Mapping specificity, cleavage entropy, allosteric changes and substrates of blood proteases in a high-throughput screen.
Nat Commun 2021;
12:1693. [PMID:
33727531 PMCID:
PMC7966775 DOI:
10.1038/s41467-021-21754-8]
[Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Proteases are among the largest protein families and critical regulators of biochemical processes like apoptosis and blood coagulation. Knowledge of proteases has been expanded by the development of proteomic approaches, however, technology for multiplexed screening of proteases within native environments is currently lacking behind. Here we introduce a simple method to profile protease activity based on isolation of protease products from native lysates using a 96FASP filter, their analysis in a mass spectrometer and a custom data analysis pipeline. The method is significantly faster, cheaper, technically less demanding, easy to multiplex and produces accurate protease fingerprints. Using the blood cascade proteases as a case study, we obtain protease substrate profiles that can be used to map specificity, cleavage entropy and allosteric effects and to design protease probes. The data further show that protease substrate predictions enable the selection of potential physiological substrates for targeted validation in biochemical assays.
Characterizing proteases in their native environment is still challenging. Here, the authors develop a proteomics workflow for analyzing protease-specific peptides from cell lysates in 96-well format, providing mechanistic insights into blood proteases and enabling the prediction of protease substrates.
Collapse