1
|
Ma T, Jiang M, Pang S, Zhang Z, Hang H, Zhou W, Zhang Y. SeqMG-RPI: A Sequence-Based Framework Integrating Multi-Scale RNA Features and Protein Graphs for RNA-Protein Interaction Prediction. J Chem Inf Model 2025; 65:4698-4713. [PMID: 40262169 DOI: 10.1021/acs.jcim.5c00176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
RNA-protein interaction (RPI) plays a crucial role in cell biology, and accurate prediction of RPI is essential to understand molecular mechanisms and advance disease research. Some existing RPI prediction methods typically rely on a single feature and there is significant room for improvement. In this paper, we propose a novel sequence-based RPI prediction method, called SeqMG-RPI. For RNA, SeqMG-RPI introduces an innovative multi-scale RNA feature that integrates three sequence-based representations: a multi-channel RNA feature, a k-mer frequency feature, and a k-mer sparse matrix feature. For protein, SeqMG-RPI utilizes a graph-based protein feature to capture protein information. Moreover, a novel neural network architecture is constructed for feature extraction and RPI prediction. Through experiments from multiple perspectives across various datasets, it is demonstrated that the proposed method outperforms existing methods, which has better performance and generalization.
Collapse
Affiliation(s)
- Teng Ma
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Mingjian Jiang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Shunpeng Pang
- School of Computer Engineering, Weifang University, Weifang 261061, China
| | - Zhi Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Huaibin Hang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Wei Zhou
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| | - Yuanyuan Zhang
- School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266525, China
| |
Collapse
|
2
|
Florentino BR, Parmezan Bonidia R, Sanches NH, da Rocha UN, de Carvalho AC. BioPrediction-RPI: Democratizing the prediction of interaction between non-coding RNA and protein with end-to-end machine learning. Comput Struct Biotechnol J 2024; 23:2267-2276. [PMID: 38827228 PMCID: PMC11140557 DOI: 10.1016/j.csbj.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Machine Learning (ML) algorithms have been important tools for the extraction of useful knowledge from biological sequences, particularly in healthcare, agriculture, and the environment. However, the categorical and unstructured nature of these sequences requiring usually additional feature engineering steps, before an ML algorithm can be efficiently applied. The addition of these steps to the ML algorithm creates a processing pipeline, known as end-to-end ML. Despite the excellent results obtained by applying end-to-end ML to biotechnology problems, the performance obtained depends on the expertise of the user in the components of the pipeline. In this work, we propose an end-to-end ML-based framework called BioPrediction-RPI, which can identify implicit interactions between sequences, such as pairs of non-coding RNA and proteins, without the need for specialized expertise in end-to-end ML. This framework applies feature engineering to represent each sequence by structural and topological features. These features are divided into feature groups and used to train partial models, whose partial decisions are combined into a final decision, which, provides insights to the user by giving an interpretability report. In our experiments, the developed framework was competitive when compared with various expert-created models. We assessed BioPrediction-RPI with 12 datasets when it presented equal or better performance than all tools in 40% to 100% of cases, depending on the experiment. Finally, BioPrediction-RPI can fine-tune models based on new data and perform at the same level as ML experts, democratizing end-to-end ML and increasing its access to those working in biological sciences.
Collapse
Affiliation(s)
- Bruno Rafael Florentino
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, 13566-590, São Paulo, Brazil
| | - Robson Parmezan Bonidia
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, 13566-590, São Paulo, Brazil
- Department of Computer Science, Federal University of Technology-Paraná (UTFPR), Cornélio Procópio, 86300-000, Paraná, Brazil
| | - Natan Henrique Sanches
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, 13566-590, São Paulo, Brazil
| | - Ulisses N. da Rocha
- Department of Environmental Microbiology, Helmholtz Centre for Environmental Research-UFZ GmbH, Leipzig, Saxony, Germany
| | - André C.P.L.F. de Carvalho
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, 13566-590, São Paulo, Brazil
| |
Collapse
|
3
|
Wang Y, Pan Z, Mou M, Xia W, Zhang H, Zhang H, Liu J, Zheng L, Luo Y, Zheng H, Yu X, Lian X, Zeng Z, Li Z, Zhang B, Zheng M, Li H, Hou T, Zhu F. A task-specific encoding algorithm for RNAs and RNA-associated interactions based on convolutional autoencoder. Nucleic Acids Res 2023; 51:e110. [PMID: 37889083 PMCID: PMC10682500 DOI: 10.1093/nar/gkad929] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
RNAs play essential roles in diverse physiological and pathological processes by interacting with other molecules (RNA/protein/compound), and various computational methods are available for identifying these interactions. However, the encoding features provided by existing methods are limited and the existing tools does not offer an effective way to integrate the interacting partners. In this study, a task-specific encoding algorithm for RNAs and RNA-associated interactions was therefore developed. This new algorithm was unique in (a) realizing comprehensive RNA feature encoding by introducing a great many of novel features and (b) enabling task-specific integration of interacting partners using convolutional autoencoder-directed feature embedding. Compared with existing methods/tools, this novel algorithm demonstrated superior performances in diverse benchmark testing studies. This algorithm together with its source code could be readily accessed by all user at: https://idrblab.org/corain/ and https://github.com/idrblab/corain/.
Collapse
Affiliation(s)
- Yunxia Wang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Ziqi Pan
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Minjie Mou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Weiqi Xia
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Hongning Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Hanyu Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Jin Liu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Lingyan Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Hanqi Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Xinyuan Yu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Zhenyu Zeng
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Bing Zhang
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Mingyue Zheng
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Honglin Li
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Tingjun Hou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, Zhejiang University School of Medicine, Polytechnic Institute, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-ZJU Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Wei MM, Yu CQ, Li LP, You ZH, Ren ZH, Guan YJ, Wang XF, Li YC. LPIH2V: LncRNA-protein interactions prediction using HIN2Vec based on heterogeneous networks model. Front Genet 2023; 14:1122909. [PMID: 36845392 PMCID: PMC9950107 DOI: 10.3389/fgene.2023.1122909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/30/2023] [Indexed: 02/12/2023] Open
Abstract
LncRNA-protein interaction plays an important role in the development and treatment of many human diseases. As the experimental approaches to determine lncRNA-protein interactions are expensive and time-consuming, considering that there are few calculation methods, therefore, it is urgent to develop efficient and accurate methods to predict lncRNA-protein interactions. In this work, a model for heterogeneous network embedding based on meta-path, namely LPIH2V, is proposed. The heterogeneous network is composed of lncRNA similarity networks, protein similarity networks, and known lncRNA-protein interaction networks. The behavioral features are extracted in a heterogeneous network using the HIN2Vec method of network embedding. The results showed that LPIH2V obtains an AUC of 0.97 and ACC of 0.95 in the 5-fold cross-validation test. The model successfully showed superiority and good generalization ability. Compared to other models, LPIH2V not only extracts attribute characteristics by similarity, but also acquires behavior properties by meta-path wandering in heterogeneous networks. LPIH2V would be beneficial in forecasting interactions between lncRNA and protein.
Collapse
Affiliation(s)
- Meng-Meng Wei
- School of Information Engineering, Xijing University, Xi’an, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi’an, China,*Correspondence: Chang-Qing Yu, ; Li-Ping Li,
| | - Li-Ping Li
- School of Information Engineering, Xijing University, Xi’an, China,College of Grassland and Environment Sciences, Xinjiang Agricultural University, Urumqi, China,*Correspondence: Chang-Qing Yu, ; Li-Ping Li,
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Zhong-Hao Ren
- School of Information Engineering, Xijing University, Xi’an, China
| | - Yong-Jian Guan
- School of Information Engineering, Xijing University, Xi’an, China
| | | | | |
Collapse
|
5
|
Peng L, Wang C, Tian X, Zhou L, Li K. Finding lncRNA-Protein Interactions Based on Deep Learning With Dual-Net Neural Architecture. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3456-3468. [PMID: 34587091 DOI: 10.1109/tcbb.2021.3116232] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The identification of lncRNA-protein interactions (LPIs) is important to understand the biological functions and molecular mechanisms of lncRNAs. However, most computational models are evaluated on a unique dataset, thereby resulting in prediction bias. Furthermore, previous models have not uncovered potential proteins (or lncRNAs) interacting with a new lncRNA (or protein). Finally, the performance of these models can be improved. In this study, we develop a Deep Learning framework with Dual-net Neural architecture to find potential LPIs (LPI-DLDN). First, five LPI datasets are collected. Second, the features of lncRNAs and proteins are extracted by Pyfeat and BioTriangle, respectively. Third, these features are concatenated as a vector after dimension reduction. Finally, a deep learning model with dual-net neural architecture is designed to classify lncRNA-protein pairs. LPI-DLDN is compared with six state-of-the-art LPI prediction methods (LPI-XGBoost, LPI-HeteSim, LPI-NRLMF, PLIPCOM, LPI-CNNCP, and Capsule-LPI) under four cross validations. The results demonstrate the powerful LPI classification performance of LPI-DLDN. Case study analyses show that there may be interactions between RP11-439E19.10 and Q15717, and between RP11-196G18.22 and Q9NUL5. The novelty of LPI-DLDN remains, integrating various biological features, designing a novel deep learning-based LPI identification framework, and selecting the optimal LPI feature subset based on feature importance ranking.
Collapse
|
6
|
Pepe G, Appierdo R, Carrino C, Ballesio F, Helmer-Citterich M, Gherardini PF. Artificial intelligence methods enhance the discovery of RNA interactions. Front Mol Biosci 2022; 9:1000205. [PMID: 36275611 PMCID: PMC9585310 DOI: 10.3389/fmolb.2022.1000205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding how RNAs interact with proteins, RNAs, or other molecules remains a challenge of main interest in biology, given the importance of these complexes in both normal and pathological cellular processes. Since experimental datasets are starting to be available for hundreds of functional interactions between RNAs and other biomolecules, several machine learning and deep learning algorithms have been proposed for predicting RNA-RNA or RNA-protein interactions. However, most of these approaches were evaluated on a single dataset, making performance comparisons difficult. With this review, we aim to summarize recent computational methods, developed in this broad research area, highlighting feature encoding and machine learning strategies adopted. Given the magnitude of the effect that dataset size and quality have on performance, we explored the characteristics of these datasets. Additionally, we discuss multiple approaches to generate datasets of negative examples for training. Finally, we describe the best-performing methods to predict interactions between proteins and specific classes of RNA molecules, such as circular RNAs (circRNAs) and long non-coding RNAs (lncRNAs), and methods to predict RNA-RNA or RNA-RBP interactions independently of the RNA type.
Collapse
Affiliation(s)
- G Pepe
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- *Correspondence: G Pepe, ; M Helmer-Citterich,
| | - R Appierdo
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - C Carrino
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - F Ballesio
- PhD Program in Cellular and Molecular Biology, Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | - M Helmer-Citterich
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
- *Correspondence: G Pepe, ; M Helmer-Citterich,
| | - PF Gherardini
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
7
|
Peng L, Yang J, Wang M, Zhou L. Editorial: Machine Learning-Based Methods for RNA Data Analysis. Front Genet 2022; 13:828575. [PMID: 35692815 PMCID: PMC9175173 DOI: 10.3389/fgene.2022.828575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Lihong Peng
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
- School of Computer, Hunan University of Technology, Zhuzhou, China
| | | | - Minxian Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liqian Zhou
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China
- *Correspondence: Liqian Zhou,
| |
Collapse
|
8
|
Peng L, Tan J, Tian X, Zhou L. EnANNDeep: An Ensemble-based lncRNA-protein Interaction Prediction Framework with Adaptive k-Nearest Neighbor Classifier and Deep Models. Interdiscip Sci 2022; 14:209-232. [PMID: 35006529 DOI: 10.1007/s12539-021-00483-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/08/2023]
Abstract
lncRNA-protein interactions (LPIs) prediction can deepen the understanding of many important biological processes. Artificial intelligence methods have reported many possible LPIs. However, most computational techniques were evaluated mainly on one dataset, which may produce prediction bias. More importantly, they were validated only under cross validation on lncRNA-protein pairs, and did not consider the performance under cross validations on lncRNAs and proteins, thus fail to search related proteins/lncRNAs for a new lncRNA/protein. Under an ensemble learning framework (EnANNDeep) composed of adaptive k-nearest neighbor classifier and Deep models, this study focuses on systematically finding underlying linkages between lncRNAs and proteins. First, five LPI-related datasets are arranged. Second, multiple source features are integrated to depict an lncRNA-protein pair. Third, adaptive k-nearest neighbor classifier, deep neural network, and deep forest are designed to score unknown lncRNA-protein pairs, respectively. Finally, interaction probabilities from the three predictors are integrated based on a soft voting technique. In comparing to five classical LPI identification models (SFPEL, PMDKN, CatBoost, PLIPCOM, and LPI-SKF) under fivefold cross validations on lncRNAs, proteins, and LPIs, EnANNDeep computes the best average AUCs of 0.8660, 0.8775, and 0.9166, respectively, and the best average AUPRs of 0.8545, 0.8595, and 0.9054, respectively, indicating its superior LPI prediction ability. Case study analyses indicate that SNHG10 may have dense linkage with Q15717. In the ensemble framework, adaptive k-nearest neighbor classifier can separately pick the most appropriate k for each query lncRNA-protein pair. More importantly, deep models including deep neural network and deep forest can effectively learn the representative features of lncRNAs and proteins.
Collapse
Affiliation(s)
- Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China. .,College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou, China.
| | - Jingwei Tan
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Xiongfei Tian
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, China.
| |
Collapse
|
9
|
Ren ZH, Yu CQ, Li LP, You ZH, Guan YJ, Li YC, Pan J. SAWRPI: A Stacking Ensemble Framework With Adaptive Weight for Predicting ncRNA-Protein Interactions Using Sequence Information. Front Genet 2022; 13:839540. [PMID: 35360836 PMCID: PMC8963817 DOI: 10.3389/fgene.2022.839540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Non-coding RNAs (ncRNAs) take essential effects on biological processes, like gene regulation. One critical way of ncRNA executing biological functions is interactions between ncRNA and RNA binding proteins (RBPs). Identifying proteins, involving ncRNA-protein interactions, can well understand the function ncRNA. Many high-throughput experiment have been applied to recognize the interactions. As a consequence of these approaches are time- and labor-consuming, currently, a great number of computational methods have been developed to improve and advance the ncRNA-protein interactions research. However, these methods may be not available to all RNAs and proteins, particularly processing new RNAs and proteins. Additionally, most of them cannot process well with long sequence. In this work, a computational method SAWRPI is proposed to make prediction of ncRNA-protein through sequence information. More specifically, the raw features of protein and ncRNA are firstly extracted through the k-mer sparse matrix with SVD reduction and learning nucleic acid symbols by natural language processing with local fusion strategy, respectively. Then, to classify easily, Hilbert Transformation is exploited to transform raw feature data to the new feature space. Finally, stacking ensemble strategy is adopted to learn high-level abstraction features automatically and generate final prediction results. To confirm the robustness and stability, three different datasets containing two kinds of interactions are utilized. In comparison with state-of-the-art methods and other results classifying or feature extracting strategies, SAWRPI achieved high performance on three datasets, containing two kinds of lncRNA-protein interactions. Upon our finding, SAWRPI is a trustworthy, robust, yet simple and can be used as a beneficial supplement to the task of predicting ncRNA-protein interactions.
Collapse
Affiliation(s)
- Zhong-Hao Ren
- School of Information Engineering, Xijing University, Xi’an, China
| | - Chang-Qing Yu
- School of Information Engineering, Xijing University, Xi’an, China
- *Correspondence: Li-Ping Li, ; Chang-Qing Yu,
| | - Li-Ping Li
- School of Information Engineering, Xijing University, Xi’an, China
- *Correspondence: Li-Ping Li, ; Chang-Qing Yu,
| | - Zhu-Hong You
- School of Computer Science, Northwestern Polytechnical University, Xi’an, China
| | - Yong-Jian Guan
- School of Information Engineering, Xijing University, Xi’an, China
| | - Yue-Chao Li
- School of Information Engineering, Xijing University, Xi’an, China
| | - Jie Pan
- School of Information Engineering, Xijing University, Xi’an, China
| |
Collapse
|
10
|
Peng L, Yuan R, Shen L, Gao P, Zhou L. LPI-EnEDT: an ensemble framework with extra tree and decision tree classifiers for imbalanced lncRNA-protein interaction data classification. BioData Min 2021; 14:50. [PMID: 34861891 PMCID: PMC8642957 DOI: 10.1186/s13040-021-00277-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/22/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Long noncoding RNAs (lncRNAs) have dense linkages with various biological processes. Identifying interacting lncRNA-protein pairs contributes to understand the functions and mechanisms of lncRNAs. Wet experiments are costly and time-consuming. Most computational methods failed to observe the imbalanced characterize of lncRNA-protein interaction (LPI) data. More importantly, they were measured based on a unique dataset, which produced the prediction bias. RESULTS In this study, we develop an Ensemble framework (LPI-EnEDT) with Extra tree and Decision Tree classifiers to implement imbalanced LPI data classification. First, five LPI datasets are arranged. Second, lncRNAs and proteins are separately characterized based on Pyfeat and BioTriangle and concatenated as a vector to represent each lncRNA-protein pair. Finally, an ensemble framework with Extra tree and decision tree classifiers is developed to classify unlabeled lncRNA-protein pairs. The comparative experiments demonstrate that LPI-EnEDT outperforms four classical LPI prediction methods (LPI-BLS, LPI-CatBoost, LPI-SKF, and PLIPCOM) under cross validations on lncRNAs, proteins, and LPIs. The average AUC values on the five datasets are 0.8480, 0,7078, and 0.9066 under the three cross validations, respectively. The average AUPRs are 0.8175, 0.7265, and 0.8882, respectively. Case analyses suggest that there are underlying associations between HOTTIP and Q9Y6M1, NRON and Q15717. CONCLUSIONS Fusing diverse biological features of lncRNAs and proteins and exploiting an ensemble learning model with Extra tree and decision tree classifiers, this work focus on imbalanced LPI data classification as well as interaction information inference for a new lncRNA (or protein).
Collapse
Affiliation(s)
- Lihong Peng
- School of Computer Science, Hunan University of Technology, No.88, Taishan West Road, Tianyuan District, Zhuzhou, China.,College of Life Sciences and Chemistry, Hunan University of Technology, No.88, Taishan West Road, Tianyuan District, Zhuzhou, China
| | - Ruya Yuan
- School of Computer Science, Hunan University of Technology, No.88, Taishan West Road, Tianyuan District, Zhuzhou, China
| | - Ling Shen
- School of Computer Science, Hunan University of Technology, No.88, Taishan West Road, Tianyuan District, Zhuzhou, China
| | - Pengfei Gao
- College of Life Sciences and Chemistry, Hunan University of Technology, No.88, Taishan West Road, Tianyuan District, Zhuzhou, China
| | - Liqian Zhou
- School of Computer Science, Hunan University of Technology, No.88, Taishan West Road, Tianyuan District, Zhuzhou, China.
| |
Collapse
|
11
|
LPI-HyADBS: a hybrid framework for lncRNA-protein interaction prediction integrating feature selection and classification. BMC Bioinformatics 2021; 22:568. [PMID: 34836494 PMCID: PMC8620196 DOI: 10.1186/s12859-021-04485-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) have dense linkages with a plethora of important cellular activities. lncRNAs exert functions by linking with corresponding RNA-binding proteins. Since experimental techniques to detect lncRNA-protein interactions (LPIs) are laborious and time-consuming, a few computational methods have been reported for LPI prediction. However, computation-based LPI identification methods have the following limitations: (1) Most methods were evaluated on a single dataset, and researchers may thus fail to measure their generalization ability. (2) The majority of methods were validated under cross validation on lncRNA-protein pairs, did not investigate the performance under other cross validations, especially for cross validation on independent lncRNAs and independent proteins. (3) lncRNAs and proteins have abundant biological information, how to select informative features need to further investigate. Results Under a hybrid framework (LPI-HyADBS) integrating feature selection based on AdaBoost, and classification models including deep neural network (DNN), extreme gradient Boost (XGBoost), and SVM with a penalty Coefficient of misclassification (C-SVM), this work focuses on finding new LPIs. First, five datasets are arranged. Each dataset contains lncRNA sequences, protein sequences, and an LPI network. Second, biological features of lncRNAs and proteins are acquired based on Pyfeat. Third, the obtained features of lncRNAs and proteins are selected based on AdaBoost and concatenated to depict each LPI sample. Fourth, DNN, XGBoost, and C-SVM are used to classify lncRNA-protein pairs based on the concatenated features. Finally, a hybrid framework is developed to integrate the classification results from the above three classifiers. LPI-HyADBS is compared to six classical LPI prediction approaches (LPI-SKF, LPI-NRLMF, Capsule-LPI, LPI-CNNCP, LPLNP, and LPBNI) on five datasets under 5-fold cross validations on lncRNAs, proteins, lncRNA-protein pairs, and independent lncRNAs and independent proteins. The results show LPI-HyADBS has the best LPI prediction performance under four different cross validations. In particular, LPI-HyADBS obtains better classification ability than other six approaches under the constructed independent dataset. Case analyses suggest that there is relevance between ZNF667-AS1 and Q15717. Conclusions Integrating feature selection approach based on AdaBoost, three classification techniques including DNN, XGBoost, and C-SVM, this work develops a hybrid framework to identify new linkages between lncRNAs and proteins. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04485-x.
Collapse
|
12
|
Yu H, Shen ZA, Du PF. NPI-RGCNAE: Fast predicting ncRNA-protein interactions using the Relational Graph Convolutional Network Auto-Encoder. IEEE J Biomed Health Inform 2021; 26:1861-1871. [PMID: 34699377 DOI: 10.1109/jbhi.2021.3122527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
- ncRNAs play important roles in a variety of biological processes by interacting with RNA-binding proteins. Therefore, identifying ncRNA-protein interactions is important to understanding the biological functions of ncRNAs. Since experimental methods to determine ncRNA-protein interactions are always costly and time-consuming, computational methods have been proposed as alternative approaches. We developed a novel method NPI-RGCNAE (predicting ncRNA-Protein Interactions by the Relational Graph Convolutional Network Auto-Encoder). With a reliable negative sample selection strategy, we applied the Relational Graph Convolutional Network encoder and the DistMult decoder to predict ncRNA-protein interactions in an accurate and efficient way. By using the 5-fold cross-validation, we found that our method achieved a comparable performance to all state-of-the-art methods. Our method requires less than 10% training time of all state-of-the-art methods. It is a more efficient choice with large datasets in practice. All datasets and source codes of NPI-RGCNAE have been deposited in a public Github repository (https://github.com/Angelia0hh/NPI-RGCNAE).
Collapse
|
13
|
Zhou L, Wang Z, Tian X, Peng L. LPI-deepGBDT: a multiple-layer deep framework based on gradient boosting decision trees for lncRNA-protein interaction identification. BMC Bioinformatics 2021; 22:479. [PMID: 34607567 PMCID: PMC8489074 DOI: 10.1186/s12859-021-04399-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/14/2021] [Indexed: 12/31/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) play important roles in various biological and pathological processes. Discovery of lncRNA–protein interactions (LPIs) contributes to understand the biological functions and mechanisms of lncRNAs. Although wet experiments find a few interactions between lncRNAs and proteins, experimental techniques are costly and time-consuming. Therefore, computational methods are increasingly exploited to uncover the possible associations. However, existing computational methods have several limitations. First, majority of them were measured based on one simple dataset, which may result in the prediction bias. Second, few of them are applied to identify relevant data for new lncRNAs (or proteins). Finally, they failed to utilize diverse biological information of lncRNAs and proteins. Results Under the feed-forward deep architecture based on gradient boosting decision trees (LPI-deepGBDT), this work focuses on classify unobserved LPIs. First, three human LPI datasets and two plant LPI datasets are arranged. Second, the biological features of lncRNAs and proteins are extracted by Pyfeat and BioProt, respectively. Thirdly, the features are dimensionally reduced and concatenated as a vector to represent an lncRNA–protein pair. Finally, a deep architecture composed of forward mappings and inverse mappings is developed to predict underlying linkages between lncRNAs and proteins. LPI-deepGBDT is compared with five classical LPI prediction models (LPI-BLS, LPI-CatBoost, PLIPCOM, LPI-SKF, and LPI-HNM) under three cross validations on lncRNAs, proteins, lncRNA–protein pairs, respectively. It obtains the best average AUC and AUPR values under the majority of situations, significantly outperforming other five LPI identification methods. That is, AUCs computed by LPI-deepGBDT are 0.8321, 0.6815, and 0.9073, respectively and AUPRs are 0.8095, 0.6771, and 0.8849, respectively. The results demonstrate the powerful classification ability of LPI-deepGBDT. Case study analyses show that there may be interactions between GAS5 and Q15717, RAB30-AS1 and O00425, and LINC-01572 and P35637. Conclusions Integrating ensemble learning and hierarchical distributed representations and building a multiple-layered deep architecture, this work improves LPI prediction performance as well as effectively probes interaction data for new lncRNAs/proteins.
Collapse
Affiliation(s)
- Liqian Zhou
- School of Computer Science, Hunan University of Technology, No. 88, Taishan West Road, Tianyuan District, Zhuzhou, China
| | - Zhao Wang
- School of Computer Science, Hunan University of Technology, No. 88, Taishan West Road, Tianyuan District, Zhuzhou, China
| | - Xiongfei Tian
- School of Computer Science, Hunan University of Technology, No. 88, Taishan West Road, Tianyuan District, Zhuzhou, China
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, No. 88, Taishan West Road, Tianyuan District, Zhuzhou, China. .,College of Life Sciences and Chemistry, Hunan University of Technology, No. 88, Taishan West Road, Tianyuan District, Zhuzhou, China.
| |
Collapse
|
14
|
Tian X, Shen L, Wang Z, Zhou L, Peng L. A novel lncRNA-protein interaction prediction method based on deep forest with cascade forest structure. Sci Rep 2021; 11:18881. [PMID: 34556758 PMCID: PMC8460650 DOI: 10.1038/s41598-021-98277-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) regulate many biological processes by interacting with corresponding RNA-binding proteins. The identification of lncRNA-protein Interactions (LPIs) is significantly important to well characterize the biological functions and mechanisms of lncRNAs. Existing computational methods have been effectively applied to LPI prediction. However, the majority of them were evaluated only on one LPI dataset, thereby resulting in prediction bias. More importantly, part of models did not discover possible LPIs for new lncRNAs (or proteins). In addition, the prediction performance remains limited. To solve with the above problems, in this study, we develop a Deep Forest-based LPI prediction method (LPIDF). First, five LPI datasets are obtained and the corresponding sequence information of lncRNAs and proteins are collected. Second, features of lncRNAs and proteins are constructed based on four-nucleotide composition and BioSeq2vec with encoder-decoder structure, respectively. Finally, a deep forest model with cascade forest structure is developed to find new LPIs. We compare LPIDF with four classical association prediction models based on three fivefold cross validations on lncRNAs, proteins, and LPIs. LPIDF obtains better average AUCs of 0.9012, 0.6937 and 0.9457, and the best average AUPRs of 0.9022, 0.6860, and 0.9382, respectively, for the three CVs, significantly outperforming other methods. The results show that the lncRNA FTX may interact with the protein P35637 and needs further validation.
Collapse
Affiliation(s)
- Xiongfei Tian
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, China
| | - Ling Shen
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, China
| | - Zhenwu Wang
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, China
| | - Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, China.
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, 412007, China.
| |
Collapse
|
15
|
Shaw D, Chen H, Xie M, Jiang T. DeepLPI: a multimodal deep learning method for predicting the interactions between lncRNAs and protein isoforms. BMC Bioinformatics 2021; 22:24. [PMID: 33461501 PMCID: PMC7814738 DOI: 10.1186/s12859-020-03914-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) regulate diverse biological processes via interactions with proteins. Since the experimental methods to identify these interactions are expensive and time-consuming, many computational methods have been proposed. Although these computational methods have achieved promising prediction performance, they neglect the fact that a gene may encode multiple protein isoforms and different isoforms of the same gene may interact differently with the same lncRNA. RESULTS In this study, we propose a novel method, DeepLPI, for predicting the interactions between lncRNAs and protein isoforms. Our method uses sequence and structure data to extract intrinsic features and expression data to extract topological features. To combine these different data, we adopt a hybrid framework by integrating a multimodal deep learning neural network and a conditional random field. To overcome the lack of known interactions between lncRNAs and protein isoforms, we apply a multiple instance learning (MIL) approach. In our experiment concerning the human lncRNA-protein interactions in the NPInter v3.0 database, DeepLPI improved the prediction performance by 4.7% in term of AUC and 5.9% in term of AUPRC over the state-of-the-art methods. Our further correlation analyses between interactive lncRNAs and protein isoforms also illustrated that their co-expression information helped predict the interactions. Finally, we give some examples where DeepLPI was able to outperform the other methods in predicting mouse lncRNA-protein interactions and novel human lncRNA-protein interactions. CONCLUSION Our results demonstrated that the use of isoforms and MIL contributed significantly to the improvement of performance in predicting lncRNA and protein interactions. We believe that such an approach would find more applications in predicting other functional roles of RNAs and proteins.
Collapse
Affiliation(s)
- Dipan Shaw
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521 USA
| | - Hao Chen
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521 USA
| | - Minzhu Xie
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Tao Jiang
- Department of Computer Science and Engineering, University of California, Riverside, CA 92521 USA
- Bioinformatics Division, BNRIST/Department of Computer Science and Technology, Tsinghua University, Beijing, China
| |
Collapse
|
16
|
Zhou YK, Hu J, Shen ZA, Zhang WY, Du PF. LPI-SKF: Predicting lncRNA-Protein Interactions Using Similarity Kernel Fusions. Front Genet 2020; 11:615144. [PMID: 33362868 PMCID: PMC7758075 DOI: 10.3389/fgene.2020.615144] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/16/2020] [Indexed: 01/24/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an important role in serval biological activities, including transcription, splicing, translation, and some other cellular regulation processes. lncRNAs perform their biological functions by interacting with various proteins. The studies on lncRNA-protein interactions are of great value to the understanding of lncRNA functional mechanisms. In this paper, we proposed a novel model to predict potential lncRNA-protein interactions using the SKF (similarity kernel fusion) and LapRLS (Laplacian regularized least squares) algorithms. We named this method the LPI-SKF. Various similarities of both lncRNAs and proteins were integrated into the LPI-SKF. LPI-SKF can be applied in predicting potential interactions involving novel proteins or lncRNAs. We obtained an AUROC (area under receiver operating curve) of 0.909 in a 5-fold cross-validation, which outperforms other state-of-the-art methods. A total of 19 out of the top 20 ranked interaction predictions were verified by existing data, which implied that the LPI-SKF had great potential in discovering unknown lncRNA-protein interactions accurately. All data and codes of this work can be downloaded from a GitHub repository (https://github.com/zyk2118216069/LPI-SKF).
Collapse
Affiliation(s)
| | | | | | | | - Pu-Feng Du
- College of Intelligence and Computing, Tianjin University, Tianjin, China
| |
Collapse
|
17
|
Zhuang H, Zhang Y, Yang S, Cheng L, Liu SL. A Mendelian Randomization Study on Infant Length and Type 2 Diabetes Mellitus Risk. Curr Gene Ther 2020; 19:224-231. [PMID: 31553296 DOI: 10.2174/1566523219666190925115535] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Infant length (IL) is a positively associated phenotype of type 2 diabetes mellitus (T2DM), but the causal relationship of which is still unclear. Here, we applied a Mendelian randomization (MR) study to explore the causal relationship between IL and T2DM, which has the potential to provide guidance for assessing T2DM activity and T2DM- prevention in young at-risk populations. MATERIALS AND METHODS To classify the study, a two-sample MR, using genetic instrumental variables (IVs) to explore the causal effect was applied to test the influence of IL on the risk of T2DM. In this study, MR was carried out on GWAS data using 8 independent IL SNPs as IVs. The pooled odds ratio (OR) of these SNPs was calculated by the inverse-variance weighted method for the assessment of the risk the shorter IL brings to T2DM. Sensitivity validation was conducted to identify the effect of individual SNPs. MR-Egger regression was used to detect pleiotropic bias of IVs. RESULTS The pooled odds ratio from the IVW method was 1.03 (95% CI 0.89-1.18, P = 0.0785), low intercept was -0.477, P = 0.252, and small fluctuation of ORs ranged from -0.062 ((0.966 - 1.03) / 1.03) to 0.05 ((1.081 - 1.03) / 1.03) in leave-one-out validation. CONCLUSION We validated that the shorter IL causes no additional risk to T2DM. The sensitivity analysis and the MR-Egger regression analysis also provided adequate evidence that the above result was not due to any heterogeneity or pleiotropic effect of IVs.
Collapse
Affiliation(s)
- He Zhuang
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China), Harbin Medical University, Harbin, China.,HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China
| | - Ying Zhang
- Department of Pharmacy, Heilongjiang Province Land Reclamation Headquarters General Hospital, 150001, Harbin, China
| | - Shuo Yang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Liang Cheng
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Shu-Lin Liu
- Systemomics Center, College of Pharmacy, and Genomics Research Center (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China), Harbin Medical University, Harbin, China.,HMU-UCFM Centre for Infection and Genomics, Harbin Medical University, Harbin, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Canada.,Department of Infectious Diseases, The First Affiliated Hospital, Harbin Medical University, Harbin, China.,Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| |
Collapse
|
18
|
Zhao Y, Wang CC, Chen X. Microbes and complex diseases: from experimental results to computational models. Brief Bioinform 2020; 22:5882184. [PMID: 32766753 DOI: 10.1093/bib/bbaa158] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Studies have shown that the number of microbes in humans is almost 10 times that of cells. These microbes have been proven to play an important role in a variety of physiological processes, such as enhancing immunity, improving the digestion of gastrointestinal tract and strengthening metabolic function. In addition, in recent years, more and more research results have indicated that there are close relationships between the emergence of the human noncommunicable diseases and microbes, which provides a novel insight for us to further understand the pathogenesis of the diseases. An in-depth study about the relationships between diseases and microbes will not only contribute to exploring new strategies for the diagnosis and treatment of diseases but also significantly heighten the efficiency of new drugs development. However, applying the methods of biological experimentation to reveal the microbe-disease associations is costly and inefficient. In recent years, more and more researchers have constructed multiple computational models to predict microbes that are potentially associated with diseases. Here, we start with a brief introduction of microbes and databases as well as web servers related to them. Then, we mainly introduce four kinds of computational models, including score function-based models, network algorithm-based models, machine learning-based models and experimental analysis-based models. Finally, we summarize the advantages as well as disadvantages of them and set the direction for the future work of revealing microbe-disease associations based on computational models. We firmly believe that computational models are expected to be important tools in large-scale predictions of disease-related microbes.
Collapse
Affiliation(s)
- Yan Zhao
- School of Information and Control Engineering, China University of Mining
| | - Chun-Chun Wang
- School of Information and Control Engineering, China University of Mining
| | - Xing Chen
- School of Information and Control Engineering, China University of Mining
| |
Collapse
|
19
|
Wang Z, Lei X. Matrix factorization with neural network for predicting circRNA-RBP interactions. BMC Bioinformatics 2020; 21:229. [PMID: 32503474 PMCID: PMC7275382 DOI: 10.1186/s12859-020-3514-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 04/23/2020] [Indexed: 12/29/2022] Open
Abstract
Background Circular RNA (circRNA) has been extensively identified in cells and tissues, and plays crucial roles in human diseases and biological processes. circRNA could act as dynamic scaffolding molecules that modulate protein-protein interactions. The interactions between circRNA and RNA Binding Proteins (RBPs) are also deemed to an essential element underlying the functions of circRNA. Considering cost-heavy and labor-intensive aspects of these biological experimental technologies, instead, the high-throughput experimental data has enabled the large-scale prediction and analysis of circRNA-RBP interactions. Results A computational framework is constructed by employing Positive Unlabeled learning (P-U learning) to predict unknown circRNA-RBP interaction pairs with kernel model MFNN (Matrix Factorization with Neural Networks). The neural network is employed to extract the latent factors of circRNA and RBP in the interaction matrix, the P-U learning strategy is applied to alleviate the imbalanced characteristics of data samples and predict unknown interaction pairs. For this purpose, the known circRNA-RBP interaction data samples are collected from the circRNAs in cancer cell lines database (CircRic), and the circRNA-RBP interaction matrix is constructed as the input of the model. The experimental results show that kernel MFNN outperforms the other deep kernel models. Interestingly, it is found that the deeper of hidden layers in neural network framework does not mean the better in our model. Finally, the unlabeled interactions are scored using P-U learning with MFNN kernel, and the predicted interaction pairs are matched to the known interactions database. The results indicate that our method is an effective model to analyze the circRNA-RBP interactions. Conclusion For a poorly studied circRNA-RBP interactions, we design a prediction framework only based on interaction matrix by employing matrix factorization and neural network. We demonstrate that MFNN achieves higher prediction accuracy, and it is an effective method.
Collapse
Affiliation(s)
- Zhengfeng Wang
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China.,College of Information Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Xiujuan Lei
- School of Computer Science, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
20
|
Wang J, Kuang Z, Ma Z, Han G. GBDTL2E: Predicting lncRNA-EF Associations Using Diffusion and HeteSim Features Based on a Heterogeneous Network. Front Genet 2020; 11:272. [PMID: 32351537 PMCID: PMC7174746 DOI: 10.3389/fgene.2020.00272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 03/06/2020] [Indexed: 12/02/2022] Open
Abstract
Interactions between genetic factors and environmental factors (EFs) play an important role in many diseases. Many diseases result from the interaction between genetics and EFs. The long non-coding RNA (lncRNA) is an important non-coding RNA that regulates life processes. The ability to predict the associations between lncRNAs and EFs is of important practical significance. However, the recent methods for predicting lncRNA-EF associations rarely use the topological information of heterogenous biological networks or simply treat all objects as the same type without considering the different and subtle semantic meanings of various paths in the heterogeneous network. In order to address this issue, a method based on the Gradient Boosting Decision Tree (GBDT) to predict the association between lncRNAs and EFs (GBDTL2E) is proposed in this paper. The innovation of the GBDTL2E integrates the structural information and heterogenous networks, combines the Hetesim features and the diffusion features based on multi-feature fusion, and uses the machine learning algorithm GBDT to predict the association between lncRNAs and EFs based on heterogeneous networks. The experimental results demonstrate that the proposed algorithm achieves a high performance.
Collapse
Affiliation(s)
- Jiaqi Wang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhufang Kuang
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Zhihao Ma
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Genwei Han
- School of Computer and Information Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
21
|
Liu H, Zhang W, Nie L, Ding X, Luo J, Zou L. Predicting effective drug combinations using gradient tree boosting based on features extracted from drug-protein heterogeneous network. BMC Bioinformatics 2019; 20:645. [PMID: 31818267 PMCID: PMC6902475 DOI: 10.1186/s12859-019-3288-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/21/2019] [Indexed: 01/30/2023] Open
Abstract
Background Although targeted drugs have contributed to impressive advances in the treatment of cancer patients, their clinical benefits on tumor therapies are greatly limited due to intrinsic and acquired resistance of cancer cells against such drugs. Drug combinations synergistically interfere with protein networks to inhibit the activity level of carcinogenic genes more effectively, and therefore play an increasingly important role in the treatment of complex disease. Results In this paper, we combined the drug similarity network, protein similarity network and known drug-protein associations into a drug-protein heterogenous network. Next, we ran random walk with restart (RWR) on the heterogenous network using the combinatorial drug targets as the initial probability, and obtained the converged probability distribution as the feature vector of each drug combination. Taking these feature vectors as input, we trained a gradient tree boosting (GTB) classifier to predict new drug combinations. We conducted performance evaluation on the widely used drug combination data set derived from the DCDB database. The experimental results show that our method outperforms seven typical classifiers and traditional boosting algorithms. Conclusions The heterogeneous network-derived features introduced in our method are more informative and enriching compared to the primary ontology features, which results in better performance. In addition, from the perspective of network pharmacology, our method effectively exploits the topological attributes and interactions of drug targets in the overall biological network, which proves to be a systematic and reliable approach for drug discovery.
Collapse
Affiliation(s)
- Hui Liu
- Lab of Information Management, Changzhou University, Jiangsu, China
| | - Wenhao Zhang
- Lab of Information Management, Changzhou University, Jiangsu, China
| | - Lixia Nie
- School of Information Science and Engineering, Changzhou University, Jiangsu, China
| | - Xiancheng Ding
- Information Center, Changzhou University, Jiangsu, 213164, China
| | - Judong Luo
- Department of Radiation Oncology, the Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Changzhou, China.
| | - Ling Zou
- School of Information Science and Engineering, Changzhou University, Jiangsu, China.
| |
Collapse
|
22
|
Ma Y, He T, Jiang X. Projection-Based Neighborhood Non-Negative Matrix Factorization for lncRNA-Protein Interaction Prediction. Front Genet 2019; 10:1148. [PMID: 31824563 PMCID: PMC6880730 DOI: 10.3389/fgene.2019.01148] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/21/2019] [Indexed: 12/25/2022] Open
Abstract
Many long ncRNAs (lncRNA) make their effort by interacting with the corresponding RNA-binding proteins, and identifying the interactions between lncRNAs and proteins is important to understand the functions of lncRNA. Compared with the time-consuming and laborious experimental methods, more and more computational models are proposed to predict lncRNA-protein interactions. However, few models can effectively utilize the biological network topology of lncRNA (protein) and combine its sequence structure features, and most models cannot effectively predict new proteins (lncRNA) that do not interact with any lncRNA (proteins). In this study, we proposed a projection-based neighborhood non-negative matrix decomposition model (PMKDN) to predict potential lncRNA-protein interactions by integrating multiple biological features of lncRNAs (proteins). First, according to lncRNA (protein) sequences and lncRNA expression profile data, we extracted multiple features of lncRNA (protein). Second, based on protein GO ontology annotation, lncRNA sequences, lncRNA(protein) feature information, and modified lncRNA-protein interaction network, we calculated multiple similarities of lncRNA (protein), and fused them to obtain a more accurate lncRNA(protein) similarity network. Finally, combining the similarity and various feature information of lncRNA (protein), as well as the modified interaction network, we proposed a projection-based neighborhood non-negative matrix decomposition algorithm to predict the potential lncRNA-protein interactions. On two benchmark datasets, PMKDN showed better performance than other state-of-the-art methods for the prediction of new lncRNA-protein interactions, new lncRNAs, and new proteins. Case study further indicates that PMKDN can be used as an effective tool for lncRNA-protein interaction prediction.
Collapse
Affiliation(s)
- Yingjun Ma
- School of Mathematics & Statistics, Central China Normal University, Wuhan, China.,Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China
| | - Tingting He
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China.,School of Computer, Central China Normal University, Wuhan, China
| | - Xingpeng Jiang
- Hubei Provincial Key Laboratory of Artificial Intelligence and Smart Learning, Central China Normal University, Wuhan, China.,School of Computer, Central China Normal University, Wuhan, China
| |
Collapse
|
23
|
Zhao T, Wang D, Hu Y, Zhang N, Zang T, Wang Y. Identifying Alzheimer’s Disease-related miRNA Based on Semi-clustering. Curr Gene Ther 2019; 19:216-223. [DOI: 10.2174/1566523219666190924113737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 01/14/2023]
Abstract
Background:
More and more scholars are trying to use it as a specific biomarker for Alzheimer’s
Disease (AD) and mild cognitive impairment (MCI). Multiple studies have indicated that
miRNAs are associated with poor axonal growth and loss of synaptic structures, both of which are early
events in AD. The overall loss of miRNA may be associated with aging, increasing the incidence of
AD, and may also be involved in the disease through some specific molecular mechanisms.
Objective:
Identifying Alzheimer’s disease-related miRNA can help us find new drug targets, early
diagnosis.
Materials and Methods:
We used genes as a bridge to connect AD and miRNAs. Firstly, proteinprotein
interaction network is used to find more AD-related genes by known AD-related genes. Then,
each miRNA’s correlation with these genes is obtained by miRNA-gene interaction. Finally, each
miRNA could get a feature vector representing its correlation with AD. Unlike other studies, we do not
generate negative samples randomly with using classification method to identify AD-related miRNAs.
Here we use a semi-clustering method ‘one-class SVM’. AD-related miRNAs are considered as outliers
and our aim is to identify the miRNAs that are similar to known AD-related miRNAs (outliers).
Results and Conclusion:
We identified 257 novel AD-related miRNAs and compare our method with
SVM which is applied by generating negative samples. The AUC of our method is much higher than
SVM and we did case studies to prove that our results are reliable.
Collapse
Affiliation(s)
- Tianyi Zhao
- Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Donghua Wang
- Department of General Surgery, General Hospital of Heilongjiang Province Land Reclamation Bureau, Harbin, China
| | - Yang Hu
- School of life Science and Tenchnology, Harbin Institute of Technology, Harbin, China
| | - Ningyi Zhang
- Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Tianyi Zang
- Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yadong Wang
- Department of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
| |
Collapse
|
24
|
Chen X, Shi W, Deng L. Prediction of Disease Comorbidity Using HeteSim Scores based on Multiple Heterogeneous Networks. Curr Gene Ther 2019; 19:232-241. [DOI: 10.2174/1566523219666190917155959] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 06/16/2019] [Indexed: 12/25/2022]
Abstract
Background:
Accumulating experimental studies have indicated that disease comorbidity
causes additional pain to patients and leads to the failure of standard treatments compared to patients
who have a single disease. Therefore, accurate prediction of potential comorbidity is essential to design
more efficient treatment strategies. However, only a few disease comorbidities have been discovered
in the clinic.
Objective:
In this work, we propose PCHS, an effective computational method for predicting disease
comorbidity.
Materials and Methods:
We utilized the HeteSim measure to calculate the relatedness score for different
disease pairs in the global heterogeneous network, which integrates six networks based on biological
information, including disease-disease associations, drug-drug interactions, protein-protein interactions
and associations among them. We built the prediction model using the Support Vector Machine
(SVM) based on the HeteSim scores.
Results and Conclusion:
The results showed that PCHS performed significantly better than previous
state-of-the-art approaches and achieved an AUC score of 0.90 in 10-fold cross-validation. Furthermore,
some of our predictions have been verified in literatures, indicating the effectiveness of our method.
Collapse
Affiliation(s)
- Xuegong Chen
- School of Computer Science and Engineering, Central South University, Changsha, 410075, China
| | - Wanwan Shi
- School of Computer Science and Engineering, Central South University, Changsha, 410075, China
| | - Lei Deng
- School of Computer Science and Engineering, Central South University, Changsha, 410075, China
| |
Collapse
|
25
|
Liang X, Li D, Song M, Madden A, Ding Y, Bu Y. Predicting biomedical relationships using the knowledge and graph embedding cascade model. PLoS One 2019; 14:e0218264. [PMID: 31194807 PMCID: PMC6565371 DOI: 10.1371/journal.pone.0218264] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/29/2019] [Indexed: 02/06/2023] Open
Abstract
Advances in machine learning and deep learning methods, together with the increasing availability of large-scale pharmacological, genomic, and chemical datasets, have created opportunities for identifying potentially useful relationships within biochemical networks. Knowledge embedding models have been found to have value in detecting knowledge-based correlations among entities, but little effort has been made to apply them to networks of biochemical entities. This is because such networks tend to be unbalanced and sparse, and knowledge embedding models do not work well on them. However, to some extent, the shortcomings of knowledge embedding models can be compensated for if they are used in association with graph embedding. In this paper, we combine knowledge embedding and graph embedding to represent biochemical entities and their relations as dense and low-dimensional vectors. We build a cascade learning framework which incorporates semantic features from the knowledge embedding model, and graph features from the graph embedding model, to score the probability of linking. The proposed method performs noticeably better than the models with which it is compared. It predicted links and entities with an accuracy of 93%, and its average hits@10 score has an average of 8.6% absolute improvement compared with original knowledge embedding model, 1.1% to 9.7% absolute improvement compared with other knowledge and graph embedding algorithm. In addition, we designed a meta-path algorithm to detect path relations in the biomedical network. Case studies further verify the value of the proposed model in finding potential relationships between diseases, drugs, genes, treatments, etc. Amongst the findings of the proposed model are the suggestion that VDR (vitamin D receptor) may be linked to prostate cancer. This is backed by evidence from medical databases and published research, supporting the suggestion that our proposed model could be of value to biomedical researchers.
Collapse
Affiliation(s)
- Xiaomin Liang
- School of Information Management, Sun Yat-Sen Uniersity, Guangzhou, Guangdong, China
| | - Daifeng Li
- School of Information Management, Sun Yat-Sen Uniersity, Guangzhou, Guangdong, China
| | - Min Song
- Department of Library and Information Science, Yonsei University, Seoul, Korea
| | - Andrew Madden
- School of Information Management, Sun Yat-Sen Uniersity, Guangzhou, Guangdong, China
| | - Ying Ding
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, United States of America
- School of Information Management, Wuhan University, Wuhan, Hubei, China
| | - Yi Bu
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|