1
|
Yang C, Zhang H, Chen M, Wang S, Qian R, Zhang L, Huang X, Wang J, Liu Z, Qin W, Wang C, Hang H, Wang H. A survey of optimal strategy for signature-based drug repositioning and an application to liver cancer. eLife 2022; 11:71880. [PMID: 35191375 PMCID: PMC8893721 DOI: 10.7554/elife.71880] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
Pharmacologic perturbation projects, such as Connectivity Map (CMap) and Library of Integrated Network-based Cellular Signatures (LINCS), have produced many perturbed expression data, providing enormous opportunities for computational therapeutic discovery. However, there is no consensus on which methodologies and parameters are the most optimal to conduct such analysis. Aiming to fill this gap, new benchmarking standards were developed to quantitatively evaluate drug retrieval performance. Investigations of potential factors influencing drug retrieval were conducted based on these standards. As a result, we determined an optimal approach for LINCS data-based therapeutic discovery. With this approach, homoharringtonine (HHT) was identified to be a candidate agent with potential therapeutic and preventive effects on liver cancer. The antitumor and antifibrotic activity of HHT was validated experimentally using subcutaneous xenograft tumor model and carbon tetrachloride (CCL4)-induced liver fibrosis model, demonstrating the reliability of the prediction results. In summary, our findings will not only impact the future applications of LINCS data but also offer new opportunities for therapeutic intervention of liver cancer.
Collapse
Affiliation(s)
- Chen Yang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Hailin Zhang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Mengnuo Chen
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Siying Wang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Ruolan Qian
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Linmeng Zhang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaowen Huang
- Division of Gastroenterology and Hepatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Wang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Zhicheng Liu
- Hepatic Surgery Center, Huazhong University of Science and Technology, Wuhan, China
| | - Wenxin Qin
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Cun Wang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Hualian Hang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Wang
- Department of Liver Surgery, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Carrillo-Perez F, Morales JC, Castillo-Secilla D, Molina-Castro Y, Guillén A, Rojas I, Herrera LJ. Non-small-cell lung cancer classification via RNA-Seq and histology imaging probability fusion. BMC Bioinformatics 2021; 22:454. [PMID: 34551733 PMCID: PMC8456075 DOI: 10.1186/s12859-021-04376-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/11/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Adenocarcinoma and squamous cell carcinoma are the two most prevalent lung cancer types, and their distinction requires different screenings, such as the visual inspection of histology slides by an expert pathologist, the analysis of gene expression or computer tomography scans, among others. In recent years, there has been an increasing gathering of biological data for decision support systems in the diagnosis (e.g. histology imaging, next-generation sequencing technologies data, clinical information, etc.). Using all these sources to design integrative classification approaches may improve the final diagnosis of a patient, in the same way that doctors can use multiple types of screenings to reach a final decision on the diagnosis. In this work, we present a late fusion classification model using histology and RNA-Seq data for adenocarcinoma, squamous-cell carcinoma and healthy lung tissue. RESULTS The classification model improves results over using each source of information separately, being able to reduce the diagnosis error rate up to a 64% over the isolate histology classifier and a 24% over the isolate gene expression classifier, reaching a mean F1-Score of 95.19% and a mean AUC of 0.991. CONCLUSIONS These findings suggest that a classification model using a late fusion methodology can considerably help clinicians in the diagnosis between the aforementioned lung cancer cancer subtypes over using each source of information separately. This approach can also be applied to any cancer type or disease with heterogeneous sources of information.
Collapse
Affiliation(s)
- Francisco Carrillo-Perez
- Department of Computer Architecture and Technology, University of Granada. C.I.T.I.C., Periodista Rafael Gómez Montero, 2, 18014, Granada, Spain.
| | - Juan Carlos Morales
- Department of Computer Architecture and Technology, University of Granada. C.I.T.I.C., Periodista Rafael Gómez Montero, 2, 18014, Granada, Spain
| | - Daniel Castillo-Secilla
- Department of Computer Architecture and Technology, University of Granada. C.I.T.I.C., Periodista Rafael Gómez Montero, 2, 18014, Granada, Spain
| | - Yésica Molina-Castro
- Department of Computer Architecture and Technology, University of Granada. C.I.T.I.C., Periodista Rafael Gómez Montero, 2, 18014, Granada, Spain
| | - Alberto Guillén
- Department of Computer Architecture and Technology, University of Granada. C.I.T.I.C., Periodista Rafael Gómez Montero, 2, 18014, Granada, Spain
| | - Ignacio Rojas
- Department of Computer Architecture and Technology, University of Granada. C.I.T.I.C., Periodista Rafael Gómez Montero, 2, 18014, Granada, Spain
| | - Luis Javier Herrera
- Department of Computer Architecture and Technology, University of Granada. C.I.T.I.C., Periodista Rafael Gómez Montero, 2, 18014, Granada, Spain
| |
Collapse
|
3
|
Chan J, Wang X, Turner JA, Baldwin NE, Gu J. Breaking the paradigm: Dr Insight empowers signature-free, enhanced drug repurposing. Bioinformatics 2020; 35:2818-2826. [PMID: 30624606 PMCID: PMC6691331 DOI: 10.1093/bioinformatics/btz006] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/13/2018] [Accepted: 01/04/2019] [Indexed: 02/07/2023] Open
Abstract
Motivation Transcriptome-based computational drug repurposing has attracted considerable interest by bringing about faster and more cost-effective drug discovery. Nevertheless, key limitations of the current drug connectivity-mapping paradigm have been long overlooked, including the lack of effective means to determine optimal query gene signatures. Results The novel approach Dr Insight implements a frame-breaking statistical model for the ‘hand-shake’ between disease and drug data. The genome-wide screening of concordantly expressed genes (CEGs) eliminates the need for subjective selection of query signatures, added to eliciting better proxy for potential disease-specific drug targets. Extensive comparisons on simulated and real cancer datasets have validated the superior performance of Dr Insight over several popular drug-repurposing methods to detect known cancer drugs and drug–target interactions. A proof-of-concept trial using the TCGA breast cancer dataset demonstrates the application of Dr Insight for a comprehensive analysis, from redirection of drug therapies, to a systematic construction of disease-specific drug-target networks. Availability and implementation Dr Insight R package is available at https://cran.r-project.org/web/packages/DrInsight/index.html. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jinyan Chan
- Baylor Scott & White Research Institute, Dallas, TX, USA.,Institute of Biomedical Studies, Baylor University, Waco, TX, USA
| | - Xuan Wang
- Baylor Scott & White Research Institute, Dallas, TX, USA
| | - Jacob A Turner
- Department of Mathematics and Statistics, Stephen F. Austin State University, Nacogdoches, TX, USA
| | | | - Jinghua Gu
- Baylor Scott & White Research Institute, Dallas, TX, USA
| |
Collapse
|
4
|
Harrill J, Shah I, Setzer RW, Haggard D, Auerbach S, Judson R, Thomas RS. Considerations for Strategic Use of High-Throughput Transcriptomics Chemical Screening Data in Regulatory Decisions. CURRENT OPINION IN TOXICOLOGY 2019; 15:64-75. [PMID: 31501805 DOI: 10.1016/j.cotox.2019.05.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, numerous organizations, including governmental regulatory agencies in the U.S. and abroad, have proposed using data from New Approach Methodologies (NAMs) for augmenting and increasing the pace of chemical assessments. NAMs are broadly defined as any technology, methodology, approach or combination thereof that can be used to provide information on chemical hazard and risk assessment that avoids the use of intact animals. High-throughput transcriptomics (HTTr) is a type of NAM that uses gene expression profiling as an endpoint for rapidly evaluating the effects of large numbers of chemicals on in vitro cell culture systems. As compared to targeted high-throughput screening (HTS) approaches that measure the effect of chemical X on target Y, HTTr is a non-targeted approach that allows researchers to more broadly characterize the integrated response of an intact biological system to chemicals that may affect a specific biological target or many biological targets under a defined set of treatment conditions (time, concentration, etc.). HTTr screening performed in concentration-response mode can provide potency estimates for the concentrations of chemicals that produce perturbations in cellular response pathways. Here, we discuss study design considerations for HTTr concentration-response screening and present a framework for the use of HTTr-based biological pathway-altering concentrations (BPACs) in a screening-level, risk-based chemical prioritization approach. The framework involves concentration-response modeling of HTTr data, mapping gene level responses to biological pathways, determination of BPACs, in vitro-to-in vivo extrapolation (IVIVE) and comparison to human exposure predictions.
Collapse
Affiliation(s)
- Joshua Harrill
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Imran Shah
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - R Woodrow Setzer
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Derik Haggard
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, USA
| | - Scott Auerbach
- National Toxicology Program, National Institute of Environmental Health Sciences, National Institute of Health, Research Triangle Park, NC, USA
| | - Richard Judson
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Russell S Thomas
- National Center for Computational Toxicology, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
5
|
Rahman MR, Islam T, Turanli B, Zaman T, Faruquee HM, Rahman MM, Mollah MNH, Nanda RK, Arga KY, Gov E, Moni MA. Network-based approach to identify molecular signatures and therapeutic agents in Alzheimer's disease. Comput Biol Chem 2018; 78:431-439. [PMID: 30606694 DOI: 10.1016/j.compbiolchem.2018.12.011] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/25/2018] [Indexed: 01/15/2023]
Abstract
Alzheimer's disease (AD) is a dynamic degeneration of the brain with progressive dementia. Considering the uncertainties in its molecular mechanism, in the present study, we employed network-based integrative analyses, and aimed to explore the key molecules and their associations with small drugs to identify potential biomarkers and therapeutic agents for the AD. First of all, we studied a transcriptome dataset and identified 1521 differentially expressed genes (DEGs). Integration of transcriptome data with protein-protein and transcriptional regulatory interactions resulted with central (hub) proteins (UBA52, RAC1, CREBBP, AR, RPS11, SMAD3, RPS6, RPL12, RPL15, and UBC), regulatory transcription factors (FOXC1, GATA2, YY1, FOXL1, NFIC, E2F1, USF2, SRF, PPARG, and JUN) and microRNAs (mir-335-5p, mir-26b-5p, mir-93-5p, mir-124-3p, mir-17-5p, mir-16-5p, mir-20a-5p, mir-92a-3p, mir-106b-5p, and mir-192-5p) as key signaling and regulatory molecules associated with transcriptional changes for the AD. Considering these key molecules as potential therapeutic targets and Connectivity Map (CMap) architecture, candidate small molecular agents (such as STOCK1N-35696) were identified as novel potential therapeutics for the AD. This study presents molecular signatures at RNA and protein levels which might be useful in increasing discernment of the molecular mechanisms, and potential drug targets and therapeutics to design effective treatment strategies for the AD.
Collapse
Affiliation(s)
- Md Rezanur Rahman
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh; Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University, Sirajgonj, Bangladesh
| | - Tania Islam
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh
| | - Beste Turanli
- Department of Bioengineering, Istanbul Medeniyet University, Istanbul, Turkey; Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Toyfiquz Zaman
- Department of Biochemistry and Biotechnology, School of Biomedical Science, Khwaja Yunus Ali University, Sirajgonj, Bangladesh
| | - Hossain Md Faruquee
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh; Translational Health, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Md Mafizur Rahman
- Department of Biotechnology and Genetic Engineering, Islamic University, Kushtia, Bangladesh
| | - Md Nurul Haque Mollah
- Laboratory of Bioinformatics, Department of Statistics, University of Rajshahi, Rajshahi, Bangladesh
| | - Ranjan Kumar Nanda
- Translational Health, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Esra Gov
- Department of Bioengineering, Adana Science and Technology University, Adana, Turkey.
| | - Mohammad Ali Moni
- The University of Sydney, Sydney Medical School, School of Medical Sciences, Discipline of Biomedical Science, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Musa A, Ghoraie LS, Zhang SD, Glazko G, Yli-Harja O, Dehmer M, Haibe-Kains B, Emmert-Streib F. A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform 2018; 19:506-523. [PMID: 28069634 PMCID: PMC5952941 DOI: 10.1093/bib/bbw112] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Large-scale perturbation databases, such as Connectivity Map (CMap) or Library of Integrated Network-based Cellular Signatures (LINCS), provide enormous opportunities for computational pharmacogenomics and drug design. A reason for this is that in contrast to classical pharmacology focusing at one target at a time, the transcriptomics profiles provided by CMap and LINCS open the door for systems biology approaches on the pathway and network level. In this article, we provide a review of recent developments in computational pharmacogenomics with respect to CMap and LINCS and related applications.
Collapse
Affiliation(s)
- Aliyu Musa
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Laleh Soltan Ghoraie
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry, Northern Ireland, UK
| | - Galina Glazko
- University of Rochester Department of Biostatistics and Computational Biology, Rochester, New York, USA
| | - Olli Yli-Harja
- Computational Systems Biology, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Matthias Dehmer
- Institute for Bioinformatics and Translational Research, UMIT- The Health and Life Sciences University, Eduard Wallnoefer Zentrum 1, Hall in Tyrol, Austria
| | - Benjamin Haibe-Kains
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Ontario Institute of Cancer Research, Toronto, ON, Canada
| | - Frank Emmert-Streib
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
7
|
Musa A, Ghoraie LS, Zhang SD, Glazko G, Yli-Harja O, Dehmer M, Haibe-Kains B, Emmert-Streib F. A review of connectivity map and computational approaches in pharmacogenomics. Brief Bioinform 2018. [PMID: 28069634 DOI: 10.1093/bib] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023] Open
Abstract
Large-scale perturbation databases, such as Connectivity Map (CMap) or Library of Integrated Network-based Cellular Signatures (LINCS), provide enormous opportunities for computational pharmacogenomics and drug design. A reason for this is that in contrast to classical pharmacology focusing at one target at a time, the transcriptomics profiles provided by CMap and LINCS open the door for systems biology approaches on the pathway and network level. In this article, we provide a review of recent developments in computational pharmacogenomics with respect to CMap and LINCS and related applications.
Collapse
Affiliation(s)
- Aliyu Musa
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Laleh Soltan Ghoraie
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Shu-Dong Zhang
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, Derry/Londonderry BT47 6SB, Northern Ireland, UK
| | - Galina Glazko
- University of Rochester Department of Biostatistics and Computational Biology, Rochester, New York 14642, USA
| | - Olli Yli-Harja
- Computational Systems Biology, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Matthias Dehmer
- Institute for Bioinformatics and Translational Research, UMIT- The Health and Life Sciences University, Eduard Wallnoefer Zentrum 1, 6060 Hall in Tyrol, Austria
| | - Benjamin Haibe-Kains
- Bioinformatics and Computational Genomics Laboratory, Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Computer Science, University of Toronto, Toronto, ON, Canada
- Ontario Institute of Cancer Research, Toronto, ON, Canada
| | - Frank Emmert-Streib
- Predictive Medicine and Analytics Lab, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| |
Collapse
|
8
|
Thillaiyampalam G, Liberante F, Murray L, Cardwell C, Mills K, Zhang SD. An integrated meta-analysis approach to identifying medications with potential to alter breast cancer risk through connectivity mapping. BMC Bioinformatics 2017; 18:581. [PMID: 29268695 PMCID: PMC5740937 DOI: 10.1186/s12859-017-1989-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 12/06/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gene expression connectivity mapping has gained much popularity in recent years with a number of successful applications in biomedical research testifying its utility and promise. A major application of connectivity mapping is the identification of small molecule compounds capable of inhibiting a disease state. In this study, we are additionally interested in small molecule compounds that may enhance a disease state or increase the risk of developing that disease. Using breast cancer as a case study, we aim to develop and test a methodology for identifying commonly prescribed drugs that may have a suppressing or inducing effect on the target disease (breast cancer). RESULTS We obtained from public data repositories a collection of breast cancer gene expression datasets with over 7000 patients. An integrated meta-analysis approach to gene expression connectivity mapping was developed, which involved unified processing and normalization of raw gene expression data, systematic removal of batch effects, and multiple runs of balanced sampling for differential expression analysis. Differentially expressed genes stringently selected were used to construct multiple non-joint gene signatures representing the same biological state. Remarkably these non-joint gene signatures retrieved from connectivity mapping separate lists of candidate drugs with significant overlaps, providing high confidence in their predicted effects on breast cancers. Of particular note, among the top 26 compounds identified as inversely connected to the breast cancer gene signatures, 14 of them are known anti-cancer drugs. CONCLUSIONS A few candidate drugs with potential to enhance breast cancer or increase the risk of the disease were also identified; further investigation on a large population is required to firmly establish their effects on breast cancer risks. This work thus provides a novel approach and an applicable example for identifying medications with potential to alter cancer risks through gene expression connectivity mapping.
Collapse
Affiliation(s)
| | - Fabio Liberante
- Centre for Cancer Research and Cell Biology (CCRCB), Queen’s University Belfast, Belfast, UK
| | - Liam Murray
- Centre for Public Health, Queen’s University Belfast, Belfast, UK
| | - Chris Cardwell
- Centre for Public Health, Queen’s University Belfast, Belfast, UK
| | - Ken Mills
- Centre for Cancer Research and Cell Biology (CCRCB), Queen’s University Belfast, Belfast, UK
| | - Shu-Dong Zhang
- Centre for Cancer Research and Cell Biology (CCRCB), Queen’s University Belfast, Belfast, UK
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, University of Ulster, C-TRIC Building, Altnagelvin Area Hospital, Glenshane Road, L/Derry, Northern Ireland, BT47 6SB UK
| |
Collapse
|