1
|
Park KH, Yang JW, Kwon JH, Lee H, Yoon YD, Choi BJ, Lee MY, Lee CW, Han SB, Kang JS. Targeted Induction of Endogenous VDUP1 by Small Activating RNA Inhibits the Growth of Lung Cancer Cells. Int J Mol Sci 2022; 23:ijms23147743. [PMID: 35887091 PMCID: PMC9323751 DOI: 10.3390/ijms23147743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 12/04/2022] Open
Abstract
Recent studies have reported that small double-strand RNAs (dsRNAs) can activate endogenous genes via an RNA-based promoter targeting mechanism termed RNA activation (RNAa). In the present study, we showed that dsVDUP1-834, a novel small activating RNA (saRNA) targeting promoter of vitamin D3 up-regulated protein 1 (VDUP1) gene, up-regulated expression of VDUP1 at both mRNA and protein levels in A549 lung cancer cells. We also demonstrated that dsVDUP1-834 inhibited cell proliferation in A549 lung cancer cells. Further studies showed that dsVDUP1-834 induced cell-cycle arrest by increasing p27 and p53 and decreasing cyclin A and cyclin B1. In addition, knockdown of VDUP1 abrogated dsVDUP1-834-induced up-regulation of VDUP1 gene expression and related effects. The activation of VDUP1 by dsVDUP1-834 was accompanied by an increase in dimethylation of histone 3 at lysine 4 (H3K4me2) and acetylation of histone 3 (H3ac) and a decrease in dimethylation of histone 3 at lysine 9 (H3K9me2) at the target site of VDUP1 promoter. Moreover, the enrichment of Ago2 was detected at the dsVDUP1-834 target site, and Ago2 knockdown significantly suppressed dsVDUP1-834-mediated inhibition of cell proliferation and modulation of cell-cycle regulators. Taken together, the results presented in this report demonstrate that dsVDUP1-834 induces VDUP1 gene expression by epigenetic changes, resulting in cell growth inhibition and cell-cycle arrest. Our results suggest that targeted induction of VDUP1 by dsVDUP1-834 might be a promising therapeutic strategy for the treatment of lung cancer.
Collapse
Affiliation(s)
- Ki Hwan Park
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
- College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung-1, Heungdeok, Cheongwon, Cheongju 28116, Chungbuk, Korea;
| | - Jeong-Wook Yang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Joo-Hee Kwon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Hyunju Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Yeo Dae Yoon
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Byeong Jo Choi
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Myeong Youl Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Chang Woo Lee
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, 194-21, Osongsaengmyung-1, Heungdeok, Cheongwon, Cheongju 28116, Chungbuk, Korea;
| | - Jong Soon Kang
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji, Cheongwon, Cheongju 28116, Chungbuk, Korea; (K.H.P.); (J.-W.Y.); (J.-H.K.); (H.L.); (Y.D.Y.); (B.J.C.); (M.Y.L.); (C.W.L.)
- Correspondence: ; Tel.: +82-43-240-6524
| |
Collapse
|
2
|
p27 Kip1, an Intrinsically Unstructured Protein with Scaffold Properties. Cells 2021; 10:cells10092254. [PMID: 34571903 PMCID: PMC8465030 DOI: 10.3390/cells10092254] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/27/2022] Open
Abstract
The Cyclin-dependent kinase (CDK) regulator p27Kip1 is a gatekeeper of G1/S transition. It also regulates G2/M progression and cytokinesis completion, via CDK-dependent or -independent mechanisms. Recently, other important p27Kip1 functions have been described, including the regulation of cell motility and migration, the control of cell differentiation program and the activation of apoptosis/autophagy. Several factors modulate p27Kip1 activities, including its level, cellular localization and post-translational modifications. As a matter of fact, the protein is phosphorylated, ubiquitinated, SUMOylated, O-linked N-acetylglicosylated and acetylated on different residues. p27Kip1 belongs to the family of the intrinsically unstructured proteins and thus it is endowed with a large flexibility and numerous interactors, only partially identified. In this review, we look at p27Kip1 properties and ascribe part of its heterogeneous functions to the ability to act as an anchor or scaffold capable to participate in the construction of different platforms for modulating cell response to extracellular signals and allowing adaptation to environmental changes.
Collapse
|
3
|
Bitencourt-Ferreira G, Rizzotto C, de Azevedo Junior WF. Machine Learning-Based Scoring Functions, Development and Applications with SAnDReS. Curr Med Chem 2021; 28:1746-1756. [PMID: 32410551 DOI: 10.2174/0929867327666200515101820] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Analysis of atomic coordinates of protein-ligand complexes can provide three-dimensional data to generate computational models to evaluate binding affinity and thermodynamic state functions. Application of machine learning techniques can create models to assess protein-ligand potential energy and binding affinity. These methods show superior predictive performance when compared with classical scoring functions available in docking programs. OBJECTIVE Our purpose here is to review the development and application of the program SAnDReS. We describe the creation of machine learning models to assess the binding affinity of protein-ligand complexes. METHODS SAnDReS implements machine learning methods available in the scikit-learn library. This program is available for download at https://github.com/azevedolab/sandres. SAnDReS uses crystallographic structures, binding and thermodynamic data to create targeted scoring functions. RESULTS Recent applications of the program SAnDReS to drug targets such as Coagulation factor Xa, cyclin-dependent kinases and HIV-1 protease were able to create targeted scoring functions to predict inhibition of these proteins. These targeted models outperform classical scoring functions. CONCLUSION Here, we reviewed the development of machine learning scoring functions to predict binding affinity through the application of the program SAnDReS. Our studies show the superior predictive performance of the SAnDReS-developed models when compared with classical scoring functions available in the programs such as AutoDock4, Molegro Virtual Docker and AutoDock Vina.
Collapse
Affiliation(s)
| | - Camila Rizzotto
- Pontifical Catholic University of Rio Grande do Sul - PUCRS, Porto Alegre-RS, Brazil
| | | |
Collapse
|
4
|
Yin Y, Gao H, Guo J, Gao Y. [Effect of Circular RNA UBAP2 Silencing on Proliferation and Invasion of Human Lung Cancer A549 Cells and Its Mechanism]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2018; 20:800-807. [PMID: 29277177 PMCID: PMC5973395 DOI: 10.3779/j.issn.1009-3419.2017.12.02] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND It has been proven that circular RNAs (circRNAs) play an important role on the process of many types cancer and circUBAP2 was a cancer-promoting circRNA, however, the role and mechanism in lung cancer was not clear. The aim of this study is to investigate the effects of circUBAP2 on cell proliferation and invasion of human lung cancer A549 cells. METHODS CCK-8 assay was employed to detect the effect of circUBAP2 sliencing on cell proliferation of A549 cells. Fow cytometry was applied to detect the impact of circUBAP2 sliencing on cell cycle and cell anoikis, and Transwell invasion assay was applied to determine cell invasion of A549 cells. We also employed Western blot and Real-time PCR to determine the expressions of CDK6, cyclin D1, p27 and c-IAP1, Bcl-2, Survivin, Bax, FAK, Rac1 and MMP2, and the activities of JNK and ERK1/2, luciferase report gene assay was used to detect the targets. RESULTS CCK-8 assay showed that the inhibition of cell proliferation in the circUBAP2-siRNA group compared to untreated group and siRNA control group. Results of cell cycle detected by flow cytometry showed that cell cycle arrestd at G0/G1 after circUBAP2 silencing, cell apoptosis rate increased also. We also found that after circUBAP2 silencing, cell invasion of A549 cells was significantly inhibited. Western blot and Real-time PCR results showed that expression of CDK6, cyclin D1, c-IAP1, Bcl-2, Survivin, FAK, Rac1 and MMP2 were down-regulated, and the expression of p27 and Bax were up-regulated. Moreover, the activities of JNK and ERK1/2 were inhibited because of circUBAP2 silencing, the target genes were miR-339-5p, miR-96-3p and miR-135b-3p. CONCLUSIONS CircUBAP2 plays an important role in the proliferation and invasion of human lung cancer. Silencing of circUBAP2 might be a novel target for molecular targeted therapy of patients with lung cancer.
.
Collapse
Affiliation(s)
- Yujing Yin
- Department of Pathology, Baotou Cancer Hospital, Baotou 014030, China
| | - Hui Gao
- Department of Pathology, Baotou Cancer Hospital, Baotou 014030, China
| | - Jia Guo
- Department of Pathology, Baotou Cancer Hospital, Baotou 014030, China
| | - Yang Gao
- Department of Pathology, Baotou Cancer Hospital, Baotou 014030, China
| |
Collapse
|