1
|
Tamura T. Trimming Gene Deletion Strategies for Growth-Coupled Production in Constraint-Based Metabolic Networks: TrimGdel. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:1540-1549. [PMID: 35731759 DOI: 10.1109/tcbb.2022.3185221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
When simulating genome-scale metabolite production using constraint-based metabolic networks, it is often necessary to find gene deletion strategies which lead to growth-coupled production, which means that target metabolites are produced when cell growth is maximized. Existing methods are effective when the number of gene deletions is relatively small, but when the number of required gene deletions exceeds approximately 1% of whole genes, the time required for the calculation is often unfeasible. Therefore, a complementing algorithm that is effective even when the required number of gene deletions is approximately 1% to 5% of whole genes would be helpful because the number of deletable genes in a strain is increasing with advances in genetic engineering technology. In this study, the author developed an algorithm, TrimGdel, which first computes a strategy with many gene deletions that results in growth-coupled production and then gradually reduces the number of gene deletions while ensuring the original production rate and growth rate. The results of the computer experiments showed that TrimGdel can calculate stoichiometrically feasible gene deletion strategies, especially those whose sizes are 1 to 5% of whole genes, which lead to growth-coupled production of many target metabolites, which include useful vitamins such as biotin and pantothenate, for which existing methods could not.
Collapse
|
2
|
Tamura T, Muto-Fujita A, Tohsato Y, Kosaka T. Gene Deletion Algorithms for Minimum Reaction Network Design by Mixed-Integer Linear Programming for Metabolite Production in Constraint-Based Models: gDel_minRN. J Comput Biol 2023; 30:553-568. [PMID: 36809057 DOI: 10.1089/cmb.2022.0352] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Genome-scale constraint-based metabolic networks play an important role in the simulation of growth-coupled production, which means that cell growth and target metabolite production are simultaneously achieved. For growth-coupled production, a minimal reaction-network-based design is known to be effective. However, the obtained reaction networks often fail to be realized by gene deletions due to conflicts with gene-protein-reaction (GPR) relations. Here, we developed gDel_minRN that determines gene deletion strategies using mixed-integer linear programming to achieve growth-coupled production by repressing the maximum number of reactions via GPR relations. The results of computational experiments showed that gDel_minRN could determine the core parts, which include only 30% to 55% of whole genes, for stoichiometrically feasible growth-coupled production for many target metabolites, which include useful vitamins such as biotin (vitamin B7), riboflavin (vitamin B2), and pantothenate (vitamin B5). Since gDel_minRN calculates a constraint-based model of the minimum number of gene-associated reactions without conflict with GPR relations, it helps biological analysis of the core parts essential for growth-coupled production for each target metabolite. The source codes, implemented in MATLAB using CPLEX and COBRA Toolbox, are available on https://github.com/MetNetComp/gDel-minRN.
Collapse
Affiliation(s)
- Takeyuki Tamura
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Uji, Kyoto, Japan
| | - Ai Muto-Fujita
- RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Yukako Tohsato
- Faculty of Information Science and Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tomoyuki Kosaka
- Research Center for Thermotolerant Microbial Resources (RCTMR), Yamaguchi University, Yoshida, Yamaguchi, Japan.,Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida, Yamaguchi, Japan
| |
Collapse
|
3
|
Lee PY, Yeoh Y, Omar N, Pung YF, Lim LC, Low TY. Molecular tissue profiling by MALDI imaging: recent progress and applications in cancer research. Crit Rev Clin Lab Sci 2021; 58:513-529. [PMID: 34615421 DOI: 10.1080/10408363.2021.1942781] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix-assisted laser desorption/ionization (MALDI) imaging is an emergent technology that has been increasingly adopted in cancer research. MALDI imaging is capable of providing global molecular mapping of the abundance and spatial information of biomolecules directly in the tissues without labeling. It enables the characterization of a wide spectrum of analytes, including proteins, peptides, glycans, lipids, drugs, and metabolites and is well suited for both discovery and targeted analysis. An advantage of MALDI imaging is that it maintains tissue integrity, which allows correlation with histological features. It has proven to be a valuable tool for probing tumor heterogeneity and has been increasingly applied to interrogate molecular events associated with cancer. It provides unique insights into both the molecular content and spatial details that are not accessible by other techniques, and it has allowed considerable progress in the field of cancer research. In this review, we first provide an overview of the MALDI imaging workflow and approach. We then highlight some useful applications in various niches of cancer research, followed by a discussion of the challenges, recent developments and future prospect of this technique in the field.
Collapse
Affiliation(s)
- Pey Yee Lee
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yeelon Yeoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nursyazwani Omar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Yuh-Fen Pung
- Division of Biomedical Science, University of Nottingham Malaysia, Selangor, Malaysia
| | - Lay Cheng Lim
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), Kuala Lumpur, Malaysia
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
4
|
Ma Y, Tamura T. Dynamic Solution Space Division-Based Methods for Calculating Reaction Deletion Strategies for Constraint-Based Metabolic Networks for Substance Production: DynCubeProd. FRONTIERS IN BIOINFORMATICS 2021; 1:716112. [DOI: 10.3389/fbinf.2021.716112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Flux balance analysis (FBA) is a crucial method to analyze large-scale constraint-based metabolic networks and computing design strategies for strain production in metabolic engineering. However, as it is often non-straightforward to obtain such design strategies to produce valuable metabolites, many tools have been proposed based on FBA. Among them, GridProd, which divides the solution space into small squares by focusing on the cell growth rate and the target metabolite production rate to efficiently find the reaction deletion strategies, was extended to CubeProd, which divides the solution space into small cubes. However, as GridProd and CubeProd naively divide the solution space into equal sizes, even places where solutions are unlikely to exist are examined. To address this issue, we introduce dynamic solution space division methods based on CubeProd for faster computing by avoiding searching in places where the solutions do not exist. We applied the proposed method DynCubeProd to iJO1366, which is a genome-scale constraint-based model of Escherichia coli. Compared with CubeProd, DynCubeProd significantly accelerated the calculation of the reaction deletion strategy for each target metabolite production. In addition, under the anaerobic condition of iJO1366, DynCubeProd could obtain the reaction deletion strategies for almost 40% of the target metabolites that the elementary flux vector-based method, which is one of the most effective methods in existence, could not. The developed software is available on https://github.com/Ma-Yier/DynCubeProd.
Collapse
|
5
|
Daud KM, Mohamad MS, Zakaria Z, Hassan R, Shah ZA, Deris S, Ibrahim Z, Napis S, Sinnott RO. A non-dominated sorting Differential Search Algorithm Flux Balance Analysis (ndsDSAFBA) for in silico multiobjective optimization in identifying reactions knockout. Comput Biol Med 2019; 113:103390. [PMID: 31450056 DOI: 10.1016/j.compbiomed.2019.103390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/06/2023]
Abstract
Metabolic engineering is defined as improving the cellular activities of an organism by manipulating the metabolic, signal or regulatory network. In silico reaction knockout simulation is one of the techniques applied to analyse the effects of genetic perturbations on metabolite production. Many methods consider growth coupling as the objective function, whereby it searches for mutants that maximise the growth and production rate. However, the final goal is to increase the production rate. Furthermore, they produce one single solution, though in reality, cells do not focus on one objective and they need to consider various different competing objectives. In this work, a method, termed ndsDSAFBA (non-dominated sorting Differential Search Algorithm and Flux Balance Analysis), has been developed to find the reaction knockouts involved in maximising the production rate and growth rate of the mutant, by incorporating Pareto dominance concepts. The proposed ndsDSAFBA method was validated using three genome-scale metabolic models. We obtained a set of non-dominated solutions, with each solution representing a different mutant strain. The results obtained were compared with the single objective optimisation (SOO) and multi-objective optimisation (MOO) methods. The results demonstrate that ndsDSAFBA is better than the other methods in terms of production rate and growth rate.
Collapse
Affiliation(s)
- Kauthar Mohd Daud
- Artificial Intelligence and Bioinformatics Research Group, School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Mohd Saberi Mohamad
- Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100, Kota Bharu, Kelantan, Malaysia; Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Lock Bag 100, 17600, Jeli, Kelantan, Malaysia.
| | - Zalmiyah Zakaria
- Artificial Intelligence and Bioinformatics Research Group, School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Rohayanti Hassan
- Software Engineering Research Group, School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Malaysia
| | - Zuraini Ali Shah
- Artificial Intelligence and Bioinformatics Research Group, School of Computing, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Safaai Deris
- Institute for Artificial Intelligence and Big Data, Universiti Malaysia Kelantan, City Campus, Pengkalan Chepa, 16100, Kota Bharu, Kelantan, Malaysia; Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli Campus, Lock Bag 100, 17600, Jeli, Kelantan, Malaysia
| | - Zuwairie Ibrahim
- Faculty of Electrical and Electronic Engineering, Universiti Malaysia Pahang, Pekan, Pahang, Malaysia
| | - Suhaimi Napis
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Richard O Sinnott
- School of Computing and Information Systems, Melbourne School of Engineering, University of Melbourne, Victoria, 3010, Australia
| |
Collapse
|