1
|
Chen W, Liao M, Bao S, An S, Li W, Liu X, Huang G, Gong H, Luo Q, Xiao C, Li A. A hierarchically annotated dataset drives tangled filament recognition in digital neuron reconstruction. PATTERNS (NEW YORK, N.Y.) 2024; 5:101007. [PMID: 39233689 PMCID: PMC11368685 DOI: 10.1016/j.patter.2024.101007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 05/23/2024] [Indexed: 09/06/2024]
Abstract
Reconstructing neuronal morphology is vital for classifying neurons and mapping brain connectivity. However, it remains a significant challenge due to its complex structure, dense distribution, and low image contrast. In particular, AI-assisted methods often yield numerous errors that require extensive manual intervention. Therefore, reconstructing hundreds of neurons is already a daunting task for general research projects. A key issue is the lack of specialized training for challenging regions due to inadequate data and training methods. This study extracted 2,800 challenging neuronal blocks and categorized them into multiple density levels. Furthermore, we enhanced images using an axial continuity-based network that improved three-dimensional voxel resolution while reducing the difficulty of neuron recognition. Comparing the pre- and post-enhancement results in automatic algorithms using fluorescence micro-optical sectioning tomography (fMOST) data, we observed a significant increase in the recall rate. Our study not only enhances the throughput of reconstruction but also provides a fundamental dataset for tangled neuron reconstruction.
Collapse
Affiliation(s)
- Wu Chen
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingwei Liao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shengda Bao
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sile An
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenwei Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Liu
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ganghua Huang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Hui Gong
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
| | - Qingming Luo
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Chi Xiao
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| | - Anan Li
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, MoE Key Laboratory for Biomedical Photonics, Huazhong University of Science and Technology, Wuhan 430074, China
- HUST-Suzhou Institute for Brainsmatics, JITRI, Suzhou 215123, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
2
|
Jiang J, Goebel M, Borba C, Smith W, Manjunath BS. A robust approach to 3D neuron shape representation for quantification and classification. BMC Bioinformatics 2023; 24:366. [PMID: 37770830 PMCID: PMC10537603 DOI: 10.1186/s12859-023-05482-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/13/2023] [Indexed: 09/30/2023] Open
Abstract
We consider the problem of finding an accurate representation of neuron shapes, extracting sub-cellular features, and classifying neurons based on neuron shapes. In neuroscience research, the skeleton representation is often used as a compact and abstract representation of neuron shapes. However, existing methods are limited to getting and analyzing "curve" skeletons which can only be applied for tubular shapes. This paper presents a 3D neuron morphology analysis method for more general and complex neuron shapes. First, we introduce the concept of skeleton mesh to represent general neuron shapes and propose a novel method for computing mesh representations from 3D surface point clouds. A skeleton graph is then obtained from skeleton mesh and is used to extract sub-cellular features. Finally, an unsupervised learning method is used to embed the skeleton graph for neuron classification. Extensive experiment results are provided and demonstrate the robustness of our method to analyze neuron morphology.
Collapse
Affiliation(s)
- Jiaxiang Jiang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, USA.
| | - Michael Goebel
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, USA
| | - Cezar Borba
- The Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, USA
| | - William Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, USA
| | - B S Manjunath
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, USA.
| |
Collapse
|
3
|
Ding L, Zhao X, Guo S, Liu Y, Liu L, Wang Y, Peng H. SNAP: a structure-based neuron morphology reconstruction automatic pruning pipeline. Front Neuroinform 2023; 17:1174049. [PMID: 37388757 PMCID: PMC10303825 DOI: 10.3389/fninf.2023.1174049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/22/2023] [Indexed: 07/01/2023] Open
Abstract
Background Neuron morphology analysis is an essential component of neuron cell-type definition. Morphology reconstruction represents a bottleneck in high-throughput morphology analysis workflow, and erroneous extra reconstruction owing to noise and entanglements in dense neuron regions restricts the usability of automated reconstruction results. We propose SNAP, a structure-based neuron morphology reconstruction pruning pipeline, to improve the usability of results by reducing erroneous extra reconstruction and splitting entangled neurons. Methods For the four different types of erroneous extra segments in reconstruction (caused by noise in the background, entanglement with dendrites of close-by neurons, entanglement with axons of other neurons, and entanglement within the same neuron), SNAP incorporates specific statistical structure information into rules for erroneous extra segment detection and achieves pruning and multiple dendrite splitting. Results Experimental results show that this pipeline accomplishes pruning with satisfactory precision and recall. It also demonstrates good multiple neuron-splitting performance. As an effective tool for post-processing reconstruction, SNAP can facilitate neuron morphology analysis.
Collapse
Affiliation(s)
- Liya Ding
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Xuan Zhao
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Shuxia Guo
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Yufeng Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Lijuan Liu
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| | - Yimin Wang
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, China
| | - Hanchuan Peng
- Institute for Brain and Intelligence, Southeast University, Nanjing, China
| |
Collapse
|
4
|
Jiang J, Goebel M, Borba C, Smith W, Manjunath B. 3D Neuron Morphology Analysis. RESEARCH SQUARE 2023:rs.3.rs-2698751. [PMID: 37215037 PMCID: PMC10197748 DOI: 10.21203/rs.3.rs-2698751/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We consider the problem of finding an accurate representation of neuron shapes, extracting sub-cellular features, and classifying neurons based on neuron shapes. In neuroscience research, the skeleton representation is often used as a compact and abstract representation of neuron shapes. However, existing methods are limited to getting and analyzing"curve"skeletons which can only be applied for tubular shapes. This paper presents a 3D neuron morphology analysis method for more general and complex neuron shapes. First, we introduce the concept of skeleton mesh to represent general neuron shapes and propose a novel method for computing mesh representations from 3D surface point clouds. A skeleton graph is then obtained from skeleton mesh and is used to extract sub-cellular features. Finally, an unsupervised learning method is used to embed the skeleton graph for neuron classification. Extensive experiment results are provided and demonstrate the robustness of our method to analyze neuron morphology.
Collapse
Affiliation(s)
- Jiaxiang Jiang
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, US
| | - Michael Goebel
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, US
| | - Cezar Borba
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, US
| | - William Smith
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, US
| | - B.S. Manjunath
- Department of Electrical and Computer Engineering, University of California, Santa Barbara, US
| |
Collapse
|
5
|
Li Y, Jiang S, Ding L, Liu L. NRRS: a re-tracing strategy to refine neuron reconstruction. BIOINFORMATICS ADVANCES 2023; 3:vbad054. [PMID: 37213868 PMCID: PMC10199312 DOI: 10.1093/bioadv/vbad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 04/04/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023]
Abstract
It is crucial to develop accurate and reliable algorithms for fine reconstruction of neural morphology from whole-brain image datasets. Even though the involvement of human experts in the reconstruction process can help to ensure the quality and accuracy of the reconstructions, automated refinement algorithms are necessary to handle substantial deviations problems of reconstructed branches and bifurcation points from the large-scale and high-dimensional nature of the image data. Our proposed Neuron Reconstruction Refinement Strategy (NRRS) is a novel approach to address the problem of deviation errors in neuron morphology reconstruction. Our method partitions the reconstruction into fixed-size segments and resolves the deviation problems by re-tracing in two steps. We also validate the performance of our method using a synthetic dataset. Our results show that NRRS outperforms existing solutions and can handle most deviation errors. We apply our method to SEU-ALLEN/BICCN dataset containing 1741 complete neuron reconstructions and achieve remarkable improvements in the accuracy of the neuron skeleton representation, the task of radius estimation and axonal bouton detection. Our findings demonstrate the critical role of NRRS in refining neuron morphology reconstruction. Availability and implementation The proposed refinement method is implemented as a Vaa3D plugin and the source code are available under the repository of vaa3d_tools/hackathon/Levy/refinement. The original fMOST images of mouse brains can be found at the BICCN's Brain Image Library (BIL) (https://www.brainimagelibrary.org). The synthetic dataset is hosted on GitHub (https://github.com/Vaa3D/vaa3d_tools/tree/master/hackathon/Levy/refinement). Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
| | | | - Liya Ding
- Institute for Brain and Intelligence, Southeast University, Nanjing, Jiangsu 210096, China
| | - Lijuan Liu
- To whom correspondence should be addressed.
| |
Collapse
|