1
|
Yang W, Wei S, Zhang L. Parameterized hypercomplex convolutional network for accurate protein backbone torsion angle prediction. Sci Rep 2024; 14:27193. [PMID: 39516218 PMCID: PMC11549290 DOI: 10.1038/s41598-024-77412-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Predicting the backbone torsion angles corresponding to each residue of a protein from its amino acid sequence alone is a challenging problem in computational biology. Existing torsion angle predictors mainly use profile features, which are generated by performing time-consuming multiple sequence alignments, for torsion angle prediction. Compared with traditional profile features, embedding features from pretrained protein language models have significant advantages in prediction performance and computational speed. However, embedding features usually have higher dimensions and different embedding features have significantly different dimensions. To this end, we design a novel parameter-efficient deep torsion angle predictor, PHAngle, specifically for embedding features. PHAngle is a parameterized hypercomplex convolutional network consisting of parameterized hypercomplex linear and convolutional layers whose weight parameters can be characterized as the sum of Kronecker products. Experimental results on six benchmark test sets including TEST2016, TEST2018, TEST2020_HQ, CASP12, CASP13 and CASP-FM demonstrate that PHAngle achieves the state-of-the-art torsion angle performance with the fewest parameters compared to the nine existing methods. The source code and datasets are available at https://github.com/fengtuan/PHAngle .
Collapse
Affiliation(s)
- Wei Yang
- Henan Key Laboratory of Big Data Analysis and Processing, Henan Engineering Laboratory of Spatial Information Processing, School of Computer and Information Engineering, Henan University, Kaifeng, 475004, China
| | - Shujia Wei
- Henan Key Laboratory of Big Data Analysis and Processing, Henan Engineering Laboratory of Spatial Information Processing, School of Computer and Information Engineering, Henan University, Kaifeng, 475004, China
| | - Lei Zhang
- Henan Key Laboratory of Big Data Analysis and Processing, Henan Engineering Laboratory of Spatial Information Processing, School of Computer and Information Engineering, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
2
|
Kabir MWU, Alawad DM, Mishra A, Hoque MT. TAFPred: Torsion Angle Fluctuations Prediction from Protein Sequences. BIOLOGY 2023; 12:1020. [PMID: 37508449 PMCID: PMC10376102 DOI: 10.3390/biology12071020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Protein molecules show varying degrees of flexibility throughout their three-dimensional structures. The flexibility is determined by the fluctuations in torsion angles, specifically phi (φ) and psi (ψ), which define the protein backbone. These angle fluctuations are derived from variations in backbone torsion angles observed in different models. By analyzing the fluctuations in Cartesian coordinate space, we can understand the structural flexibility of proteins. Predicting torsion angle fluctuations is valuable for determining protein function and structure when these angles act as constraints. In this study, a machine learning method called TAFPred is developed to predict torsion angle fluctuations using protein sequences directly. The method incorporates various features, such as disorder probability, position-specific scoring matrix profiles, secondary structure probabilities, and more. TAFPred, employing an optimized Light Gradient Boosting Machine Regressor (LightGBM), achieved high accuracy with correlation coefficients of 0.746 and 0.737 and mean absolute errors of 0.114 and 0.123 for the φ and ψ angles, respectively. Compared to the state-of-the-art method, TAFPred demonstrated significant improvements of 10.08% in MAE and 24.83% in PCC for the phi angle and 9.93% in MAE, and 22.37% in PCC for the psi angle.
Collapse
Affiliation(s)
- Md Wasi Ul Kabir
- Computer Science Department, University of New Orleans, New Orleans, LA 70148, USA
| | - Duaa Mohammad Alawad
- Computer Science Department, University of New Orleans, New Orleans, LA 70148, USA
| | - Avdesh Mishra
- Department of Electrical Engineering and Computer Science, Texas A&M University-Kingsville, Kingsville, TX 78363, USA
| | - Md Tamjidul Hoque
- Computer Science Department, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
3
|
Gormez Y, Aydin Z. IGPRED-MultiTask: A Deep Learning Model to Predict Protein Secondary Structure, Torsion Angles and Solvent Accessibility. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1104-1113. [PMID: 35849663 DOI: 10.1109/tcbb.2022.3191395] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Protein secondary structure, solvent accessibility and torsion angle predictions are preliminary steps to predict 3D structure of a protein. Deep learning approaches have achieved significant improvements in predicting various features of protein structure. In this study, IGPRED-Multitask, a deep learning model with multi task learning architecture based on deep inception network, graph convolutional network and a bidirectional long short-term memory is proposed. Moreover, hyper-parameters of the model are fine-tuned using Bayesian optimization, which is faster and more effective than grid search. The same benchmark test data sets as in the OPUS-TASS paper including TEST2016, TEST2018, CASP12, CASP13, CASPFM, HARD68, CAMEO93, CAMEO93_HARD, as well as the train and validation sets, are used for fair comparison with the literature. Statistically significant improvements are observed in secondary structure prediction on 4 datasets, in phi angle prediction on 2 datasets and in psi angel prediction on 3 datasets compared to the state-of-the-art methods. For solvent accessibility prediction, TEST2016 and TEST2018 datasets are used only to assess the performance of the proposed model.
Collapse
|
4
|
Mufassirin MMM, Newton MAH, Sattar A. Artificial intelligence for template-free protein structure prediction: a comprehensive review. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10350-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Fleck M, Müller M, Weber N, Trummer C. Decoupled coordinates for machine learning-based molecular fragment linking. MACHINE LEARNING: SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1088/2632-2153/ac50fc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Abstract
Recent developments in machine learning-based molecular fragment linking have demonstrated the importance of informing the generation process with structural information specifying the relative orientation of the fragments to be linked. However, such structural information has so far not been provided in the form of a complete relative coordinate system. We present a decoupled coordinate system consisting of bond lengths, bond angles and torsion angles, and show that it is complete. By incorporating this set of coordinates in a linker generation framework, we show that it has a significant impact on the quality of the generated linkers. To elucidate the advantages of such a coordinate system, we investigate the amount of reliable information within the different types of degrees of freedom using both detailed ablation studies and an information-theoretical analysis. The presented benefits suggest the application of a complete and decoupled relative coordinate system as a standard good practice in linker design.
Collapse
|
6
|
Gao J, Zheng S, Yao M, Wu P. Precise estimation of residue relative solvent accessible area from Cα atom distance matrix using a deep learning method. Bioinformatics 2021; 38:94-98. [PMID: 34450651 DOI: 10.1093/bioinformatics/btab616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/12/2021] [Accepted: 08/24/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION The solvent accessible surface is an essential structural property measure related to the protein structure and protein function. Relative solvent accessible area (RSA) is a standard measure to describe the degree of residue exposure in the protein surface or inside of protein. However, this computation will fail when the residues information is missing. RESULTS In this article, we proposed a novel method for estimation RSA using the Cα atom distance matrix with the deep learning method (EAGERER). The new method, EAGERER, achieves Pearson correlation coefficients of 0.921-0.928 on two independent test datasets. We empirically demonstrate that EAGERER can yield better Pearson correlation coefficients than existing RSA estimators, such as coordination number, half sphere exposure and SphereCon. To the best of our knowledge, EAGERER represents the first method to estimate the solvent accessible area using limited information with a deep learning model. It could be useful to the protein structure and protein function prediction. AVAILABILITYAND IMPLEMENTATION The method is free available at https://github.com/cliffgao/EAGERER. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Jianzhao Gao
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
| | - Shuangjia Zheng
- School of Computer Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China
| | - Mengting Yao
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
| | - Peikun Wu
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin 300071, China
| |
Collapse
|
7
|
Accurate prediction of protein torsion angles using evolutionary signatures and recurrent neural network. Sci Rep 2021; 11:21033. [PMID: 34702851 PMCID: PMC8548351 DOI: 10.1038/s41598-021-00477-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/27/2021] [Indexed: 11/08/2022] Open
Abstract
The amino acid sequence of a protein contains all the necessary information to specify its shape, which dictates its biological activities. However, it is challenging and expensive to experimentally determine the three-dimensional structure of proteins. The backbone torsion angles play a critical role in protein structure prediction, and accurately predicting the angles can considerably advance the tertiary structure prediction by accelerating efficient sampling of the large conformational space for low energy structures. Here we first time propose evolutionary signatures computed from protein sequence profiles, and a novel recurrent architecture, termed ESIDEN, that adopts a straightforward architecture of recurrent neural networks with a small number of learnable parameters. The ESIDEN can capture efficient information from both the classic and new features benefiting from different recurrent architectures in processing information. On the other hand, compared to widely used classic features, the new features, especially the Ramachandran basin potential, provide statistical and evolutionary information to improve prediction accuracy. On four widely used benchmark datasets, the ESIDEN significantly improves the accuracy in predicting the torsion angles by comparison to the best-so-far methods. As demonstrated in the present study, the predicted angles can be used as structural constraints to accurately infer protein tertiary structures. Moreover, the proposed features would pave the way to improve machine learning-based methods in protein folding and structure prediction, as well as function prediction. The source code and data are available at the website https://kornmann.bioch.ox.ac.uk/leri/resources/download.html .
Collapse
|
8
|
Caudai C, Galizia A, Geraci F, Le Pera L, Morea V, Salerno E, Via A, Colombo T. AI applications in functional genomics. Comput Struct Biotechnol J 2021; 19:5762-5790. [PMID: 34765093 PMCID: PMC8566780 DOI: 10.1016/j.csbj.2021.10.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/05/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
We review the current applications of artificial intelligence (AI) in functional genomics. The recent explosion of AI follows the remarkable achievements made possible by "deep learning", along with a burst of "big data" that can meet its hunger. Biology is about to overthrow astronomy as the paradigmatic representative of big data producer. This has been made possible by huge advancements in the field of high throughput technologies, applied to determine how the individual components of a biological system work together to accomplish different processes. The disciplines contributing to this bulk of data are collectively known as functional genomics. They consist in studies of: i) the information contained in the DNA (genomics); ii) the modifications that DNA can reversibly undergo (epigenomics); iii) the RNA transcripts originated by a genome (transcriptomics); iv) the ensemble of chemical modifications decorating different types of RNA transcripts (epitranscriptomics); v) the products of protein-coding transcripts (proteomics); and vi) the small molecules produced from cell metabolism (metabolomics) present in an organism or system at a given time, in physiological or pathological conditions. After reviewing main applications of AI in functional genomics, we discuss important accompanying issues, including ethical, legal and economic issues and the importance of explainability.
Collapse
Affiliation(s)
- Claudia Caudai
- CNR, Institute of Information Science and Technologies “A. Faedo” (ISTI), Pisa, Italy
| | - Antonella Galizia
- CNR, Institute of Applied Mathematics and Information Technologies (IMATI), Genoa, Italy
| | - Filippo Geraci
- CNR, Institute for Informatics and Telematics (IIT), Pisa, Italy
| | - Loredana Le Pera
- CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), Bari, Italy
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Veronica Morea
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Emanuele Salerno
- CNR, Institute of Information Science and Technologies “A. Faedo” (ISTI), Pisa, Italy
| | - Allegra Via
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| | - Teresa Colombo
- CNR, Institute of Molecular Biology and Pathology (IBPM), Rome, Italy
| |
Collapse
|
9
|
PupStruct: Prediction of Pupylated Lysine Residues Using Structural Properties of Amino Acids. Genes (Basel) 2020; 11:genes11121431. [PMID: 33260770 PMCID: PMC7761138 DOI: 10.3390/genes11121431] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/23/2022] Open
Abstract
Post-translational modification (PTM) is a critical biological reaction which adds to the diversification of the proteome. With numerous known modifications being studied, pupylation has gained focus in the scientific community due to its significant role in regulating biological processes. The traditional experimental practice to detect pupylation sites proved to be expensive and requires a lot of time and resources. Thus, there have been many computational predictors developed to challenge this issue. However, performance is still limited. In this study, we propose another computational method, named PupStruct, which uses the structural information of amino acids with a radial basis kernel function Support Vector Machine (SVM) to predict pupylated lysine residues. We compared PupStruct with three state-of-the-art predictors from the literature where PupStruct has validated a significant improvement in performance over them with statistical metrics such as sensitivity (0.9234), specificity (0.9359), accuracy (0.9296), precision (0.9349), and Mathew’s correlation coefficient (0.8616) on a benchmark dataset.
Collapse
|
10
|
Gao J, Miao Z, Zhang Z, Wei H, Kurgan L. Prediction of Ion Channels and their Types from Protein Sequences: Comprehensive Review and Comparative Assessment. Curr Drug Targets 2020; 20:579-592. [PMID: 30360734 DOI: 10.2174/1389450119666181022153942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/03/2018] [Accepted: 10/04/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Ion channels are a large and growing protein family. Many of them are associated with diseases, and consequently, they are targets for over 700 drugs. Discovery of new ion channels is facilitated with computational methods that predict ion channels and their types from protein sequences. However, these methods were never comprehensively compared and evaluated. OBJECTIVE We offer first-of-its-kind comprehensive survey of the sequence-based predictors of ion channels. We describe eight predictors that include five methods that predict ion channels, their types, and four classes of the voltage-gated channels. We also develop and use a new benchmark dataset to perform comparative empirical analysis of the three currently available predictors. RESULTS While several methods that rely on different designs were published, only a few of them are currently available and offer a broad scope of predictions. Support and availability after publication should be required when new methods are considered for publication. Empirical analysis shows strong performance for the prediction of ion channels and modest performance for the prediction of ion channel types and voltage-gated channel classes. We identify a substantial weakness of current methods that cannot accurately predict ion channels that are categorized into multiple classes/types. CONCLUSION Several predictors of ion channels are available to the end users. They offer practical levels of predictive quality. Methods that rely on a larger and more diverse set of predictive inputs (such as PSIONplus) are more accurate. New tools that address multi-label prediction of ion channels should be developed.
Collapse
Affiliation(s)
- Jianzhao Gao
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Zhen Miao
- College of Life Sciences, Nankai University, Tianjin, China
| | - Zhaopeng Zhang
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Hong Wei
- School of Mathematical Sciences and LPMC, Nankai University, Tianjin, China
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, United States
| |
Collapse
|
11
|
Getting to Know Your Neighbor: Protein Structure Prediction Comes of Age with Contextual Machine Learning. J Comput Biol 2020; 27:796-814. [DOI: 10.1089/cmb.2019.0193] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
12
|
Shi Q, Chen W, Huang S, Wang Y, Xue Z. Deep learning for mining protein data. Brief Bioinform 2019; 22:194-218. [PMID: 31867611 DOI: 10.1093/bib/bbz156] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/21/2019] [Accepted: 11/07/2019] [Indexed: 01/16/2023] Open
Abstract
The recent emergence of deep learning to characterize complex patterns of protein big data reveals its potential to address the classic challenges in the field of protein data mining. Much research has revealed the promise of deep learning as a powerful tool to transform protein big data into valuable knowledge, leading to scientific discoveries and practical solutions. In this review, we summarize recent publications on deep learning predictive approaches in the field of mining protein data. The application architectures of these methods include multilayer perceptrons, stacked autoencoders, deep belief networks, two- or three-dimensional convolutional neural networks, recurrent neural networks, graph neural networks, and complex neural networks and are described from five perspectives: residue-level prediction, sequence-level prediction, three-dimensional structural analysis, interaction prediction, and mass spectrometry data mining. The advantages and deficiencies of these architectures are presented in relation to various tasks in protein data mining. Additionally, some practical issues and their future directions are discussed, such as robust deep learning for protein noisy data, architecture optimization for specific tasks, efficient deep learning for limited protein data, multimodal deep learning for heterogeneous protein data, and interpretable deep learning for protein understanding. This review provides comprehensive perspectives on general deep learning techniques for protein data analysis.
Collapse
Affiliation(s)
- Qiang Shi
- School of Software Engineering, Huazhong University of Science and Technology. His main interests cover machine learning especially deep learning, protein data analysis, and big data mining
| | - Weiya Chen
- School of Software Engineering, Huazhong University of Science & Technology, Wuhan, China. His research interests cover bioinformatics, virtual reality, and data visualization
| | - Siqi Huang
- Software Engineering at Huazhong University of science and technology, focusing on Machine learning and data mining
| | - Yan Wang
- School of life, University of Science & Technology; her main interests cover protein structure and function prediction and big data mining
| | - Zhidong Xue
- School of Software Engineering, Huazhong University of Science & Technology, Wuhan, China. His research interests cover bioinformatics, machine learning, and image processing
| |
Collapse
|
13
|
Investigation of machine learning techniques on proteomics: A comprehensive survey. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 149:54-69. [PMID: 31568792 DOI: 10.1016/j.pbiomolbio.2019.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/16/2019] [Accepted: 09/23/2019] [Indexed: 11/21/2022]
Abstract
Proteomics is the extensive investigation of proteins which has empowered the recognizable proof of consistently expanding quantities of protein. Proteins are necessary part of living life form, with numerous capacities. The proteome is the complete arrangement of proteins that are created or altered by a life form or framework of the organism. Proteome fluctuates with time and unambiguous prerequisites, or stresses, that a cell or organism experiences. Proteomics is an interdisciplinary area that has derived from the hereditary data of different genome ventures. Much proteomics information is gathered with the assistance of high throughput techniques, for example, mass spectrometry and microarray. It would regularly take weeks or months to analyze the information and perform examinations by hand. Therefore, scholars and scientific experts are teaming up with computer science researchers and mathematicians to make projects and pipeline to computationally examine the protein information. Utilizing bioinformatics procedures, scientists are prepared to do quicker investigation and protein information storing. The goal of this paper is to brief about the review of machine learning procedures and its application in the field of proteomics.
Collapse
|
14
|
Katuwawala A, Ghadermarzi S, Kurgan L. Computational prediction of functions of intrinsically disordered regions. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 166:341-369. [PMID: 31521235 DOI: 10.1016/bs.pmbts.2019.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Intrinsically disorder regions (IDRs) are abundant in nature, particularly among Eukaryotes. While they facilitate a wide spectrum of cellular functions including signaling, molecular assembly and recognition, translation, transcription and regulation, only several hundred IDRs are annotated functionally. This annotation gap motivates the development of fast and accurate computational methods that predict IDR functions directly from protein sequences. We introduce and describe a comprehensive collection of 25 methods that provide accurate predictions of IDRs that interact with proteins and nucleic acids, that function as flexible linkers and that moonlight multiple functions. Virtually all of these predictors can be accessed online and many were developed in the last few years. They utilize a wide range of predictive architectures and take advantage of modern machine learning algorithms. Our empirical analysis shows that predictors that are available as webservers enjoy high rates of citations, attesting to their practical value and popularity. The most cited methods include DISOPRED3, ANCHOR, alpha-MoRFpred, MoRFpred, fMoRFpred and MoRFCHiBi. We present two case studies to demonstrate that predictions produced by these computational tools are relatively easy to interpret and that they deliver valuable functional clues. However, the current computational tools cover a relatively narrow range of disorder functions. Further development efforts that would cover a broader range of functions should be pursued. We demonstrate that a sufficient amount of functionally annotated IDRs that are associated with several other disorder functions is already available and can be used to design and validate novel predictors.
Collapse
Affiliation(s)
- Akila Katuwawala
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Sina Ghadermarzi
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States
| | - Lukasz Kurgan
- Department of Computer Science, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|