortality and is increasing incidence worldwide. The aim of this study was to identify the key genes and microRNAs in HCC and explore their potential mechanisms. Methods The gene expression profiles of GSE76427, GSE64041, GSE57957, and the microRNA dataset GSE67882 were downloaded from the Gene Expression Omnibus database. The online tool GEO2R was used to obtain differentially expressed genes (DEGs) and miRNAs (DEMs). The gene ontology and the Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis were performed for DEGs using the Database for Annotation, Visualization, and Integrated Discovery. A protein–protein interaction (PPI) network of the DEGs was constructed by Search Tool for the Retrieval of Interacting Genes and visualized by Cytoscape. Moreover, miRecords was used to predict the target genes of DEMs. Results In total, 106 DEGs were screened out in HCC, consisting of 89 upregulated genes and 17 downregulated genes, which were mainly enriched in biological processes associated with oxidation–reduction process. Besides, the Kyoto Encyclopedia of Genes and Genomes pathways including chemical carcinogenesis, drug metabolism-cytochrome P450, tryptophan metabolism, and retinol metabolism were involved. A PPI network was constructed consisting of 105 nodes and 66 edges. A significant module including nine hub genes, ASPM, AURKA, CCNB2, CDKN3, MELK, NCAPG, NUSAP1, PRC1, and TOP2A, was detected from the PPI network by Molecular Complex Detection. The enriched functions were mainly associated with the mitotic cell cycle process, cell division, and mitotic cell cycle. In addition, a total of 21 DEMs were identified, including 9 upregulated and 12 downregulated miRNAs. Interestingly, ZBTB41 was the potential target of seven miRNAs. Finally, the nine hub genes and three miRNA-target genes expression levels were validated by reverse transcription-polymerase chain reaction. The relative expression levels of nine genes (ASPM, AURKA, CDKN3, MELK, NCAPG, PRC1, TOP2A, ZBTB41, and ZNF148) were significantly upregulated in cancer tissues. Conclusion This study identified the key genes and potential molecular mechanisms underlying the development of HCC, which could provide new insight for HCC interventional strategies.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Yanyan Du
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Lingqun Kong
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xingyuan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Qiangpu Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Binzhou Medical University, Binzhou, China
| |
Collapse
|
13
|
Tessitore A, Mastroiaco V, Vetuschi A, Sferra R, Pompili S, Cicciarelli G, Barnabei R, Capece D, Zazzeroni F, Capalbo C, Alesse E. Development of hepatocellular cancer induced by long term low fat-high carbohydrate diet in a NAFLD/NASH mouse model. Oncotarget 2017; 8:53482-53494. [PMID: 28881825 PMCID: PMC5581124 DOI: 10.18632/oncotarget.18585] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/29/2017] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease. It can progress to nonalcoholic steatohepatitis (NASH) and, in a percentage of cases, to hepatocarcinogenesis. The strong incidence in western countries of obesity and metabolic syndrome, whose NAFLD is the hepatic expression, is thought to be correlated to consumption of diets characterized by processed food and sweet beverages. Previous studies described high-fat diet-induced liver tumors. Conversely, the involvement of low-fat/high-carbohydrate diet in the progression of liver disease or cancer initiation has not been described yet. Here we show for the first time hepatic cancer formation in low-fat/high-carbohydrate diet fed NAFLD/NASH mouse model. Animals were long term high-fat, low-fat/high-carbohydrate or standard diet fed. We observed progressive liver damage in low-fat/high-carbohydrate and high-fat animals after 12 and, more, 18 months. Tumors were detected in 20% and 50% of high-fat diet fed mice after 12 and 18 months and, interestingly, in 30% of low-fat/high-carbohydrate fed animals after 18 months. No tumors were detected in standard diet fed mice. Global increase of hepatic interleukin-1β, interleukin-6, tumor necrosis factor-α and hepatocyte growth factor was detected in low-fat/high-carbohydrate and high-fat with respect to standard diet fed mice as well as in tumor with respect to non-tumor bearing mice. A panel of 15 microRNAs was analyzed: some of them revealed differential expression in low-fat/high-carbohydrate with respect to high-fat diet fed groups and in tumors. Data here shown provide the first evidence of the involvement of low-fat/high-carbohydrate diet in hepatic damage leading to tumorigenesis.
Collapse
Affiliation(s)
- Alessandra Tessitore
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Valentina Mastroiaco
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Antonella Vetuschi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Roberta Sferra
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Simona Pompili
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Germana Cicciarelli
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Remo Barnabei
- S. Salvatore Hospital, Unit of Laboratory Medicine, 67100 L'Aquila, Italy
| | - Daria Capece
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Francesca Zazzeroni
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Carlo Capalbo
- Department of Molecular Medicine, University "La Sapienza", 00161 Roma, Italy
| | - Edoardo Alesse
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| |
Collapse
|
14
|
Said HM, Safari R, Al-Kafaji G, Ernestus RI, Löhr M, Katzer A, Flentje M, Hagemann C. Time- and oxygen-dependent expression and regulation of NDRG1 in human brain cancer cells. Oncol Rep 2017; 37:3625-3634. [PMID: 28498432 DOI: 10.3892/or.2017.5620] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 02/02/2017] [Indexed: 11/06/2022] Open
Abstract
N-myc downstream-regulated gene 1 (NDRG1) is a tumor suppressor with the potential to suppress metastasis, invasion and migration of cancer cells. It is regulated under stress conditions such as starvation or hypoxia. NDRG1 regulation is both induced and controlled by HIF-1α-dependent and -independent pathways under hypoxic conditions. However, there are profound differences in the way NDRG1 expression is regulated by HIF-1α and other transcription factors. Therefore, we aimed to define the time-dependent pattern of NDRG1 mRNA and protein expression in human glioblastoma cell lines in extreme hypoxia and after re-oxygenation as well as under normoxic conditions. Furthermore, we ascribe the regulation of NDRG1 to the transcription factors HIF-1α, SP1, CEBPα, YB-1 and Smad7 in a time-dependent manner. The human malignant glioma cell lines U87-MG, U373 and GaMG were cultured for 1, 6 and 24 h under hypoxic (0.1% O2) conditions and then they were re-oxygenated. The mRNA expression of NDRG1, HIF-1α SP1, CEBPα, YB-1 and Smad7 was measured using semi-quantitative RT-PCR analysis. Their protein expression was analyzed using western blotting. Our experiments revealed that long-term (24 h), but not short-term hypoxia led to the induction of NDRG1 expression in human glioma cell lines. NDRG1 expression was found to correlate with the protein expression of HIF-1α, SP1, CEBPα, YB-1 and Smad7. The present study suggests for the first time that SP1 regulates NDRG1 expression in glioma cells under hypoxia in a time-dependent manner along with HIF-1α, CEBPα, YB-1 and Smad7. These molecules, each separately or in combination, may possess the potential to become target molecules for antitumor therapeutic approaches particularly in human brain tumors.
Collapse
Affiliation(s)
- Harun Muayad Said
- Department of Molecular Medicine, Graduate School of Health Sciences, Dokuz Eylul University, Izmir, Turkey
| | - Roghaiyeh Safari
- Izmir Biomedicine and Genome (IBG) Center, Dokuz Eylul University, Izmir, Turkey
| | - Ghada Al-Kafaji
- Department of Molecular Medicine, College of Medicine and Medical Sciences, Arabian Gulf University, Manama, Kingdom of Bahrain
| | | | - Mario Löhr
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Astrid Katzer
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Michael Flentje
- Department of Radiation Oncology, University of Würzburg, Würzburg, Germany
| | - Carsten Hagemann
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| |
Collapse
|