1
|
Zheng H, Liang Y, Cheng G, Zhou J, Bi W, Hu H, Li Q. Optimization of Microsatellite Multiplex PCRs for Triploidy Verification and Genetic Diversity Assessment in the Pacific Oyster, Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:55. [PMID: 39982523 DOI: 10.1007/s10126-025-10432-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
The ploidy detection is crucial for the oyster industry. The objective of this study was to develop a method that verifies ploidy of the triploid Pacific oyster Crassostrea gigas by analyzing the diversity of triploid through microsatellite multiplex PCRs using fluorescent universal primers. We developed four information-rich multiplex PCR panels, comprising a total of 12 genomic microsatellites located in the genome of the C. gigas, distributed across seven chromosomes with an average of 14 alleles per locus. Each panel used M13(-21) primers labeled with specific fluorochrome dyes, and the forward primers for each locus were appended with M13(-21) sequences. We validated the approach to infer ploidy using flow cytometry as a reference, finding > 95% agreement between these methods, and demonstrated its potential utility to infer aneuploidy. Genotyping of 496 triploid samples from eight populations yielded 10 or more alleles per locus in 99.63% of samples in a single capillary electrophoresis. The correct assignment of triploidy depends on the number of markers with three unique allele fragments (MNM). Using semi-strict criteria of three unique alleles at one or more loci, the detection accuracy rate was 95.26% for triploids. Using the strict criteria of three unique alleles at two or more loci, the detection accuracy rate was 98.34%. Populations with reduced genetic diversity due to selective breeding were better suited for the semistrict criterion, maximizing triploid detection. And cultured populations were more suitable for evaluation using the strict criteria, which effectively reduced false-positive diploid assignment and increased triploid detection accuracy. The markers developed in this study were highly polymorphic and effective for assessing genetic diversity and distinguishing populations, providing a reliable tool for triploid detection and analysis in oyster breeding.
Collapse
Affiliation(s)
- Huilin Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Yuanxin Liang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Geng Cheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Jianmin Zhou
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Wenlong Bi
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Hong Hu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
2
|
Delaval A, Glover KA, Solberg MF, Taggart JB, Besnier F, Sørvik AGE, Øyro J, Garnes-Gutvik SN, Fjelldal PG, Hansen T, Harvey A. A genetic method to infer ploidy and aberrant inheritance in triploid organisms. Mol Ecol Resour 2024; 24:e14004. [PMID: 39104309 DOI: 10.1111/1755-0998.14004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/07/2024]
Abstract
Polyploidy occurs naturally across eukaryotic lineages and has been harnessed in the domestication of many crops and vertebrates. In aquaculture, triploidy can be induced as a biocontainment strategy, as it creates a reproductive barrier preventing farm-to-wild introgression, which is currently a major conservation issue for the industry. However, recent work suggests that triploidisation protocols may, on occasion, produce 'failed triploids' displaying diploidy, aneuploidy and aberrant inheritance. The potentially negative consequences for conservation and animal welfare motivate the need for methods to evaluate the success of ploidy-manipulation protocols early in the production process. We developed a semi-automated version of the MAC-PR (microsatellite DNA allele counting - peak ratios) method to resolve the allelic configuration of large numbers of individuals across a panel of microsatellite markers that can be used to infer ploidy, pedigree and inheritance aberrations. We demonstrate an application of the approach using material from a series of Atlantic salmon (Salmo salar) breeding experiments where ploidy was manipulated using a hydrostatic pressure treatment. We validated the approach to infer ploidy against blood smears, finding a > 99% agreement between these methods, and demonstrate its potential utility to infer ploidy as early as the embryonic stage. Furthermore, we present tools to assign diploid and triploid progeny to families and to detect aberrant inheritance, which may be useful for breeding programmes that utilise ploidy manipulation techniques. The approach adds to the ploidy verification toolbox. The increased precision in detecting ploidy and inheritance aberrations will facilitate the ability of triploidisation programmes to prevent farm-to-wild introgression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Tom Hansen
- Institute of Marine Research, Matre Research Station, Matredal, Norway
| | | |
Collapse
|
3
|
Roche J, Besson M, Allal F, Haffray P, Patrice P, Vandeputte M, Phocas F. GenoTriplo: A SNP genotype calling method for triploids. PLoS Comput Biol 2024; 20:e1012483. [PMID: 39316624 PMCID: PMC11452025 DOI: 10.1371/journal.pcbi.1012483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 10/04/2024] [Accepted: 09/12/2024] [Indexed: 09/26/2024] Open
Abstract
Triploidy is very useful in both aquaculture and some cultivated plants as the induced sterility helps to enhance growth and product quality, as well as acting as a barrier against the contamination of wild populations by escapees. To use genetic information from triploids for academic or breeding purposes, an efficient and robust method to genotype triploids is needed. We developed such a method for genotype calling from SNP arrays, and we implemented it in the R package named GenoTriplo. Our method requires no prior information on cluster positions and remains unaffected by shifted luminescence signals. The method relies on starting the clustering algorithm with an initial higher number of groups than expected from the ploidy level of the samples, followed by merging groups that are too close to each other to be considered as distinct genotypes. Accurate classification of SNPs is achieved through multiple thresholds of quality controls. We compared the performance of GenoTriplo with that of fitPoly, the only published method for triploid SNP genotyping with a free software access. This was assessed by comparing the genotypes generated by both methods for a dataset of 1232 triploid rainbow trout genotyped for 38,033 SNPs. The two methods were consistent for 89% of the genotypes, but for 26% of the SNPs, they exhibited a discrepancy in the number of different genotypes identified. For these SNPs, GenoTriplo had >95% concordance with fitPoly when fitPoly genotyped better. On the contrary, when GenoTriplo genotyped better, fitPoly had less than 50% concordance with GenoTriplo. GenoTriplo was more robust with less genotyping errors. It is also efficient at identifying low-frequency genotypes in the sample set. Finally, we assessed parentage assignment based on GenoTriplo genotyping and observed significant differences in mismatch rates between the best and second-best couples, indicating high confidence in the results. GenoTriplo could also be used to genotype diploids as well as individuals with higher ploidy level by adjusting a few input parameters.
Collapse
Affiliation(s)
- Julien Roche
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
- SYSAAF (French Poultry and Aquaculture Breeders Technical Centre), Rennes, France
| | - Mathieu Besson
- SYSAAF (French Poultry and Aquaculture Breeders Technical Centre), Rennes, France
| | - François Allal
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas-les-Flots, France
| | - Pierrick Haffray
- SYSAAF (French Poultry and Aquaculture Breeders Technical Centre), Rennes, France
| | - Pierre Patrice
- SYSAAF (French Poultry and Aquaculture Breeders Technical Centre), Rennes, France
| | - Marc Vandeputte
- MARBEC, University of Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas-les-Flots, France
| | - Florence Phocas
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas, France
| |
Collapse
|
4
|
Martins FB, Aono AH, Moraes ADCL, Ferreira RCU, Vilela MDM, Pessoa-Filho M, Rodrigues-Motta M, Simeão RM, de Souza AP. Genome-wide family prediction unveils molecular mechanisms underlying the regulation of agronomic traits in Urochloa ruziziensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1303417. [PMID: 38148869 PMCID: PMC10749977 DOI: 10.3389/fpls.2023.1303417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Tropical forage grasses, particularly those belonging to the Urochloa genus, play a crucial role in cattle production and serve as the main food source for animals in tropical and subtropical regions. The majority of these species are apomictic and tetraploid, highlighting the significance of U. ruziziensis, a sexual diploid species that can be tetraploidized for use in interspecific crosses with apomictic species. As a means to support breeding programs, our study investigates the feasibility of genome-wide family prediction in U. ruziziensis families to predict agronomic traits. Fifty half-sibling families were assessed for green matter yield, dry matter yield, regrowth capacity, leaf dry matter, and stem dry matter across different clippings established in contrasting seasons with varying available water capacity. Genotyping was performed using a genotyping-by-sequencing approach based on DNA samples from family pools. In addition to conventional genomic prediction methods, machine learning and feature selection algorithms were employed to reduce the necessary number of markers for prediction and enhance predictive accuracy across phenotypes. To explore the regulation of agronomic traits, our study evaluated the significance of selected markers for prediction using a tree-based approach, potentially linking these regions to quantitative trait loci (QTLs). In a multiomic approach, genes from the species transcriptome were mapped and correlated to those markers. A gene coexpression network was modeled with gene expression estimates from a diverse set of U. ruziziensis genotypes, enabling a comprehensive investigation of molecular mechanisms associated with these regions. The heritabilities of the evaluated traits ranged from 0.44 to 0.92. A total of 28,106 filtered SNPs were used to predict phenotypic measurements, achieving a mean predictive ability of 0.762. By employing feature selection techniques, we could reduce the dimensionality of SNP datasets, revealing potential genotype-phenotype associations. The functional annotation of genes near these markers revealed associations with auxin transport and biosynthesis of lignin, flavonol, and folic acid. Further exploration with the gene coexpression network uncovered associations with DNA metabolism, stress response, and circadian rhythm. These genes and regions represent important targets for expanding our understanding of the metabolic regulation of agronomic traits and offer valuable insights applicable to species breeding. Our work represents an innovative contribution to molecular breeding techniques for tropical forages, presenting a viable marker-assisted breeding approach and identifying target regions for future molecular studies on these agronomic traits.
Collapse
Affiliation(s)
- Felipe Bitencourt Martins
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Aline da Costa Lima Moraes
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | - Marco Pessoa-Filho
- Embrapa Cerrados, Brazilian Agricultural Research Corporation, Brasília, Brazil
| | | | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Mato Grosso, Brazil
| | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
5
|
da Costa Lima Moraes A, Mollinari M, Ferreira RCU, Aono A, de Castro Lara LA, Pessoa-Filho M, Barrios SCL, Garcia AAF, do Valle CB, de Souza AP, Vigna BBZ. Advances in genomic characterization of Urochloa humidicola: exploring polyploid inheritance and apomixis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:238. [PMID: 37919432 DOI: 10.1007/s00122-023-04485-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/11/2023] [Indexed: 11/04/2023]
Abstract
KEY MESSAGE We present the highest-density genetic map for the hexaploid Urochloa humidicola. SNP markers expose genetic organization, reproduction, and species origin, aiding polyploid and tropical forage research. Tropical forage grasses are an important food source for animal feeding, with Urochloa humidicola, also known as Koronivia grass, being one of the main pasture grasses for poorly drained soils in the tropics. However, genetic and genomic resources for this species are lacking due to its genomic complexity, including high heterozygosity, evidence of segmental allopolyploidy, and reproduction by apomixis. These complexities hinder the application of marker-assisted selection (MAS) in breeding programs. Here, we developed the highest-density linkage map currently available for the hexaploid tropical forage grass U. humidicola. This map was constructed using a biparental F1 population generated from a cross between the female parent H031 (CIAT 26146), the only known sexual genotype for the species, and the apomictic male parent H016 (BRS cv. Tupi). The linkage analysis included 4873 single nucleotide polymorphism (SNP) markers with allele dosage information. It allowed mapping of the ASGR locus and apospory phenotype to linkage group 3, in a region syntenic with chromosome 3 of Urochloa ruziziensis and chromosome 1 of Setaria italica. We also identified hexaploid haplotypes for all individuals, assessed the meiotic configuration, and estimated the level of preferential pairing in parents during the meiotic process, which revealed the autopolyploid origin of sexual H031 in contrast to apomictic H016, which presented allopolyploid behavior in preferential pairing analysis. These results provide new information regarding the genetic organization, mode of reproduction, and allopolyploid origin of U. humidicola, potential SNPs markers associated with apomixis for MAS and resources for research on polyploids and tropical forage grasses.
Collapse
Affiliation(s)
- Aline da Costa Lima Moraes
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Marcelo Mollinari
- Department of Horticultural Science, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | | | - Alexandre Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | | | | | | | | | - Anete Pereira de Souza
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | |
Collapse
|
6
|
Polyploid SNP Genotyping Using the MassARRAY System. Methods Mol Biol 2023; 2638:93-113. [PMID: 36781637 DOI: 10.1007/978-1-0716-3024-2_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Molecular marker discovery and genotyping are major challenges in polyploid breeding programs incorporating molecular biology tools. In this context, this work describes a method for single nucleotide polymorphism (SNP) genotyping in polyploid crops using matrix-assisted laser desorption ionization (MALDI) time-of-flight (TOF) mass spectrometry, the MassARRAY System.
Collapse
|
7
|
A joint learning approach for genomic prediction in polyploid grasses. Sci Rep 2022; 12:12499. [PMID: 35864135 PMCID: PMC9304331 DOI: 10.1038/s41598-022-16417-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/11/2022] [Indexed: 12/20/2022] Open
Abstract
Poaceae, among the most abundant plant families, includes many economically important polyploid species, such as forage grasses and sugarcane (Saccharum spp.). These species have elevated genomic complexities and limited genetic resources, hindering the application of marker-assisted selection strategies. Currently, the most promising approach for increasing genetic gains in plant breeding is genomic selection. However, due to the polyploidy nature of these polyploid species, more accurate models for incorporating genomic selection into breeding schemes are needed. This study aims to develop a machine learning method by using a joint learning approach to predict complex traits from genotypic data. Biparental populations of sugarcane and two species of forage grasses (Urochloa decumbens, Megathyrsus maximus) were genotyped, and several quantitative traits were measured. High-quality markers were used to predict several traits in different cross-validation scenarios. By combining classification and regression strategies, we developed a predictive system with promising results. Compared with traditional genomic prediction methods, the proposed strategy achieved accuracy improvements exceeding 50%. Our results suggest that the developed methodology could be implemented in breeding programs, helping reduce breeding cycles and increase genetic gains.
Collapse
|
8
|
Correr FH, Furtado A, Franco Garcia AA, Henry RJ, Rodrigues Alves Margarido G. Allele expression biases in mixed-ploid sugarcane accessions. Sci Rep 2022; 12:8778. [PMID: 35610293 PMCID: PMC9130122 DOI: 10.1038/s41598-022-12725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/27/2022] [Indexed: 11/16/2022] Open
Abstract
Allele-specific expression (ASE) represents differences in the magnitude of expression between alleles of the same gene. This is not straightforward for polyploids, especially autopolyploids, as knowledge about the dose of each allele is required for accurate estimation of ASE. This is the case for the genomically complex Saccharum species, characterized by high levels of ploidy and aneuploidy. We used a Beta-Binomial model to test for allelic imbalance in Saccharum, with adaptations for mixed-ploid organisms. The hierarchical Beta-Binomial model was used to test if allele expression followed the expectation based on genomic allele dosage. The highest frequencies of ASE occurred in sugarcane hybrids, suggesting a possible influence of interspecific hybridization in these genotypes. For all accessions, genes showing ASE (ASEGs) were less frequent than those with balanced allelic expression. These genes were related to a broad range of processes, mostly associated with general metabolism, organelles, responses to stress and responses to stimuli. In addition, the frequency of ASEGs in high-level functional terms was similar among the genotypes, with a few genes associated with more specific biological processes. We hypothesize that ASE in Saccharum is largely a genotype-specific phenomenon, as a large number of ASEGs were exclusive to individual accessions.
Collapse
Affiliation(s)
- Fernando Henrique Correr
- Department of Genetics, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Av Pádua Dias, 11, Piracicaba, 13418-900, Brazil.,Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Antonio Augusto Franco Garcia
- Department of Genetics, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Av Pádua Dias, 11, Piracicaba, 13418-900, Brazil
| | - Robert James Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia
| | - Gabriel Rodrigues Alves Margarido
- Department of Genetics, University of São Paulo, "Luiz de Queiroz" College of Agriculture, Av Pádua Dias, 11, Piracicaba, 13418-900, Brazil. .,Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, 4072, Australia.
| |
Collapse
|
9
|
Beier S, Fiebig A, Pommier C, Liyanage I, Lange M, Kersey PJ, Weise S, Finkers R, Koylass B, Cezard T, Courtot M, Contreras-Moreira B, Naamati G, Dyer S, Scholz U. Recommendations for the formatting of Variant Call Format (VCF) files to make plant genotyping data FAIR. F1000Res 2022; 11. [PMID: 35811804 PMCID: PMC9218589 DOI: 10.12688/f1000research.109080.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 11/20/2022] Open
Abstract
In this opinion article, we discuss the formatting of files from (plant) genotyping studies, in particular the formatting of metadata in Variant Call Format (VCF) files. The flexibility of the VCF format specification facilitates its use as a generic interchange format across domains but can lead to inconsistency between files in the presentation of metadata. To enable fully autonomous machine actionable data flow, generic elements need to be further specified. We strongly support the merits of the FAIR principles and see the need to facilitate them also through technical implementation specifications. They form a basis for the proposed VCF extensions here. We have learned from the existing application of VCF that the definition of relevant metadata using controlled standards, vocabulary and the consistent use of cross-references via resolvable identifiers (machine-readable) are particularly necessary and propose their encoding. VCF is an established standard for the exchange and publication of genotyping data. Other data formats are also used to capture variant data (for example, the HapMap and the gVCF formats), but none currently have the reach of VCF. For the sake of simplicity, we will only discuss VCF and our recommendations for its use, but these recommendations could also be applied to gVCF. However, the part of the VCF standard relating to metadata (as opposed to the actual variant calls) defines a syntactic format but no vocabulary, unique identifier or recommended content. In practice, often only sparse descriptive metadata is included. When descriptive metadata is provided, proprietary metadata fields are frequently added that have not been agreed upon within the community which may limit long-term and comprehensive interoperability. To address this, we propose recommendations for supplying and encoding metadata, focusing on use cases from plant sciences. We expect there to be overlap, but also divergence, with the needs of other domains.
Collapse
Affiliation(s)
- Sebastian Beier
- Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466, Germany
- Institute of Bio- and Geosciences, Bioinformatics (IBG-4), Forschungszentrum Jülich GmbH, Jülich, 52425, Germany
| | - Anne Fiebig
- Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466, Germany
| | - Cyril Pommier
- BioinfOmics, Plant bioinformatics facility, Université Paris-Saclay, INRAE, Versailles, France
| | - Isuru Liyanage
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Matthias Lange
- Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466, Germany
| | | | - Stephan Weise
- Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466, Germany
| | - Richard Finkers
- Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
- Gennovation B.V., Wageningen, The Netherlands
| | - Baron Koylass
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Timothee Cezard
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Mélanie Courtot
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
- Ontario Institute for Cancer Research, Toronto, Canada
| | - Bruno Contreras-Moreira
- Laboratorio de Biología Computacional y Estructural, Estación Experimental Aula Dei-CSIC, Zaragoza, 50059, Spain
| | - Guy Naamati
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Sarah Dyer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Uwe Scholz
- Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, 06466, Germany
| |
Collapse
|
10
|
Batista LG, Mello VH, Souza AP, Margarido GRA. Genomic prediction with allele dosage information in highly polyploid species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:723-739. [PMID: 34800132 DOI: 10.1007/s00122-021-03994-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Including allele, dosage can improve genomic selection in highly polyploid species under higher frequency of different heterozygous genotypic classes and high dominance degree levels. Several studies have shown how to leverage allele dosage information to improve the accuracy of genomic selection models in autotetraploid. In this study, we expanded the methodology used for genomic selection in autotetraploid to higher (and mixed) ploidy levels. We adapted the models to build covariance matrices of both additive and digenic dominance effects that are subsequently used in genomic selection models. We applied these models using estimates of ploidy and allele dosage to sugarcane and sweet potato datasets and validated our results by also applying the models in simulated data. For the simulated datasets, including allele dosage information led up to 140% higher mean predictive abilities in comparison to using diploidized markers. Including dominance effects were highly advantageous when using diploidized markers, leading to mean predictive abilities which were up to 115% higher in comparison to only including additive effects. When the frequency of heterozygous genotypes in the population was low, such as in the sugarcane and sweet potato datasets, there was little advantage in including allele dosage information in the models. Overall, we show that including allele dosage can improve genomic selection in highly polyploid species under higher frequency of different heterozygous genotypic classes and high dominance degree levels.
Collapse
Affiliation(s)
- Lorena G Batista
- Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Victor H Mello
- Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Anete P Souza
- Center of Molecular Biology and Genetic Engineering, University of Campinas, Campinas, SP, 13083-970, Brazil
| | - Gabriel R A Margarido
- Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
11
|
Strategies to Increase Prediction Accuracy in Genomic Selection of Complex Traits in Alfalfa ( Medicago sativa L.). Cells 2021; 10:cells10123372. [PMID: 34943880 PMCID: PMC8699225 DOI: 10.3390/cells10123372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/19/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022] Open
Abstract
Agronomic traits such as biomass yield and abiotic stress tolerance are genetically complex and challenging to improve through conventional breeding approaches. Genomic selection (GS) is an alternative approach in which genome-wide markers are used to determine the genomic estimated breeding value (GEBV) of individuals in a population. In alfalfa (Medicago sativa L.), previous results indicated that low to moderate prediction accuracy values (<70%) were obtained in complex traits, such as yield and abiotic stress resistance. There is a need to increase the prediction value in order to employ GS in breeding programs. In this paper we reviewed different statistic models and their applications in polyploid crops, such as alfalfa and potato. Specifically, we used empirical data affiliated with alfalfa yield under salt stress to investigate approaches that use DNA marker importance values derived from machine learning models, and genome-wide association studies (GWAS) of marker-trait association scores based on different GWASpoly models, in weighted GBLUP analyses. This approach increased prediction accuracies from 50% to more than 80% for alfalfa yield under salt stress. Finally, we expended the weighted GBLUP approach to potato and analyzed 13 phenotypic traits and obtained similar results. This is the first report on alfalfa to use variable importance and GWAS-assisted approaches to increase the prediction accuracy of GS, thus helping to select superior alfalfa lines based on their GEBVs.
Collapse
|
12
|
Martins FB, Moraes ACL, Aono AH, Ferreira RCU, Chiari L, Simeão RM, Barrios SCL, Santos MF, Jank L, do Valle CB, Vigna BBZ, de Souza AP. A Semi-Automated SNP-Based Approach for Contaminant Identification in Biparental Polyploid Populations of Tropical Forage Grasses. FRONTIERS IN PLANT SCIENCE 2021; 12:737919. [PMID: 34745171 PMCID: PMC8569613 DOI: 10.3389/fpls.2021.737919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 09/20/2021] [Indexed: 06/13/2023]
Abstract
Artificial hybridization plays a fundamental role in plant breeding programs since it generates new genotypic combinations that can result in desirable phenotypes. Depending on the species and mode of reproduction, controlled crosses may be challenging, and contaminating individuals can be introduced accidentally. In this context, the identification of such contaminants is important to avoid compromising further selection cycles, as well as genetic and genomic studies. The main objective of this work was to propose an automated multivariate methodology for the detection and classification of putative contaminants, including apomictic clones (ACs), self-fertilized individuals, half-siblings (HSs), and full contaminants (FCs), in biparental polyploid progenies of tropical forage grasses. We established a pipeline to identify contaminants in genotyping-by-sequencing (GBS) data encoded as allele dosages of single nucleotide polymorphism (SNP) markers by integrating principal component analysis (PCA), genotypic analysis (GA) measures based on Mendelian segregation, and clustering analysis (CA). The combination of these methods allowed for the correct identification of all contaminants in all simulated progenies and the detection of putative contaminants in three real progenies of tropical forage grasses, providing an easy and promising methodology for the identification of contaminants in biparental progenies of tetraploid and hexaploid species. The proposed pipeline was made available through the polyCID Shiny app and can be easily coupled with traditional genetic approaches, such as linkage map construction, thereby increasing the efficiency of breeding programs.
Collapse
Affiliation(s)
- Felipe Bitencourt Martins
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil
| | - Aline Costa Lima Moraes
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil
| | - Alexandre Hild Aono
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil
| | | | - Lucimara Chiari
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Rosangela Maria Simeão
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | | | - Liana Jank
- Embrapa Gado de Corte, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | | | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas (UNICAMP), São Paulo, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), São Paulo, Brazil
| |
Collapse
|
13
|
Bourke PM, Voorrips RE, Hackett CA, van Geest G, Willemsen JH, Arens P, Smulders MJM, Visser RGF, Maliepaard C. Detecting quantitative trait loci and exploring chromosomal pairing in autopolyploids using polyqtlR. Bioinformatics 2021; 37:3822-3829. [PMID: 34358315 PMCID: PMC8570814 DOI: 10.1093/bioinformatics/btab574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Motivation The investigation of quantitative trait loci (QTL) is an essential component in our understanding of how organisms vary phenotypically. However, many important crop species are polyploid (carrying more than two copies of each chromosome), requiring specialized tools for such analyses. Moreover, deciphering meiotic processes at higher ploidy levels is not straightforward, but is necessary to understand the reproductive dynamics of these species, or uncover potential barriers to their genetic improvement. Results Here, we present polyqtlR, a novel software tool to facilitate such analyses in (auto)polyploid crops. It performs QTL interval mapping in F1 populations of outcrossing polyploids of any ploidy level using identity-by-descent probabilities. The allelic composition of discovered QTL can be explored, enabling favourable alleles to be identified and tracked in the population. Visualization tools within the package facilitate this process, and options to include genetic co-factors and experimental factors are included. Detailed information on polyploid meiosis including prediction of multivalent pairing structures, detection of preferential chromosomal pairing and location of double reduction events can be performed. Availabilityand implementation polyqtlR is freely available from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polyqtlR. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peter M Bourke
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Christine A Hackett
- Biomathematics and Statistics Scotland, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Geert van Geest
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands.,Deliflor Chrysanten B.V, Korte Kruisweg 163, Maasdijk, 2676BS, The Netherlands
| | - Johan H Willemsen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Marinus J M Smulders
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| |
Collapse
|
14
|
Genome-wide approaches for the identification of markers and genes associated with sugarcane yellow leaf virus resistance. Sci Rep 2021; 11:15730. [PMID: 34344928 PMCID: PMC8333424 DOI: 10.1038/s41598-021-95116-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/19/2021] [Indexed: 11/10/2022] Open
Abstract
Sugarcane yellow leaf (SCYL), caused by the sugarcane yellow leaf virus (SCYLV) is a major disease affecting sugarcane, a leading sugar and energy crop. Despite damages caused by SCYLV, the genetic base of resistance to this virus remains largely unknown. Several methodologies have arisen to identify molecular markers associated with SCYLV resistance, which are crucial for marker-assisted selection and understanding response mechanisms to this virus. We investigated the genetic base of SCYLV resistance using dominant and codominant markers and genotypes of interest for sugarcane breeding. A sugarcane panel inoculated with SCYLV was analyzed for SCYL symptoms, and viral titer was estimated by RT-qPCR. This panel was genotyped with 662 dominant markers and 70,888 SNPs and indels with allele proportion information. We used polyploid-adapted genome-wide association analyses and machine-learning algorithms coupled with feature selection methods to establish marker-trait associations. While each approach identified unique marker sets associated with phenotypes, convergences were observed between them and demonstrated their complementarity. Lastly, we annotated these markers, identifying genes encoding emblematic participants in virus resistance mechanisms and previously unreported candidates involved in viral responses. Our approach could accelerate sugarcane breeding targeting SCYLV resistance and facilitate studies on biological processes leading to this trait.
Collapse
|
15
|
Oloka BM, da Silva Pereira G, Amankwaah VA, Mollinari M, Pecota KV, Yada B, Olukolu BA, Zeng ZB, Craig Yencho G. Discovery of a major QTL for root-knot nematode (Meloidogyne incognita) resistance in cultivated sweetpotato (Ipomoea batatas). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1945-1955. [PMID: 33813604 PMCID: PMC8263542 DOI: 10.1007/s00122-021-03797-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/19/2021] [Indexed: 05/27/2023]
Abstract
Utilizing a high-density integrated genetic linkage map of hexaploid sweetpotato, we discovered a major dominant QTL for root-knot nematode (RKN) resistance and modeled its effects. This discovery is useful for development of a modern sweetpotato breeding program that utilizes marker-assisted selection and genomic selection approaches for faster genetic gain of RKN resistance. The root-knot nematode [Meloidogyne incognita (Kofoid & White) Chitwood] (RKN) causes significant storage root quality reduction and yields losses in cultivated sweetpotato [Ipomoea batatas (L.) Lam.]. In this study, resistance to RKN was examined in a mapping population consisting of 244 progenies derived from a cross (TB) between 'Tanzania,' a predominant African landrace cultivar with resistance to RKN, and 'Beauregard,' an RKN susceptible major cultivar in the USA. We performed quantitative trait loci (QTL) analysis using a random-effect QTL mapping model on the TB genetic map. An RKN bioassay incorporating potted cuttings of each genotype was conducted in the greenhouse and replicated five times over a period of 10 weeks. For each replication, each genotype was inoculated with ca. 20,000 RKN eggs, and root-knot galls were counted ~62 days after inoculation. Resistance to RKN in the progeny was highly skewed toward the resistant parent, exhibiting medium to high levels of resistance. We identified one major QTL on linkage group 7, dominant in nature, which explained 58.3% of the phenotypic variation in RKN counts. This work represents a significant step forward in our understanding of the genetic architecture of RKN resistance and sets the stage for future utilization of genomics-assisted breeding in sweetpotato breeding programs.
Collapse
Affiliation(s)
- Bonny Michael Oloka
- Department of Horticultural Science, North Carolina State University, 214 Kilgore Hall, Box 7609, Raleigh, NC, 27695, USA
- National Agricultural Research Organisation (NARO), National Crops Resources Research Institute (NaCRRI), Namulonge, P.O. Box 7084, Kampala, Uganda
| | | | - Victor A Amankwaah
- Department of Horticultural Science, North Carolina State University, 214 Kilgore Hall, Box 7609, Raleigh, NC, 27695, USA
- CSIR-Crops Research Institute, Kumasi, Ghana
| | - Marcelo Mollinari
- Department of Horticultural Science, North Carolina State University, 214 Kilgore Hall, Box 7609, Raleigh, NC, 27695, USA
| | - Kenneth V Pecota
- Department of Horticultural Science, North Carolina State University, 214 Kilgore Hall, Box 7609, Raleigh, NC, 27695, USA
| | - Benard Yada
- National Agricultural Research Organisation (NARO), National Crops Resources Research Institute (NaCRRI), Namulonge, P.O. Box 7084, Kampala, Uganda
| | | | - Zhao-Bang Zeng
- Department of Horticultural Science, North Carolina State University, 214 Kilgore Hall, Box 7609, Raleigh, NC, 27695, USA
| | - G Craig Yencho
- Department of Horticultural Science, North Carolina State University, 214 Kilgore Hall, Box 7609, Raleigh, NC, 27695, USA.
| |
Collapse
|
16
|
Ferrão LFV, Amadeu RR, Benevenuto J, de Bem Oliveira I, Munoz PR. Genomic Selection in an Outcrossing Autotetraploid Fruit Crop: Lessons From Blueberry Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:676326. [PMID: 34194453 PMCID: PMC8236943 DOI: 10.3389/fpls.2021.676326] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/12/2021] [Indexed: 05/17/2023]
Abstract
Blueberry (Vaccinium corymbosum and hybrids) is a specialty crop with expanding production and consumption worldwide. The blueberry breeding program at the University of Florida (UF) has greatly contributed to expanding production areas by developing low-chilling cultivars better adapted to subtropical and Mediterranean climates of the globe. The breeding program has historically focused on recurrent phenotypic selection. As an autopolyploid, outcrossing, perennial, long juvenile phase crop, blueberry breeding cycles are costly and time consuming, which results in low genetic gains per unit of time. Motivated by applying molecular markers for a more accurate selection in the early stages of breeding, we performed pioneering genomic selection studies and optimization for its implementation in the blueberry breeding program. We have also addressed some complexities of sequence-based genotyping and model parametrization for an autopolyploid crop, providing empirical contributions that can be extended to other polyploid species. We herein revisited some of our previous genomic selection studies and showed for the first time its application in an independent validation set. In this paper, our contribution is three-fold: (i) summarize previous results on the relevance of model parametrizations, such as diploid or polyploid methods, and inclusion of dominance effects; (ii) assess the importance of sequence depth of coverage and genotype dosage calling steps; (iii) demonstrate the real impact of genomic selection on leveraging breeding decisions by using an independent validation set. Altogether, we propose a strategy for using genomic selection in blueberry, with the potential to be applied to other polyploid species of a similar background.
Collapse
Affiliation(s)
- Luís Felipe V. Ferrão
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Rodrigo R. Amadeu
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Juliana Benevenuto
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Ivone de Bem Oliveira
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
- Hortifrut North America, Inc., Estero, FL, United States
| | - Patricio R. Munoz
- Blueberry Breeding and Genomics Lab, Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
17
|
Madritsch S, Burg A, Sehr EM. Comparing de novo transcriptome assembly tools in di- and autotetraploid non-model plant species. BMC Bioinformatics 2021; 22:146. [PMID: 33752598 PMCID: PMC7986043 DOI: 10.1186/s12859-021-04078-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/15/2021] [Indexed: 01/15/2023] Open
Abstract
Background Polyploidy is very common in plants and can be seen as one of the key drivers in the domestication of crops and the establishment of important agronomic traits. It can be the main source of genomic repatterning and introduces gene duplications, affecting gene expression and alternative splicing. Since fully sequenced genomes are not yet available for many plant species including crops, de novo transcriptome assembly is the basis to understand molecular and functional mechanisms. However, in complex polyploid plants, de novo transcriptome assembly is challenging, leading to increased rates of fused or redundant transcripts. Since assemblers were developed mainly for diploid organisms, they may not well suited for polyploids. Also, comparative evaluations of these tools on higher polyploid plants are extremely rare. Thus, our aim was to fill this gap and to provide a basic guideline for choosing the optimal de novo assembly strategy focusing on autotetraploids, as the scientific interest in this type of polyploidy is steadily increasing. Results We present a comparison of two common (SOAPdenovo-Trans, Trinity) and one recently published transcriptome assembler (TransLiG) on diploid and autotetraploid species of the genera Acer and Vaccinium using Arabidopsis thaliana as a reference. The number of assembled transcripts was up to 11 and 14 times higher with an increased number of short transcripts for Acer and Vaccinium, respectively, compared to A. thaliana. In diploid samples, Trinity and TransLiG performed similarly good while in autotetraploids, TransLiG assembled most complete transcriptomes with an average of 1916 assembled BUSCOs vs. 1705 BUSCOs for Trinity. Of all three assemblers, SOAPdenovo-Trans performed worst (1133 complete BUSCOs). Conclusion All three assembly tools produced complete assemblies when dealing with the model organism A. thaliana, independently of its ploidy level, but their performances differed extremely when it comes to non-model autotetraploids, where specifically TransLiG and Trinity produced a high number of redundant transcripts. The recently published assembler TransLiG has not been tested yet on any plant organism but showed highest completeness and full-length transcriptomes, especially in autotetraploids. Including such species during the development and testing of new assembly tools is highly appreciated and recommended as many important crops are polyploid. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04078-8.
Collapse
Affiliation(s)
- Silvia Madritsch
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Tulln, Austria.,Center for Integrative Bioinformatics Vienna, Max Perutz Labs, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Agnes Burg
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Tulln, Austria
| | - Eva M Sehr
- AIT Austrian Institute of Technology, Center for Health and Bioresources, Tulln, Austria.
| |
Collapse
|
18
|
Mwanga ROM, Swanckaert J, da Silva Pereira G, Andrade MI, Makunde G, Grüneberg WJ, Kreuze J, David M, De Boeck B, Carey E, Ssali RT, Utoblo O, Gemenet D, Anyanga MO, Yada B, Chelangat DM, Oloka B, Mtunda K, Chiona M, Koussao S, Laurie S, Campos H, Yencho GC, Low JW. Breeding Progress for Vitamin A, Iron and Zinc Biofortification, Drought Tolerance, and Sweetpotato Virus Disease Resistance in Sweetpotato. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.616674] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Sweetpotato is a resilient food crop with great potential to contribute to reduced hunger in the world. Sweetpotato shows significant potential to contribute to reducing the Global Hunger Index, which reflects deficiencies in calories and micronutrients based on the components of hunger, undernourishment, under-five mortality rate, stunting and wasting. Its genetic diversity has been harnessed through breeding to increase vitamin A, iron, and zinc content, virus resistance and climate resilience for the world's food needs. Africa and India are the most food-insecure regions. The main objectives of this research were to: provide information and a knowledge base on sweetpotato breeding in Africa for biofortification of vitamin A, iron, and zinc, drought tolerance and virus resistance; recommend procedures for generating new breeding populations and varieties; and develop new tools, technologies and methods for sweetpotato improvement. The research was implemented between 2009 and 2020 in 14 collaborating African countries using introduced and local genotypes. The redesigned accelerated breeding scheme resulted in increased genetic gains for vitamin A, iron, zinc contents and virus resistance, and the release by sub-Saharan African countries of 158 varieties; 98 of them orange-fleshed; 55 varieties bred by an accelerated breeding scheme; 27 drought-tolerant and two with enhanced iron and zinc content. Our experience has demonstrated that through the use of more optimized, standardized and collaborative breeding procedures by breeding programs across Africa, it is possible to speed official sweetpotato variety release and contribute to reducing the severe micronutrient deficiencies on the continent.
Collapse
|
19
|
Quezada M, Amadeu RR, Vignale B, Cabrera D, Pritsch C, Garcia AAF. Construction of a High-Density Genetic Map of Acca sellowiana (Berg.) Burret, an Outcrossing Species, Based on Two Connected Mapping Populations. FRONTIERS IN PLANT SCIENCE 2021; 12:626811. [PMID: 33708232 PMCID: PMC7940835 DOI: 10.3389/fpls.2021.626811] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
Acca sellowiana, known as feijoa or pineapple guava, is a diploid, (2n = 2x = 22) outcrossing fruit tree species native to Uruguay and Brazil. The species stands out for its highly aromatic fruits, with nutraceutical and therapeutic value. Despite its promising agronomical value, genetic studies on this species are limited. Linkage genetic maps are valuable tools for genetic and genomic studies, and constitute essential tools in breeding programs to support the development of molecular breeding strategies. A high-density composite genetic linkage map of A. sellowiana was constructed using two genetically connected populations: H5 (TCO × BR, N = 160) and H6 (TCO × DP, N = 184). Genotyping by sequencing (GBS) approach was successfully applied for developing single nucleotide polymorphism (SNP) markers. A total of 4,921 SNP markers were identified using the reference genome of the closely related species Eucalyptus grandis, whereas other 4,656 SNPs were discovered using a de novo pipeline. The individual H5 and H6 maps comprised 1,236 and 1,302 markers distributed over the expected 11 linkage groups, respectively. These two maps spanned a map length of 1,593 and 1,572 cM, with an average inter-marker distance of 1.29 and 1.21 cM, respectively. A large proportion of markers were common to both maps and showed a high degree of collinearity. The composite map consisted of 1,897 SNPs markers with a total map length of 1,314 cM and an average inter-marker distance of 0.69. A novel approach for the construction of composite maps where the meiosis information of individuals of two connected populations is captured in a single estimator is described. A high-density, accurate composite map based on a consensus ordering of markers provides a valuable contribution for future genetic research and breeding efforts in A. sellowiana. A novel mapping approach based on an estimation of multipopulation recombination fraction described here may be applied in the construction of dense composite genetic maps for any other outcrossing diploid species.
Collapse
Affiliation(s)
- Marianella Quezada
- Laboratorio de Biotecnología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Rodrigo Rampazo Amadeu
- Laboratório de Genética Estatística, Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil
| | - Beatriz Vignale
- Mejoramiento Genético, Departamento de Producción Vegetal, Estación Experimental de la Facultad de Agronomía, Universidad de la República, Salto, Uruguay
| | - Danilo Cabrera
- Programa de Investigación en Producción Fruticola, Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental “Wilson Ferreira Aldunate”, Canelones, Uruguay
| | - Clara Pritsch
- Laboratorio de Biotecnología, Departamento de Biología Vegetal, Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | - Antonio Augusto Franco Garcia
- Laboratório de Genética Estatística, Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, Brazil
| |
Collapse
|
20
|
Calderan-Rodrigues MJ, de Barros Dantas LL, Cheavegatti Gianotto A, Caldana C. Applying Molecular Phenotyping Tools to Explore Sugarcane Carbon Potential. FRONTIERS IN PLANT SCIENCE 2021; 12:637166. [PMID: 33679852 PMCID: PMC7935522 DOI: 10.3389/fpls.2021.637166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 01/27/2021] [Indexed: 05/21/2023]
Abstract
Sugarcane (Saccharum spp.), a C4 grass, has a peculiar feature: it accumulates, gradient-wise, large amounts of carbon (C) as sucrose in its culms through a complex pathway. Apart from being a sustainable crop concerning C efficiency and bioenergetic yield per hectare, sugarcane is used as feedstock for producing ethanol, sugar, high-value compounds, and products (e.g., polymers and succinate), and bioelectricity, earning the title of the world's leading biomass crop. Commercial cultivars, hybrids bearing high levels of polyploidy, and aneuploidy, are selected from a large number of crosses among suitable parental genotypes followed by the cloning of superior individuals among the progeny. Traditionally, these classical breeding strategies have been favoring the selection of cultivars with high sucrose content and resistance to environmental stresses. A current paradigm change in sugarcane breeding programs aims to alter the balance of C partitioning as a means to provide more plasticity in the sustainable use of this biomass for metabolic engineering and green chemistry. The recently available sugarcane genetic assemblies powered by data science provide exciting perspectives to increase biomass, as the current sugarcane yield is roughly 20% of its predicted potential. Nowadays, several molecular phenotyping tools can be applied to meet the predicted sugarcane C potential, mainly targeting two competing pathways: sucrose production/storage and biomass accumulation. Here we discuss how molecular phenotyping can be a powerful tool to assist breeding programs and which strategies could be adopted depending on the desired final products. We also tackle the advances in genetic markers and mapping as well as how functional genomics and genetic transformation might be able to improve yield and saccharification rates. Finally, we review how "omics" advances are promising to speed up plant breeding and reach the unexplored potential of sugarcane in terms of sucrose and biomass production.
Collapse
Affiliation(s)
| | | | | | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
- *Correspondence: Camila Caldana,
| |
Collapse
|
21
|
Aono AH, Costa EA, Rody HVS, Nagai JS, Pimenta RJG, Mancini MC, Dos Santos FRC, Pinto LR, Landell MGDA, de Souza AP, Kuroshu RM. Machine learning approaches reveal genomic regions associated with sugarcane brown rust resistance. Sci Rep 2020; 10:20057. [PMID: 33208862 PMCID: PMC7676261 DOI: 10.1038/s41598-020-77063-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/24/2020] [Indexed: 12/18/2022] Open
Abstract
Sugarcane is an economically important crop, but its genomic complexity has hindered advances in molecular approaches for genetic breeding. New cultivars are released based on the identification of interesting traits, and for sugarcane, brown rust resistance is a desirable characteristic due to the large economic impact of the disease. Although marker-assisted selection for rust resistance has been successful, the genes involved are still unknown, and the associated regions vary among cultivars, thus restricting methodological generalization. We used genotyping by sequencing of full-sib progeny to relate genomic regions with brown rust phenotypes. We established a pipeline to identify reliable SNPs in complex polyploid data, which were used for phenotypic prediction via machine learning. We identified 14,540 SNPs, which led to a mean prediction accuracy of 50% when using different models. We also tested feature selection algorithms to increase predictive accuracy, resulting in a reduced dataset with more explanatory power for rust phenotypes. As a result of this approach, we achieved an accuracy of up to 95% with a dataset of 131 SNPs related to brown rust QTL regions and auxiliary genes. Therefore, our novel strategy has the potential to assist studies of the genomic organization of brown rust resistance in sugarcane.
Collapse
Affiliation(s)
- Alexandre Hild Aono
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Estela Araujo Costa
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Hugo Vianna Silva Rody
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - James Shiniti Nagai
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil
| | - Ricardo José Gonzaga Pimenta
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Melina Cristina Mancini
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Luciana Rossini Pinto
- Advanced Center of Sugarcane Agrobusiness Technological Research, Agronomic Institute of Campinas (IAC), Ribeirão Preto, SP, Brazil
| | | | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Department of Plant Biology, Institute of Biology (IB), University of Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Reginaldo Massanobu Kuroshu
- Instituto de Ciência e Tecnologia (ICT), Universidade Federal de São Paulo (UNIFESP), São José dos Campos, SP, Brazil.
| |
Collapse
|
22
|
Medina CA, Hawkins C, Liu XP, Peel M, Yu LX. Genome-Wide Association and Prediction of Traits Related to Salt Tolerance in Autotetraploid Alfalfa ( Medicago sativa L.). Int J Mol Sci 2020; 21:ijms21093361. [PMID: 32397526 PMCID: PMC7247575 DOI: 10.3390/ijms21093361%20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 05/28/2023] Open
Abstract
Soil salinity is a growing problem in world production agriculture. Continued improvement in crop salt tolerance will require the implementation of innovative breeding strategies such as marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping SNPs markers against the Medicago truncatula reference genome revealed several putative candidate genes based on their roles in response to salt stress. Additionally, eight GS models were used to estimate breeding values of the training population under salt stress. Highest prediction accuracies and root mean square errors were used to determine the best prediction model. The machine learning methods (support vector machine and random forest) performance best with the prediction accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance. DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive modern-day alfalfa cultivars.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| | - Charles Hawkins
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Xiang-Ping Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, Heilongjiang, China
| | - Michael Peel
- United States Department of Agriculture-Agricultural Research Service, Forage and Range Research Lab, Logan, UT 84322, USA;
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| |
Collapse
|
23
|
Medina CA, Hawkins C, Liu XP, Peel M, Yu LX. Genome-Wide Association and Prediction of Traits Related to Salt Tolerance in Autotetraploid Alfalfa ( Medicago sativa L.). Int J Mol Sci 2020; 21:E3361. [PMID: 32397526 PMCID: PMC7247575 DOI: 10.3390/ijms21093361] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Soil salinity is a growing problem in world production agriculture. Continued improvement in crop salt tolerance will require the implementation of innovative breeding strategies such as marker-assisted selection (MAS) and genomic selection (GS). Genetic analyses for yield and vigor traits under salt stress in alfalfa breeding populations with three different phenotypic datasets was assessed. Genotype-by-sequencing (GBS) developed markers with allele dosage and phenotypic data were analyzed by genome-wide association studies (GWAS) and GS using different models. GWAS identified 27 single nucleotide polymorphism (SNP) markers associated with salt tolerance. Mapping SNPs markers against the Medicago truncatula reference genome revealed several putative candidate genes based on their roles in response to salt stress. Additionally, eight GS models were used to estimate breeding values of the training population under salt stress. Highest prediction accuracies and root mean square errors were used to determine the best prediction model. The machine learning methods (support vector machine and random forest) performance best with the prediction accuracy of 0.793 for yield. The marker loci and candidate genes identified, along with optimized GS prediction models, were shown to be useful in improvement of alfalfa with enhanced salt tolerance. DNA markers and the outcome of the GS will be made available to the alfalfa breeding community in efforts to accelerate genetic gains, in the development of biotic stress tolerant and more productive modern-day alfalfa cultivars.
Collapse
Affiliation(s)
- Cesar Augusto Medina
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| | - Charles Hawkins
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Xiang-Ping Liu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
- Current address: College of Animal Science & Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163316, Heilongjiang, China
| | - Michael Peel
- United States Department of Agriculture-Agricultural Research Service, Forage and Range Research Lab, Logan, UT 84322, USA;
| | - Long-Xi Yu
- United States Department of Agriculture-Agricultural Research Service, Plant Germplasm Introduction and Testing Research, Prosser, WA 99350, USA; (C.A.M.); (C.H.); (X.-P.L.)
| |
Collapse
|
24
|
Multiple QTL Mapping in Autopolyploids: A Random-Effect Model Approach with Application in a Hexaploid Sweetpotato Full-Sib Population. Genetics 2020; 215:579-595. [PMID: 32371382 PMCID: PMC7337090 DOI: 10.1534/genetics.120.303080] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 04/26/2020] [Indexed: 11/18/2022] Open
Abstract
In developing countries, the sweetpotato, Ipomoea batatas (L.) Lam. [Formula: see text], is an important autopolyploid species, both socially and economically. However, quantitative trait loci (QTL) mapping has remained limited due to its genetic complexity. Current fixed-effect models can fit only a single QTL and are generally hard to interpret. Here, we report the use of a random-effect model approach to map multiple QTL based on score statistics in a sweetpotato biparental population ('Beauregard' × 'Tanzania') with 315 full-sibs. Phenotypic data were collected for eight yield component traits in six environments in Peru, and jointly adjusted means were obtained using mixed-effect models. An integrated linkage map consisting of 30,684 markers distributed along 15 linkage groups (LGs) was used to obtain the genotype conditional probabilities of putative QTL at every centiMorgan position. Multiple interval mapping was performed using our R package QTLpoly and detected a total of 13 QTL, ranging from none to four QTL per trait, which explained up to 55% of the total variance. Some regions, such as those on LGs 3 and 15, were consistently detected among root number and yield traits, and provided a basis for candidate gene search. In addition, some QTL were found to affect commercial and noncommercial root traits distinctly. Further best linear unbiased predictions were decomposed into additive allele effects and were used to compute multiple QTL-based breeding values for selection. Together with quantitative genotyping and its appropriate usage in linkage analyses, this QTL mapping methodology will facilitate the use of genomic tools in sweetpotato breeding as well as in other autopolyploids.
Collapse
|
25
|
Grashei KE, Ødegård J, Meuwissen THE. Genotype calling of triploid offspring from diploid parents. Genet Sel Evol 2020; 52:15. [PMID: 32188420 PMCID: PMC7081531 DOI: 10.1186/s12711-020-00534-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/11/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Polyploidy is widespread in animals and especially in plants. Different kinds of ploidies exist, for example, hexaploidy in wheat, octaploidy in strawberries, and diploidy, triploidy, tetraploidy, and pseudo-tetraploidy (partly tetraploid) in fish. Triploid offspring from diploid parents occur frequently in the wild in Atlantic salmon (Salmo salar) and, as with triploidy in general, the triploid individuals are sterile. Induced triploidy in Atlantic salmon is common practice to produce sterile fish. In Norwegian aquaculture, production of sterile triploid fish is an attempt by government and industry to limit genetic introgression between wild and farmed fish. However, triploid fish may have traits and properties that differ from those of diploids. Investigating the genetics behind traits in triploids has proved challenging because genotype calling of genetic markers in triploids is not supported by standard software. Our aim was to develop a method that can be used for genotype calling of genetic markers in triploid individuals. RESULTS Allele signals were produced for 381 triploid Atlantic salmon offspring using a 56 K Thermo Fisher GeneTitan genotyping platform. Genotypes were successfully called by applying finite normal mixture models to the (transformed) allele signals. Subsets of markers were filtered by quality control statistics for use with downstream analyses. The quality of the called genotypes was sufficient to allow for assignment of diploid parents to the triploid offspring and to discriminate between maternal and paternal parents from autosomal inheritance patterns. In addition, as the maternal inheritance in triploid offspring is identical to gynogenetic inheritance, the maternal recombination pattern for each chromosome could be mapped by using a similar approach as that used in gene-centromere mapping. CONCLUSIONS We show that calling of dense marker genotypes for triploid individuals is feasible. The resulting genotypes can be used in parentage assignment of triploid offspring to diploid parents, to discriminate between maternal and paternal parents using autosomal inheritance patterns, and to map the maternal recombination pattern using an approach similar to gene-centromere mapping. Genotyping of triploid individuals is important both for selective breeding programs and unravelling the underlying genetics of phenotypes recorded in triploids. In principle, the developed method can be used for genotype calling of other polyploid organisms.
Collapse
Affiliation(s)
- Kim Erik Grashei
- AquaGen AS, P.O. Box 1240, 7462, Trondheim, Norway. .,Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway.
| | - Jørgen Ødegård
- AquaGen AS, P.O. Box 1240, 7462, Trondheim, Norway.,Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| | - Theo H E Meuwissen
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Ås, Norway
| |
Collapse
|
26
|
Deo TG, Ferreira RCU, Lara LAC, Moraes ACL, Alves-Pereira A, de Oliveira FA, Garcia AAF, Santos MF, Jank L, de Souza AP. High-Resolution Linkage Map With Allele Dosage Allows the Identification of Regions Governing Complex Traits and Apospory in Guinea Grass ( Megathyrsus maximus). FRONTIERS IN PLANT SCIENCE 2020; 11:15. [PMID: 32161603 PMCID: PMC7054243 DOI: 10.3389/fpls.2020.00015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 05/11/2023]
Abstract
Forage grasses are mainly used in animal feed to fatten cattle and dairy herds, and guinea grass (Megathyrsus maximus) is considered one of the most productive of the tropical forage crops that reproduce by seeds. Due to the recent process of domestication, this species has several genomic complexities, such as autotetraploidy and aposporous apomixis. Consequently, approaches that relate phenotypic and genotypic data are incipient. In this context, we built a linkage map with allele dosage and generated novel information of the genetic architecture of traits that are important for the breeding of M. maximus. From a full-sib progeny, a linkage map containing 858 single nucleotide polymorphism (SNP) markers with allele dosage information expected for an autotetraploid was obtained. The high genetic variability of the progeny allowed us to map 10 quantitative trait loci (QTLs) related to agronomic traits, such as regrowth capacity and total dry matter, and 36 QTLs related to nutritional quality, which were distributed among all homology groups (HGs). Various overlapping regions associated with the quantitative traits suggested QTL hotspots. In addition, we were able to map one locus that controls apospory (apo-locus) in HG II. A total of 55 different gene families involved in cellular metabolism and plant growth were identified from markers adjacent to the QTLs and APOSPORY locus using the Panicum virgatum genome as a reference in comparisons with the genomes of Arabidopsis thaliana and Oryza sativa. Our results provide a better understanding of the genetic basis of reproduction by apomixis and traits important for breeding programs that considerably influence animal productivity as well as the quality of meat and milk.
Collapse
Affiliation(s)
- Thamiris G. Deo
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Rebecca C. U. Ferreira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Letícia A. C. Lara
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Aline C. L. Moraes
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| | | | - Fernanda A. de Oliveira
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
| | - Antonio A. F. Garcia
- Genetics Department, Escola Superior de Agricultura “Luiz de Queiroz,” University of São Paulo, Piracicaba, Brazil
| | - Mateus F. Santos
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Liana Jank
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | - Anete P. de Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
| |
Collapse
|
27
|
Gemenet DC, da Silva Pereira G, De Boeck B, Wood JC, Mollinari M, Olukolu BA, Diaz F, Mosquera V, Ssali RT, David M, Kitavi MN, Burgos G, Felde TZ, Ghislain M, Carey E, Swanckaert J, Coin LJM, Fei Z, Hamilton JP, Yada B, Yencho GC, Zeng ZB, Mwanga ROM, Khan A, Gruneberg WJ, Buell CR. Quantitative trait loci and differential gene expression analyses reveal the genetic basis for negatively associated β-carotene and starch content in hexaploid sweetpotato [Ipomoea batatas (L.) Lam.]. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:23-36. [PMID: 31595335 PMCID: PMC6952332 DOI: 10.1007/s00122-019-03437-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 09/17/2019] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE β-Carotene content in sweetpotato is associated with the Orange and phytoene synthase genes; due to physical linkage of phytoene synthase with sucrose synthase, β-carotene and starch content are negatively correlated. In populations depending on sweetpotato for food security, starch is an important source of calories, while β-carotene is an important source of provitamin A. The negative association between the two traits contributes to the low nutritional quality of sweetpotato consumed, especially in sub-Saharan Africa. Using a biparental mapping population of 315 F1 progeny generated from a cross between an orange-fleshed and a non-orange-fleshed sweetpotato variety, we identified two major quantitative trait loci (QTL) on linkage group (LG) three (LG3) and twelve (LG12) affecting starch, β-carotene, and their correlated traits, dry matter and flesh color. Analysis of parental haplotypes indicated that these two regions acted pleiotropically to reduce starch content and increase β-carotene in genotypes carrying the orange-fleshed parental haplotype at the LG3 locus. Phytoene synthase and sucrose synthase, the rate-limiting and linked genes located within the QTL on LG3 involved in the carotenoid and starch biosynthesis, respectively, were differentially expressed in Beauregard versus Tanzania storage roots. The Orange gene, the molecular switch for chromoplast biogenesis, located within the QTL on LG12 while not differentially expressed was expressed in developing roots of the parental genotypes. We conclude that these two QTL regions act together in a cis and trans manner to inhibit starch biosynthesis in amyloplasts and enhance chromoplast biogenesis, carotenoid biosynthesis, and accumulation in orange-fleshed sweetpotato. Understanding the genetic basis of this negative association between starch and β-carotene will inform future sweetpotato breeding strategies targeting sweetpotato for food and nutritional security.
Collapse
Affiliation(s)
- Dorcus C Gemenet
- International Potato Center, ILRI Campus, Old Naivasha Road, P.O. Box 25171-00603, Nairobi, Kenya.
| | | | - Bert De Boeck
- International Potato Center, Av. La Molina 1895, Lima, Peru
| | - Joshua C Wood
- Michigan State University, East Lansing, MI, 48824, USA
| | | | - Bode A Olukolu
- North Carolina State University, Raleigh, NC, 27695, USA
- University of Tennessee, Knoxville, TN, 37996, USA
| | - Federico Diaz
- International Potato Center, Av. La Molina 1895, Lima, Peru
| | | | | | - Maria David
- International Potato Center, Av. La Molina 1895, Lima, Peru
| | - Mercy N Kitavi
- International Potato Center, ILRI Campus, Old Naivasha Road, P.O. Box 25171-00603, Nairobi, Kenya
| | | | | | - Marc Ghislain
- International Potato Center, ILRI Campus, Old Naivasha Road, P.O. Box 25171-00603, Nairobi, Kenya
| | | | | | - Lachlan J M Coin
- University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY, 14853, USA
| | | | - Benard Yada
- National Crops Resources Research Institute (NaCCRI), Namulonge, P.O. Box 7084, Kampala, Uganda
| | - G Craig Yencho
- North Carolina State University, Raleigh, NC, 27695, USA
| | - Zhao-Bang Zeng
- North Carolina State University, Raleigh, NC, 27695, USA
| | | | - Awais Khan
- International Potato Center, Av. La Molina 1895, Lima, Peru
- Plant Pathology and Plant-Microbe Biology Section, Cornell University, Geneva, NY, 14456, USA
| | | | - C Robin Buell
- Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
28
|
You Q, Yang X, Peng Z, Islam MS, Sood S, Luo Z, Comstock J, Xu L, Wang J. Development of an Axiom Sugarcane100K SNP array for genetic map construction and QTL identification. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2829-2845. [PMID: 31321474 DOI: 10.1007/s00122-019-03391-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/05/2019] [Indexed: 05/13/2023]
Abstract
An Axiom Sugarcane100K SNP array has been designed and successfully utilized to construct the sugarcane genetic map and to identify the QTLs associated with SCYLV resistance. To accelerate genetic studies in sugarcane, an Axiom Sugarcane100K single-nucleotide polymorphism (SNP) array was designed and customized in this study. Target enrichment sequencing 300 sugarcane accessions selected from the world collection of sugarcane and related grass species yielded more than four million SNPs, from which a total of 31,449 single-dose (SD) SNPs and 68,648 low-dosage (33,277 SD and 35,371 double dose) SNPs from two datasets, respectively, were selected and tiled on Affymetrix Axiom SNP array. Most of selected SNPs (91.77%) were located within genic regions (12,935 genes), with an average of 7.1 SNPs/gene according to sorghum gene models. This array was used to genotype 469 sugarcane clones, including one F1 population derived from the cross between Green German and IND81-146, one selfing population derived from CP80-1827, and 11 diverse sugarcane accessions as controls. Results of genotyping revealed a high polymorphic SNP rate (77.04%) among the 469 samples. Three linkage maps were constructed by using SD SNP markers, including a genetic map for Green German with 3482 SD SNP markers spanning 3336 cM, a map for IND81-146 with 1513 SD SNP markers spanning 2615 cM, and a map for CP80-1827 with 536 SD SNP markers spanning 3651 cM. Quantitative trait loci (QTL) analysis identified 18 QTLs controlling Sugarcane yellow leaf virus resistance segregating in the two mapping populations, harboring 27 disease-resistant genes. This study demonstrated the successful development and utilization of a SNP array as an efficient genetic tool for high-throughput genotyping in highly polyploid sugarcane.
Collapse
Affiliation(s)
- Qian You
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Xiping Yang
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Ze Peng
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | | | - Sushma Sood
- USDA-ARS, Sugarcane Field Station, Canal Point, FL, 33438, USA
| | - Ziliang Luo
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA
| | - Jack Comstock
- USDA-ARS, Sugarcane Field Station, Canal Point, FL, 33438, USA
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
| | - Jianping Wang
- Agronomy Department, University of Florida, Gainesville, FL, 32610, USA.
- Plant Molecular and Cellular Biology Program, Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.
- Center for Genomics and Biotechnology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
29
|
de C Lara LA, Santos MF, Jank L, Chiari L, Vilela MDM, Amadeu RR, Dos Santos JPR, Pereira GDS, Zeng ZB, Garcia AAF. Genomic Selection with Allele Dosage in Panicum maximum Jacq. G3 (BETHESDA, MD.) 2019; 9:2463-2475. [PMID: 31171567 PMCID: PMC6686918 DOI: 10.1534/g3.118.200986] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/23/2019] [Indexed: 12/21/2022]
Abstract
Genomic selection is an efficient approach to get shorter breeding cycles in recurrent selection programs and greater genetic gains with selection of superior individuals. Despite advances in genotyping techniques, genetic studies for polyploid species have been limited to a rough approximation of studies in diploid species. The major challenge is to distinguish the different types of heterozygotes present in polyploid populations. In this work, we evaluated different genomic prediction models applied to a recurrent selection population of 530 genotypes of Panicum maximum, an autotetraploid forage grass. We also investigated the effect of the allele dosage in the prediction, i.e., considering tetraploid (GS-TD) or diploid (GS-DD) allele dosage. A longitudinal linear mixed model was fitted for each one of the six phenotypic traits, considering different covariance matrices for genetic and residual effects. A total of 41,424 genotyping-by-sequencing markers were obtained using 96-plex and Pst1 restriction enzyme, and quantitative genotype calling was performed. Six predictive models were generalized to tetraploid species and predictive ability was estimated by a replicated fivefold cross-validation process. GS-TD and GS-DD models were performed considering 1,223 informative markers. Overall, GS-TD data yielded higher predictive abilities than with GS-DD data. However, different predictive models had similar predictive ability performance. In this work, we provide bioinformatic and modeling guidelines to consider tetraploid dosage and observed that genomic selection may lead to additional gains in recurrent selection program of P. maximum.
Collapse
Affiliation(s)
- Letícia A de C Lara
- Luiz de Queiroz College of Agriculture / University of São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| | | | - Liana Jank
- Embrapa Beef Cattle, Campo Grande, MS, Brazil, and
| | | | | | - Rodrigo R Amadeu
- Luiz de Queiroz College of Agriculture / University of São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| | - Jhonathan P R Dos Santos
- Luiz de Queiroz College of Agriculture / University of São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| | | | | | - Antonio Augusto F Garcia
- Luiz de Queiroz College of Agriculture / University of São Paulo (ESALQ/USP), Piracicaba, SP, Brazil
| |
Collapse
|
30
|
A genome-wide association study identified loci for yield component traits in sugarcane (Saccharum spp.). PLoS One 2019; 14:e0219843. [PMID: 31318931 PMCID: PMC6638961 DOI: 10.1371/journal.pone.0219843] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 07/02/2019] [Indexed: 12/14/2022] Open
Abstract
Sugarcane (Saccharum spp.) has a complex genome with variable ploidy and frequent aneuploidy, which hampers the understanding of phenotype and genotype relations. Despite this complexity, genome-wide association studies (GWAS) may be used to identify favorable alleles for target traits in core collections and then assist breeders in better managing crosses and selecting superior genotypes in breeding populations. Therefore, in the present study, we used a diversity panel of sugarcane, called the Brazilian Panel of Sugarcane Genotypes (BPSG), with the following objectives: (i) estimate, through a mixed model, the adjusted means and genetic parameters of the five yield traits evaluated over two harvest years; (ii) detect population structure, linkage disequilibrium (LD) and genetic diversity using simple sequence repeat (SSR) markers; (iii) perform GWAS analysis to identify marker-trait associations (MTAs); and iv) annotate the sequences giving rise to SSR markers that had fragments associated with target traits to search for putative candidate genes. The phenotypic data analysis showed that the broad-sense heritability values were above 0.48 and 0.49 for the first and second harvests, respectively. The set of 100 SSR markers produced 1,483 fragments, of which 99.5% were polymorphic. These SSR fragments were useful to estimate the most likely number of subpopulations, found to be four, and the LD in BPSG, which was stronger in the first 15 cM and present to a large extension (65 cM). Genetic diversity analysis showed that, in general, the clustering of accessions within the subpopulations was in accordance with the pedigree information. GWAS performed through a multilocus mixed model revealed 23 MTAs, six, three, seven, four and three for soluble solid content, stalk height, stalk number, stalk weight and cane yield traits, respectively. These MTAs may be validated in other populations to support sugarcane breeding programs with introgression of favorable alleles and marker-assisted selection.
Collapse
|
31
|
Ferreira RCU, Lara LADC, Chiari L, Barrios SCL, do Valle CB, Valério JR, Torres FZV, Garcia AAF, de Souza AP. Genetic Mapping With Allele Dosage Information in Tetraploid Urochloa decumbens (Stapf) R. D. Webster Reveals Insights Into Spittlebug ( Notozulia entreriana Berg) Resistance. FRONTIERS IN PLANT SCIENCE 2019; 10:92. [PMID: 30873183 PMCID: PMC6401981 DOI: 10.3389/fpls.2019.00092] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/21/2019] [Indexed: 05/08/2023]
Abstract
Urochloa decumbens (Stapf) R. D. Webster is one of the most important African forage grasses in Brazilian beef production. Currently available genetic-genomic resources for this species are restricted mainly due to polyploidy and apomixis. Therefore, crucial genomic-molecular studies such as the construction of genetic maps and the mapping of quantitative trait loci (QTLs) are very challenging and consequently affect the advancement of molecular breeding. The objectives of this work were to (i) construct an integrated U. decumbens genetic map for a full-sibling progeny using GBS-based markers with allele dosage information, (ii) detect QTLs for spittlebug (Notozulia entreriana) resistance, and (iii) seek putative candidate genes involved in defense against biotic stresses. We used the Setaria viridis genome a reference to align GBS reads and selected 4,240 high-quality SNP markers with allele dosage information. Of these markers, 1,000 were distributed throughout nine homologous groups with a cumulative map length of 1,335.09 cM and an average marker density of 1.33 cM. We detected QTLs for resistance to spittlebug, an important pasture insect pest, that explained between 4.66 and 6.24% of the phenotypic variation. These QTLs are in regions containing putative candidate genes related to defense against biotic stresses. Because this is the first genetic map with SNP autotetraploid dosage data and QTL detection in U. decumbens, it will be useful for future evolutionary studies, genome assembly, and other QTL analyses in Urochloa spp. Moreover, the results might facilitate the isolation of spittlebug-related candidate genes and help clarify the mechanism of spittlebug resistance. These approaches will improve selection efficiency and accuracy in U. decumbens molecular breeding and shorten the breeding cycle.
Collapse
Affiliation(s)
| | | | - Lucimara Chiari
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | | | - José Raul Valério
- Embrapa Beef Cattle, Brazilian Agricultural Research Corporation, Campo Grande, Brazil
| | | | | | - Anete Pereira de Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas, Campinas, Brazil
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, Brazil
- *Correspondence: Anete Pereira de Souza,
| |
Collapse
|