1
|
Latifi B, Cole K, Vu MK, Lupták A. Rapid discovery of functional RNA domains. Nucleic Acids Res 2025; 53:gkaf307. [PMID: 40243058 PMCID: PMC12004112 DOI: 10.1093/nar/gkaf307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Many strategies have been implemented to enrich an RNA population for a selectable function, but demarcation of the optimal functional motifs or minimal structures within longer libraries remains a lengthy and tedious process. To overcome this problem, we have developed a technique that isolates minimal active segments from complex heterogeneous pools of RNAs. This method allows for truncations to occur at both 5' and 3' ends of functional domains and introduces independent primer-binding sequences, thereby removing sequence and structure bias introduced by constant-sequence regions. We show examples of minimization for genomic and synthetic aptamers and demonstrate that the method can directly reveal an active RNA assembled from multiple strands, facilitating the development of heterodimeric structures used in cellular sensors. This approach provides a pipeline to experimentally define the boundaries of active domains and accelerate the discovery of functional RNAs.
Collapse
Affiliation(s)
- Brandon Latifi
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States
| | - Kyle H Cole
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States
| | - Michael M K Vu
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States
| | - Andrej Lupták
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA 92697, United States
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA 92697, United States
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, United States
| |
Collapse
|
2
|
McKinley LN, Bevilacqua PC. CHiTA: A scarless high-throughput pipeline for characterization of ribozymes. Methods 2025; 234:120-130. [PMID: 39662711 PMCID: PMC11805615 DOI: 10.1016/j.ymeth.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024] Open
Abstract
Small self-cleaving ribozymes are catalytic RNAs that cleave their phosphodiester backbone rapidly and site-specifically, without the assistance of proteins. Their catalytic properties make them ideal targets for applications in RNA pharmaceuticals and bioengineering. Consequently, computational pipelines that predict or design thousands of self-cleaving ribozyme candidates have been developed. Traditional experimental techniques for verifying the activity of these putative ribozymes, however, are low-throughput and time intensive. High-throughput (HT) pipelines that employ next-generation sequencing (NGS) analyze the activity of these thousands of ribozymes simultaneously. Until recently, the application of these HT pipelines has been limited to studying all single and double mutants of a select representative ribozyme. Unfortunately, this prevents the exploration of candidates having different lengths, circular permutations, and auxiliary stem-loops. Moreover, pipelines that analyze ribozymes en masse often include transcription of non-native flanking sequences that preclude accurate assessment of the intrinsic rate of ribozyme self-cleavage. To overcome these limitations, we developed a HT pipeline, "Cleavage High-Throughput Assay (CHiTA)", which employs NGS and massively parallel oligonucleotide synthesis (MPOS) to characterize ribozyme activity for thousands of candidates in a scarless fashion. Herein, we describe detailed strategies and protocols to implement CHiTA to measure the activity of putative ribozymes from a wide range of ribozyme classes.
Collapse
Affiliation(s)
- Lauren N McKinley
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Center for RNA and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA; Center for RNA and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA; Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
3
|
McKinley LN, Meyer MO, Sebastian A, Chang BK, Messina KJ, Albert I, Bevilacqua PC. Direct testing of natural twister ribozymes from over a thousand organisms reveals a broad tolerance for structural imperfections. Nucleic Acids Res 2024; 52:14133-14153. [PMID: 39498486 DOI: 10.1093/nar/gkae908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 11/13/2024] Open
Abstract
Twister ribozymes are an extensively studied class of nucleolytic RNAs. Thousands of natural twisters have been proposed using sequence homology and structural descriptors. Yet, most of these candidates have not been validated experimentally. To address this gap, we developed Cleavage High-Throughput Assay (CHiTA), a high-throughput pipeline utilizing massively parallel oligonucleotide synthesis and next-generation sequencing to test putative ribozymes en masse in a scarless fashion. As proof of principle, we applied CHiTA to a small set of known active and mutant ribozymes. We then used CHiTA to test two large sets of naturally occurring twister ribozymes: over 1600 previously reported putative twisters and ∼1000 new candidate twisters. The new candidates were identified computationally in ∼1000 organisms, representing a massive increase in the number of ribozyme-harboring organisms. Approximately 94% of the twisters we tested were active and cleaved site-specifically. Analysis of their structural features revealed that many substitutions and helical imperfections can be tolerated. We repeated our computational search with structural descriptors updated from this analysis, whereupon we identified and confirmed the first intrinsically active twister ribozyme in mammals. CHiTA broadly expands the number of active twister ribozymes found in nature and provides a powerful method for functional analyses of other RNAs.
Collapse
Affiliation(s)
- Lauren N McKinley
- Department of Chemistry, Pennsylvania State University, 104 Benkovic Building, 376 Science Drive, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - McCauley O Meyer
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Althouse Room 107, 363 Science Drive, Pennsylvania State University, University Park, PA 16802, USA
| | - Aswathy Sebastian
- Huck Institutes of Life Sciences, 401 Huck Life Sciences Building, 432 Science Drive, Pennsylvania State University, University Park, PA 16802, USA
| | - Benjamin K Chang
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Althouse Room 107, 363 Science Drive, Pennsylvania State University, University Park, PA 16802, USA
| | - Kyle J Messina
- Department of Chemistry, Pennsylvania State University, 104 Benkovic Building, 376 Science Drive, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Istvan Albert
- Department of Biochemistry and Molecular Biology, Althouse Room 107, 363 Science Drive, Pennsylvania State University, University Park, PA 16802, USA
- Huck Institutes of Life Sciences, 401 Huck Life Sciences Building, 432 Science Drive, Pennsylvania State University, University Park, PA 16802, USA
| | - Philip C Bevilacqua
- Department of Chemistry, Pennsylvania State University, 104 Benkovic Building, 376 Science Drive, University Park, PA 16802, USA
- Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biochemistry and Molecular Biology, Althouse Room 107, 363 Science Drive, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Tong AY, Tong EL, Hannani MA, Shaffer SN, Santiago D, Ferré-D'Amaré AR, Passalacqua LFM, Abdelsayed MM. RNA thermometers are widespread upstream of ABC transporter genes in bacteria. J Biol Chem 2024; 300:107547. [PMID: 38992441 PMCID: PMC11342760 DOI: 10.1016/j.jbc.2024.107547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/17/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
RNA thermometers are temperature-sensing non-coding RNAs that regulate the expression of downstream genes. A well-characterized RNA thermometer motif discovered in bacteria is the ROSE-like element (repression of heat shock gene expression). ATP-binding cassette (ABC) transporters are a superfamily of transmembrane proteins that harness ATP hydrolysis to facilitate the export and import of substrates across cellular membranes. Through structure-guided bioinformatics, we discovered that ROSE-like RNA thermometers are widespread upstream of ABC transporter genes in bacteria. X-ray crystallography, biochemistry, and cellular assays indicate that these RNA thermometers are functional regulatory elements. This study expands the known biological role of RNA thermometers to these key membrane transporters.
Collapse
Affiliation(s)
- Alina Y Tong
- Department of Biology, California Lutheran University, Thousand Oaks, California, USA
| | - Elisha L Tong
- Department of Biology, California Lutheran University, Thousand Oaks, California, USA
| | - Michael A Hannani
- Department of Biology, California Lutheran University, Thousand Oaks, California, USA
| | - Samantha N Shaffer
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Danna Santiago
- Department of Biology, California Lutheran University, Thousand Oaks, California, USA
| | - Adrian R Ferré-D'Amaré
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Luiz F M Passalacqua
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Michael M Abdelsayed
- Department of Biology, California Lutheran University, Thousand Oaks, California, USA.
| |
Collapse
|
5
|
McKinley LN, Meyer MO, Sebastian A, Chang BK, Messina KJ, Albert I, Bevilacqua PC. Direct testing of natural twister ribozymes from over a thousand organisms reveals a broad tolerance for structural imperfections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.11.603121. [PMID: 39026743 PMCID: PMC11257566 DOI: 10.1101/2024.07.11.603121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Twister ribozymes are an extensively studied class of nucleolytic RNAs. Thousands of natural twisters have been proposed using sequence homology and structural descriptors. Yet, most of these candidates have not been validated experimentally. To address this gap, we developed CHiTA (Cleavage High-Throughput Assay), a high-throughput pipeline utilizing massively parallel oligonucleotide synthesis and next-generation sequencing to test putative ribozymes en masse in a scarless fashion. As proof of principle, we applied CHiTA to a small set of known active and mutant ribozymes. We then used CHiTA to test two large sets of naturally occurring twister ribozymes: over 1, 600 previously reported putative twisters and ∼1, 000 new candidate twisters. The new candidates were identified computationally in ∼1, 000 organisms, representing a massive increase in the number of ribozyme-harboring organisms. Approximately 94% of the twisters we tested were active and cleaved site-specifically. Analysis of their structural features revealed that many substitutions and helical imperfections can be tolerated. We repeated our computational search with structural descriptors updated from this analysis, whereupon we identified and confirmed the first intrinsically active twister ribozyme in mammals. CHiTA broadly expands the number of active twister ribozymes found in nature and provides a powerful method for functional analyses of other RNAs. GRAPHICAL ABSTRACT
Collapse
|
6
|
Sharts DM, Almanza MT, Banks AV, Castellanos AM, Hernandez CGO, Lopez ML, Rodriguez D, Tong AY, Segeberg MR, Passalacqua LFM, Abdelsayed MM. Robo-Therm, a pipeline to RNA thermometer discovery and validation. RNA (NEW YORK, N.Y.) 2024; 30:760-769. [PMID: 38565243 PMCID: PMC11182007 DOI: 10.1261/rna.079980.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
RNA thermometers are highly structured noncoding RNAs located in the 5'-untranslated regions (UTRs) of genes that regulate expression by undergoing conformational changes in response to temperature. The discovery of RNA thermometers through bioinformatics is difficult because there is little sequence conservation among their structural elements. Thus, the abundance of these thermosensitive regulatory structures remains unclear. Herein, to advance the discovery and validation of RNA thermometers, we developed Robo-Therm, a pipeline that combines an adaptive and user-friendly in silico motif search with a well-established reporter system. Through our application of Robo-Therm, we discovered two novel RNA thermometers in bacterial and bacteriophage genomes found in the human gut. One of these thermometers is present in the 5'-UTR of a gene that codes for σ 70 RNA polymerase subunit in the bacteria Mediterraneibacter gnavus and Bacteroides pectinophilus, and in the bacteriophage Caudoviricetes, which infects B. pectinophilus The other thermometer is in the 5'-UTR of a tetracycline resistance gene (tetR) in the intestinal bacteria Escherichia coli and Shigella flexneri Our Robo-Therm pipeline can be applied to discover multiple RNA thermometers across various genomes.
Collapse
Affiliation(s)
- Davis M Sharts
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Maria T Almanza
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Andrea V Banks
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Alyssa M Castellanos
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | | | - Monica L Lopez
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Daniela Rodriguez
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Alina Y Tong
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Maximilian R Segeberg
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| | - Luiz F M Passalacqua
- Laboratory of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Michael M Abdelsayed
- Department of Biology, California Lutheran University, Thousand Oaks, California 91360, USA
| |
Collapse
|
7
|
Kienbeck K, Malfertheiner L, Zelger-Paulus S, Johannsen S, von Mering C, Sigel RKO. Identification of HDV-like theta ribozymes involved in tRNA-based recoding of gut bacteriophages. Nat Commun 2024; 15:1559. [PMID: 38378708 PMCID: PMC10879173 DOI: 10.1038/s41467-024-45653-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Trillions of microorganisms, collectively known as the microbiome, inhabit our bodies with the gut microbiome being of particular interest in biomedical research. Bacteriophages, the dominant virome constituents, can utilize suppressor tRNAs to switch to alternative genetic codes (e.g., the UAG stop-codon is reassigned to glutamine) while infecting hosts with the standard bacterial code. However, what triggers this switch and how the bacteriophage manipulates its host is poorly understood. Here, we report the discovery of a subgroup of minimal hepatitis delta virus (HDV)-like ribozymes - theta ribozymes - potentially involved in the code switch leading to the expression of recoded lysis and structural phage genes. We demonstrate their HDV-like self-scission behavior in vitro and find them in an unreported context often located with their cleavage site adjacent to tRNAs, indicating a role in viral tRNA maturation and/or regulation. Every fifth associated tRNA is a suppressor tRNA, further strengthening our hypothesis. The vast abundance of tRNA-associated theta ribozymes - we provide 1753 unique examples - highlights the importance of small ribozymes as an alternative to large enzymes that usually process tRNA 3'-ends. Our discovery expands the short list of biological functions of small HDV-like ribozymes and introduces a previously unknown player likely involved in the code switch of certain recoded gut bacteriophages.
Collapse
Affiliation(s)
- Kasimir Kienbeck
- Department of Chemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Lukas Malfertheiner
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, CH-8057, Switzerland
| | | | - Silke Johannsen
- Department of Chemistry, University of Zurich, Zurich, CH-8057, Switzerland
| | - Christian von Mering
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, CH-8057, Switzerland.
| | - Roland K O Sigel
- Department of Chemistry, University of Zurich, Zurich, CH-8057, Switzerland.
| |
Collapse
|
8
|
Tong A, Caudill EE, Jones AR, F. M. Passalacqua L, Abdelsayed MM. Characterization of a FourU RNA Thermometer in the 5' Untranslated Region of Autolysin Gene blyA in the Bacillus subtilis 168 Prophage SPβ. Biochemistry 2023; 62:2902-2907. [PMID: 37699513 PMCID: PMC10586365 DOI: 10.1021/acs.biochem.3c00368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 08/28/2023] [Indexed: 09/14/2023]
Abstract
RNA thermometers are noncoding RNA structures located in the 5' untranslated regions (UTRs) of genes that regulate gene expression through temperature-dependent conformational changes. The fourU class of RNA thermometers contains a specific motif in which four consecutive uracil nucleotides are predicted to base pair with the Shine-Dalgarno (SD) sequence in a stem. We employed a bioinformatic search to discover a fourU RNA thermometer in the 5'-UTR of the blyA gene of the Bacillus subtilis phage SPβc2, a bacteriophage that infects B. subtilis 168. blyA encodes an autolysin enzyme, N-acetylmuramoyl-l-alanine amidase, which is involved in the lytic life cycle of the SPβ prophage. We have biochemically validated the predicted RNA thermometer in the 5'-UTR of the blyA gene. Our study suggests that RNA thermometers may play an underappreciated yet critical role in the lytic life cycle of bacteriophages.
Collapse
Affiliation(s)
- Alina
Y. Tong
- Department
of Biology, California Lutheran University, Thousand Oaks, California 91360, United States
| | - Emma E. Caudill
- Department
of Biology, California Lutheran University, Thousand Oaks, California 91360, United States
| | - Alexis R. Jones
- Department
of Biology, California Lutheran University, Thousand Oaks, California 91360, United States
| | - Luiz F. M. Passalacqua
- Laboratory
of Nucleic Acids, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Michael M. Abdelsayed
- Department
of Biology, California Lutheran University, Thousand Oaks, California 91360, United States
| |
Collapse
|
9
|
Cole KH, Lupták A. High-throughput methods in aptamer discovery and analysis. Methods Enzymol 2019; 621:329-346. [PMID: 31128787 DOI: 10.1016/bs.mie.2019.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Aptamers are small, functional nucleic acids that bind a variety of targets, often with high specificity and affinity. Genomic aptamers constitute the ligand-binding domains of riboswitches, whereas synthetic aptamers find applications as diagnostic and therapeutic tools, and as ligand-binding domains of regulatory RNAs in synthetic biology. Discovery and characterization of aptamers has been limited by a lack of high-throughput approaches that uncover the target-binding domains and the biochemical properties of individual sequences. With the advent of high-throughput sequencing, large-scale analysis of in vitro selected populations of aptamers (and catalytic nucleic acids, such as ribozymes and DNAzmes) became possible. In recent years the development of new experimental approaches and software tools has led to significant streamlining of the selection-pool analysis. This article provides an overview of post-selection data analysis and describes high-throughput methods that facilitate rapid discovery and biochemical characterization of aptamers.
Collapse
Affiliation(s)
- Kyle H Cole
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, United States; Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States; Department of Chemistry, University of California, Irvine, CA, United States.
| |
Collapse
|
10
|
Webb CHT, Lupták A. Kinetic Parameters of trans Scission by Extended HDV-like Ribozymes and the Prospect for the Discovery of Genomic trans-Cleaving RNAs. Biochemistry 2018; 57:1440-1450. [PMID: 29388767 DOI: 10.1021/acs.biochem.7b00789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hepatitis delta virus (HDV)-like ribozymes are self-cleaving catalytic RNAs with a widespread distribution in nature and biological roles ranging from self-scission during rolling-circle replication in viroids to co-transcriptional processing of eukaryotic retrotransposons, among others. The ribozymes fold into a double pseudoknot with a common catalytic core motif and highly variable peripheral domains. Like other self-cleaving ribozymes, HDV-like ribozymes can be converted into trans-acting catalytic RNAs by bisecting the self-cleaving variants at non-essential loops. Here we explore the trans-cleaving activity of ribozymes derived from the largest examples of the ribozymes (drz-Agam-2 family), which contain an extended domain between the substrate strand and the rest of the RNA. When this peripheral domain is bisected at its distal end, the substrate strand is recognized through two helices, rather than just one 7 bp helix common among the HDV ribozymes, resulting in stronger binding and increased sequence specificity. Kinetic characterization of the extended trans-cleaving ribozyme revealed an efficient trans-cleaving system with a surprisingly high KM', supporting a model that includes a recently proposed activation barrier related to the assembly of the catalytically competent ribozyme. The ribozymes also exhibit a very long koff for the products (∼2 weeks), resulting in a trade-off between sequence specificity and turnover. Finally, structure-based searches for the catalytic cores of these ribozymes in the genome of the mosquito Anopheles gambiae, combined with sequence searches for their putative substrates, revealed two potential ribozyme-substrate pairs that may represent examples of natural trans-cleaving ribozymes.
Collapse
Affiliation(s)
- Chiu-Ho T Webb
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States
| | - Andrej Lupták
- Department of Molecular Biology and Biochemistry , University of California-Irvine , Irvine , California 92697 , United States.,Department of Pharmaceutical Sciences , University of California-Irvine , Irvine , California 92697 , United States.,Department of Chemistry , University of California-Irvine , Irvine , California 92697 , United States
| |
Collapse
|