1
|
Kellman BP, Richelle A, Yang JY, Chapla D, Chiang AWT, Najera JA, Liang C, Fürst A, Bao B, Koga N, Mohammad MA, Bruntse AB, Haymond MW, Moremen KW, Bode L, Lewis NE. Elucidating Human Milk Oligosaccharide biosynthetic genes through network-based multi-omics integration. Nat Commun 2022; 13:2455. [PMID: 35508452 PMCID: PMC9068700 DOI: 10.1038/s41467-022-29867-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 04/04/2022] [Indexed: 12/18/2022] Open
Abstract
Human Milk Oligosaccharides (HMOs) are abundant carbohydrates fundamental to infant health and development. Although these oligosaccharides were discovered more than half a century ago, their biosynthesis in the mammary gland remains largely uncharacterized. Here, we use a systems biology framework that integrates glycan and RNA expression data to construct an HMO biosynthetic network and predict glycosyltransferases involved. To accomplish this, we construct models describing the most likely pathways for the synthesis of the oligosaccharides accounting for >95% of the HMO content in human milk. Through our models, we propose candidate genes for elongation, branching, fucosylation, and sialylation of HMOs. Our model aggregation approach recovers 2 of 2 previously known gene-enzyme relations and 2 of 3 empirically confirmed gene-enzyme relations. The top genes we propose for the remaining 5 linkage reactions are consistent with previously published literature. These results provide the molecular basis of HMO biosynthesis necessary to guide progress in HMO research and application with the goal of understanding and improving infant health and development.
Collapse
Affiliation(s)
- Benjamin P Kellman
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Anne Richelle
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Austin W T Chiang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Julia A Najera
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Chenguang Liang
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Annalee Fürst
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Bokan Bao
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Natalia Koga
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Mahmoud A Mohammad
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Anders Bech Bruntse
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Morey W Haymond
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Lars Bode
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence (MOMI CORE), University of California, San Diego, La Jolla, CA, 92093, USA
| | - Nathan E Lewis
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Süntar I, Çetinkaya S, Haydaroğlu ÜS, Habtemariam S. Bioproduction process of natural products and biopharmaceuticals: Biotechnological aspects. Biotechnol Adv 2021; 50:107768. [PMID: 33974980 DOI: 10.1016/j.biotechadv.2021.107768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/30/2021] [Accepted: 05/05/2021] [Indexed: 02/07/2023]
Abstract
Decades of research have been put in place for developing sustainable routes of bioproduction of high commercial value natural products (NPs) on the global market. In the last few years alone, we have witnessed significant advances in the biotechnological production of NPs. The development of new methodologies has resulted in a better understanding of the metabolic flux within the organisms, which have driven manipulations to improve production of the target product. This was further realised due to the recent advances in the omics technologies such as genomics, transcriptomics, proteomics, metabolomics and secretomics, as well as systems and synthetic biology. Additionally, the combined application of novel engineering strategies has made possible avenues for enhancing the yield of these products in an efficient and economical way. Invention of high-throughput technologies such as next generation sequencing (NGS) and toolkits for genome editing Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated 9 (CRISPR/Cas9) have been the game changers and provided unprecedented opportunities to generate rationally designed synthetic circuits which can produce complex molecules. This review covers recent advances in the engineering of various hosts for the production of bioactive NPs and biopharmaceuticals. It also highlights general approaches and strategies to improve their biosynthesis with higher yields in a perspective of plants and microbes (bacteria, yeast and filamentous fungi). Although there are numerous reviews covering this topic on a selected species at a time, our approach herein is to give a comprehensive understanding about state-of-art technologies in different platforms of organisms.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, 06330 Etiler, Ankara, Turkey.
| | - Sümeyra Çetinkaya
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Ülkü Selcen Haydaroğlu
- Biotechnology Research Center of Ministry of Agriculture and Forestry, 06330 Yenimahalle, Ankara, Turkey
| | - Solomon Habtemariam
- Pharmacognosy Research Laboratories & Herbal Analysis Services UK, University of Greenwich, Chatham-Maritime, Kent ME4 4TB, United Kingdom
| |
Collapse
|