1
|
Wagner PM, Salgado MA, Turani O, Fornasier SJ, Salvador GA, Smania AM, Bouzat C, Guido ME. Rhythms in lipid droplet content driven by a metabolic oscillator are conserved throughout evolution. Cell Mol Life Sci 2024; 81:348. [PMID: 39136766 PMCID: PMC11335272 DOI: 10.1007/s00018-024-05355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/02/2024] [Accepted: 07/08/2024] [Indexed: 08/22/2024]
Abstract
The biological clock in eukaryotes controls daily rhythms in physiology and behavior. It displays a complex organization that involves the molecular transcriptional clock and the redox oscillator which may coordinately work to control cellular rhythms. The redox oscillator has emerged very early in evolution in adaptation to the environmental changes in O2 levels and has been shown to regulate daily rhythms in glycerolipid (GL) metabolism in different eukaryotic cells. GLs are key components of lipid droplets (LDs), intracellular storage organelles, present in all living organisms, and essential for energy and lipid homeostasis regulation and survival; however, the cell bioenergetics status is not constant across time and depends on energy demands. Thus, the formation and degradation of LDs may reflect a time-dependent process following energy requirements. This work investigated the presence of metabolic rhythms in LD content along evolution by studying prokaryotic and eukaryotic cells and organisms. We found sustained temporal oscillations in LD content in Pseudomonas aeruginosa bacteria and Caenorhabditis elegans synchronized by temperature cycles, in serum-shock synchronized human embryonic kidney cells (HEK 293 cells) and brain tumor cells (T98G and GL26) after a dexamethasone pulse. Moreover, in synchronized T98G cells, LD oscillations were altered by glycogen synthase kinase-3 (GSK-3) inhibition that affects the cytosolic activity of the metabolic oscillator or by knocking down LIPIN-1, a key GL synthesizing enzyme. Overall, our findings reveal the existence of metabolic oscillations in terms of LD content highly conserved across evolutionary scales notwithstanding variations in complexity, regulation, and cell organization.
Collapse
Affiliation(s)
- Paula M Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Mauricio A Salgado
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Ornella Turani
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Santiago J Fornasier
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Gabriela A Salvador
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Andrea M Smania
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina
| | - Cecilia Bouzat
- INIBIBB-CONICET, Universidad Nacional del Sur, Departamento de Biología, Bioquímica y Farmacia, Camino de la Carrindanga, km 7, 8000, Bahía Blanca, Argentina
| | - Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, 5000, Córdoba, Argentina.
- Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Haya de la Torre s/n, Ciudad Universitaria, 5000, Córdoba, Argentina.
| |
Collapse
|
2
|
Liu Z, Meng M, Zhang S, Qiu H, Liu Z, Huang M. Rhythmic Component Analysis Tool (RCAT): A Precise, Efficient and User-Friendly Tool for Circadian Clock Genes Analysis. Interdiscip Sci 2022; 14:269-278. [PMID: 34374039 DOI: 10.1007/s12539-021-00471-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 07/31/2021] [Accepted: 07/31/2021] [Indexed: 11/29/2022]
Abstract
High-throughput next-generation sequencing (NGS) technologies and real-time circadian dynamics reporting systems produce large amounts of experimental data on RNA and protein levels in the field of circadian rhythm and therefore require statistical knowledge and computational skills for quantitative analysis. Although there are many software applications that can process these data, they are often difficult to use and computationally inefficient. Hence, a convenient, user-friendly tool that can accurately acquire rhythmic components (period, amplitude, and phase) of circadian clock genes is necessary. Here, we develop a new analysis tool named rhythmic component analysis tool (RCAT), which has an easily understood interface featuring a one-button operation, that presents all results as tables and images and automatically saves them as CSV files. We use the relative amplitude error (RAE), widely-adopted criteria on the circadian research field to estimate the quality of results. To illustrate the analytical ability of the RCAT under different situations, we generate four groups of time-series data by CircaInSilico (a web server for generating synthetic genome biology data to benchmark statistical methods for studying biological rhythms) with different collection intervals and amplitude ranges and use RCAT to analyze them. To demonstrate the effectiveness of RCAT, we analyze two sets of case studies with time-series data: one set uses microarray and RNA-Seq data from the gene expression omnibus (GEO) repository to identify core clock genes (CCGs) with significant periodicity in the liver, and the other set uses real-time fluorescence reporting data collected by Lumicycle® (a commonly-used luminometer) to calculate the precise period, amplitude and phase. In these examples, most cycling samples are successfully detected by the RCAT within a short collection time, and accurate rhythmic components are also successfully computed. These results indicate that RCAT improves flexibility and convenience in periodic oscillation data analysis. RCAT, is freely available at: https://github.com/lzbbest/Rhythmic-Component-Analysis-Tool/releases . It, as a cross-platform software, can be run not only on Linux, but also on Win10, Win8 and Win7.
Collapse
Affiliation(s)
- Zhibo Liu
- Department of Bioinformatics, School of Biological and Basic Medical Sciences, Soochow University, 199 Ren-ai Road, Suzhou, 215123, China
| | - Meng Meng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Research Center of Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shufan Zhang
- Department of Bioinformatics, School of Biological and Basic Medical Sciences, Soochow University, 199 Ren-ai Road, Suzhou, 215123, China
| | - Hao Qiu
- Department of Biochemistry and Molecular Biology, School of Biological and Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Zhiwei Liu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou, 215123, China
| | - Moli Huang
- Department of Bioinformatics, School of Biological and Basic Medical Sciences, Soochow University, 199 Ren-ai Road, Suzhou, 215123, China.
| |
Collapse
|
3
|
Al Khleifat A, Iacoangeli A, van Vugt JJFA, Bowles H, Moisse M, Zwamborn RAJ, van der Spek RAA, Shatunov A, Cooper-Knock J, Topp S, Byrne R, Gellera C, López V, Jones AR, Opie-Martin S, Vural A, Campos Y, van Rheenen W, Kenna B, Van Eijk KR, Kenna K, Weber M, Smith B, Fogh I, Silani V, Morrison KE, Dobson R, van Es MA, McLaughlin RL, Vourc'h P, Chio A, Corcia P, de Carvalho M, Gotkine M, Panades MP, Mora JS, Shaw PJ, Landers JE, Glass JD, Shaw CE, Basak N, Hardiman O, Robberecht W, Van Damme P, van den Berg LH, Veldink JH, Al-Chalabi A. Structural variation analysis of 6,500 whole genome sequences in amyotrophic lateral sclerosis. NPJ Genom Med 2022; 7:8. [PMID: 35091648 PMCID: PMC8799638 DOI: 10.1038/s41525-021-00267-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 10/21/2021] [Indexed: 02/01/2023] Open
Abstract
There is a strong genetic contribution to Amyotrophic lateral sclerosis (ALS) risk, with heritability estimates of up to 60%. Both Mendelian and small effect variants have been identified, but in common with other conditions, such variants only explain a little of the heritability. Genomic structural variation might account for some of this otherwise unexplained heritability. We therefore investigated association between structural variation in a set of 25 ALS genes, and ALS risk and phenotype. As expected, the repeat expansion in the C9orf72 gene was identified as associated with ALS. Two other ALS-associated structural variants were identified: inversion in the VCP gene and insertion in the ERBB4 gene. All three variants were associated both with increased risk of ALS and specific phenotypic patterns of disease expression. More than 70% of people with respiratory onset ALS harboured ERBB4 insertion compared with 25% of the general population, suggesting respiratory onset ALS may be a distinct genetic subtype.
Collapse
Affiliation(s)
- Ahmad Al Khleifat
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Alfredo Iacoangeli
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joke J F A van Vugt
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Harry Bowles
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Matthieu Moisse
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Ramona A J Zwamborn
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Rick A A van der Spek
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Aleksey Shatunov
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Johnathan Cooper-Knock
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Simon Topp
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Ross Byrne
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Cinzia Gellera
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano and Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Victoria López
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano and Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Ashley R Jones
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Sarah Opie-Martin
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Atay Vural
- Koc University, School of Medicine, Translational Medicine Research Center- NDAL, Istanbul, Turkey
| | - Yolanda Campos
- Mitochondrial pathology Unit, Instituto de Salud Carlos III, Madrid, Spain
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Brendan Kenna
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Kristel R Van Eijk
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Kevin Kenna
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Bradley Smith
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Isabella Fogh
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano and Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Karen E Morrison
- Faculty of Medicine, Health and Life Sciences, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Richard Dobson
- Department of Biostatistics and Health Informatics, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Institute of Health Informatics, University College London, London, UK
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Russell L McLaughlin
- Complex Trait Genomics Laboratory, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Adriano Chio
- Rita Levi Montalcini, Department of Neuroscience, ALS Centre, University of Torino, Turin, Italy
- Azienda Ospedaliera Citta della Salute e della Scienza, Torino, Italy
| | - Philippe Corcia
- Centre SLA, CHRU de Tours, Tours, France
- Federation des Centres SLA Tours and Limoges, LITORALS, Tours, France
| | - Mamede de Carvalho
- Physiology Institute, Faculty of Medicine, Instituto de Medicina Molecular, University of Lisbon, Lisbon, Portugal
| | | | - Monica P Panades
- Neurology Department, Hospital Universitari de Bellvitge, Barcelona, Spain
| | | | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - John E Landers
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Jonathan D Glass
- Department of Neurology, Center for Neurodegenerative Diseases, Emory University, Atlanta, GA, USA
| | - Christopher E Shaw
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK
- King's College Hospital, Denmark Hill, London, UK
| | - Nazli Basak
- Koc University, School of Medicine, Translational Medicine Research Center- NDAL, Istanbul, Turkey
| | - Orla Hardiman
- Academic Unit of Neurology, Trinity College Dublin, Trinity Biomedical Sciences Institute, Dublin, Republic of Ireland
- Department of Neurology, Beaumont Hospital, Dublin, Republic of Ireland
| | - Wim Robberecht
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology; VIB Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Ammar Al-Chalabi
- King's College London, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, De Crespigny Park, London, UK.
- King's College Hospital, Denmark Hill, London, UK.
| |
Collapse
|
4
|
Li N, Sun ZH, Fang M, Xin JY, Wan CY. Long non-coding RNA ZFAS1 sponges miR-486 to promote osteosarcoma cells progression and metastasis in vitro and vivo. Oncotarget 2017; 8:104160-104170. [PMID: 29262629 PMCID: PMC5732795 DOI: 10.18632/oncotarget.22032] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/21/2017] [Indexed: 12/30/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) have been wildly demonstrated to participate in the osteosarcoma tumorigenesis. ZFAS1 is a novel identified lncRNA, however, its role in osteosarcoma is still unclear. In present study, we utilize lncRNA microarray assay to screen the lncRNA expression profile in osteosarcoma tissue, and investigate the regulatory function of ZFAS1 in osteosarcoma. LncRNA microarray assay revealed that lncRNA ZFAS1 was significantly up-regulated in 3 pairs of osteosarcoma and adjacent non-tumor tissue, which was confirmed by RT-PCR. Furthermore, in 53 pairs of osteosarcoma patient samples, the up-regulated expression of ZFAS1 was closely related to poor prognosis. In vitro, loss-of-function experiments showed that ZFAS1 knockdown significantly suppressed the proliferation, induced cycle arrest at G0/G1 phase and enhance apoptosis. In vivo, ZFAS1 knockdown inhibited the tumor growth. Bioinformatics online programs predicted that ZFAS1 sponge miR-486 at 3’-UTR with complementary binding sites, which was validated using luciferase reporter assay and RNA immunoprecipitation (RIP) assay. Rescue experiments confirmed that miR-486 could reverse the functions of ZFAS1 on osteosarcoma genesis. In conclusion, our results demonstrate that ZFAS1 act as competing endogenous RNA (ceRNA) for miR-486, and act as oncogene in osteosarcoma tumorigenesis, and discover the functional regulatory pathway of ZFAS1 sponging miR-486.
Collapse
Affiliation(s)
- Nan Li
- Department of Traumatic Orthopedics, Tianjin Hospital, Tianjin 300211, China
| | - Zhen-Hui Sun
- Department of Traumatic Orthopedics, Tianjin Hospital, Tianjin 300211, China
| | - Min Fang
- Department of Traumatic Orthopedics, Tianjin Hospital, Tianjin 300211, China
| | - Jing-Yi Xin
- Department of Traumatic Orthopedics, Tianjin Hospital, Tianjin 300211, China
| | - Chun-You Wan
- Department of Traumatic Orthopedics, Tianjin Hospital, Tianjin 300211, China
| |
Collapse
|
5
|
Jeena GS, Fatima S, Tripathi P, Upadhyay S, Shukla RK. Comparative transcriptome analysis of shoot and root tissue of Bacopa monnieri identifies potential genes related to triterpenoid saponin biosynthesis. BMC Genomics 2017; 18:490. [PMID: 28659188 PMCID: PMC5490213 DOI: 10.1186/s12864-017-3865-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 06/15/2017] [Indexed: 12/02/2022] Open
Abstract
Background Bacopa monnieri commonly known as Brahmi is utilized in Ayurveda to improve memory and many other human health benefits. Bacosides enriched standardized extract of Bacopa monnieri is being marketed as a memory enhancing agent. In spite of its well known pharmacological properties it is not much studied in terms of transcripts involved in biosynthetic pathway and its regulation that controls the secondary metabolic pathway in this plant. The aim of this study was to identify the potential transcripts and provide a framework of identified transcripts involved in bacosides production through transcriptome assembly. Results We performed comparative transcriptome analysis of shoot and root tissue of Bacopa monnieri in two independent biological replicate and obtained 22.48 million and 22.0 million high quality processed reads in shoot and root respectively. After de novo assembly and quantitative assessment total 26,412 genes got annotated in root and 18,500 genes annotated in shoot sample. Quality of raw reads was determined by using SeqQC-V2.2. Assembled sequences were annotated using BLASTX against public database such as NR or UniProt. Searching against the KEGG pathway database indicated that 37,918 unigenes from root and 35,130 unigenes from shoot were mapped to 133 KEGG pathways. Based on the DGE data we found that most of the transcript related to CYP450s and UDP-glucosyltransferases were specifically upregulated in shoot tissue as compared to root tissue. Finally, we have selected 43 transcripts related to secondary metabolism including transcription factor families which are differentially expressed in shoot and root tissues were validated by qRT-PCR and their expression level were monitored after MeJA treatment and wounding for 1, 3 and 5 h. Conclusions This study not only represents the first de novo transcriptome analysis of Bacopa monnieri but also provides information about the identification, expression and differential tissues specific distribution of transcripts related to triterpenoid sapogenin which is one of the most important pharmacologically active secondary metabolite present in Bacopa monnieri. The identified transcripts in this study will establish a foundation for future studies related to carrying out the metabolic engineering for increasing the bacosides biosynthesis and its regulation for human health benefits. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3865-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gajendra Singh Jeena
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India
| | - Shahnoor Fatima
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India
| | - Pragya Tripathi
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India
| | - Swati Upadhyay
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India
| | - Rakesh Kumar Shukla
- Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CSIR-CIMAP), Kukrail Picnic Spot Road, P.O. CIMAP, Lucknow, 226015, India.
| |
Collapse
|