1
|
Gillani M, Pollastri G. Impact of Alignments on the Accuracy of Protein Subcellular Localization Predictions. Proteins 2025; 93:745-759. [PMID: 39575640 PMCID: PMC11809130 DOI: 10.1002/prot.26767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/01/2024] [Indexed: 02/11/2025]
Abstract
Alignments in bioinformatics refer to the arrangement of sequences to identify regions of similarity that can indicate functional, structural, or evolutionary relationships. They are crucial for bioinformaticians as they enable accurate predictions and analyses in various applications, including protein subcellular localization. The predictive model used in this article is based on a deep - convolutional architecture. We tested configurations of Deep N-to-1 convolutional neural networks of various depths and widths during experimentation for the evaluation of better-performing values across a diverse set of eight classes. For without alignment assessment, sequences are encoded using one-hot encoding, converting each character into a numerical representation, which is straightforward for non-numerical data and useful for machine learning models. For with alignments assessment, multiple sequence alignments (MSAs) are created using PSI-BLAST, capturing evolutionary information by calculating frequencies of residues and gaps. The average difference in peak performance between models with alignments and without alignments is approximately 15.82%. The average difference in the highest accuracy achieved with alignments compared with without alignments is approximately 15.16%. Thus, extensive experimentation indicates that higher alignment accuracy implies a more reliable model and improved prediction accuracy, which can be trusted to deliver consistent performance across different layers and classes of subcellular localization predictions. This research provides valuable insights into prediction accuracies with and without alignments, offering bioinformaticians an effective tool for better understanding while potentially reducing the need for extensive experimental validations. The source code and datasets are available at http://distilldeep.ucd.ie/SCL8/.
Collapse
Affiliation(s)
- Maryam Gillani
- School of Computer ScienceUniversity College Dublin (UCD)DublinIreland
| | | |
Collapse
|
2
|
Alser M, Eudine J, Mutlu O. Taming large-scale genomic analyses via sparsified genomics. Nat Commun 2025; 16:876. [PMID: 39837860 PMCID: PMC11751491 DOI: 10.1038/s41467-024-55762-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 12/20/2024] [Indexed: 01/23/2025] Open
Abstract
Searching for similar genomic sequences is an essential and fundamental step in biomedical research. State-of-the-art computational methods performing such comparisons fail to cope with the exponential growth of genomic sequencing data. We introduce the concept of sparsified genomics where we systematically exclude a large number of bases from genomic sequences and enable faster and memory-efficient processing of the sparsified, shorter genomic sequences, while providing comparable accuracy to processing non-sparsified sequences. Sparsified genomics provides benefits to many genomic analyses and has broad applicability. Sparsifying genomic sequences accelerates the state-of-the-art read mapper (minimap2) by 2.57-5.38x, 1.13-2.78x, and 3.52-6.28x using real Illumina, HiFi, and ONT reads, respectively, while providing comparable memory footprint, 2x smaller index size, and more correctly detected variations compared to minimap2. Sparsifying genomic sequences makes containment search through very large genomes and large databases 72.7-75.88x (1.62-1.9x when indexing is preprocessed) faster and 723.3x more storage-efficient than searching through non-sparsified genomic sequences (with CMash and KMC3). Sparsifying genomic sequences enables robust microbiome discovery by providing 54.15-61.88x (1.58-1.71x when indexing is preprocessed) faster and 720x more storage-efficient taxonomic profiling of metagenomic samples over the state-of-the-art tool (Metalign).
Collapse
Affiliation(s)
- Mohammed Alser
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zurich, Switzerland.
- Department of Computer Science, Georgia State University, Atlanta, GA, USA.
- Department of Clinical Pharmacy, University of Southern California, LA, CA, USA.
| | - Julien Eudine
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zurich, Switzerland
| | - Onur Mutlu
- Department of Information Technology and Electrical Engineering, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
3
|
LoTempio J, Delot E, Vilain E. Benchmarking long-read genome sequence alignment tools for human genomics applications. PeerJ 2023; 11:e16515. [PMID: 38130927 PMCID: PMC10734412 DOI: 10.7717/peerj.16515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023] Open
Abstract
Background The utility of long-read genome sequencing platforms has been shown in many fields including whole genome assembly, metagenomics, and amplicon sequencing. Less clear is the applicability of long reads to reference-guided human genomics, which is the foundation of genomic medicine. Here, we benchmark available platform-agnostic alignment tools on datasets from nanopore and single-molecule real-time platforms to understand their suitability in producing a genome representation. Results For this study, we leveraged publicly-available data from sample NA12878 generated on Oxford Nanopore and sample NA24385 on Pacific Biosciences platforms. We employed state of the art sequence alignment tools including GraphMap2, long-read aligner (LRA), Minimap2, CoNvex Gap-cost alignMents for Long Reads (NGMLR), and Winnowmap2. Minimap2 and Winnowmap2 were computationally lightweight enough for use at scale, while GraphMap2 was not. NGMLR took a long time and required many resources, but produced alignments each time. LRA was fast, but only worked on Pacific Biosciences data. Each tool widely disagreed on which reads to leave unaligned, affecting the end genome coverage and the number of discoverable breakpoints. No alignment tool independently resolved all large structural variants (1,001-100,000 base pairs) present in the Database of Genome Variants (DGV) for sample NA12878 or the truthset for NA24385. Conclusions These results suggest a combined approach is needed for LRS alignments for human genomics. Specifically, leveraging alignments from three tools will be more effective in generating a complete picture of genomic variability. It should be best practice to use an analysis pipeline that generates alignments with both Minimap2 and Winnowmap2 as they are lightweight and yield different views of the genome. Depending on the question at hand, the data available, and the time constraints, NGMLR and LRA are good options for a third tool. If computational resources and time are not a factor for a given case or experiment, NGMLR will provide another view, and another chance to resolve a case. LRA, while fast, did not work on the nanopore data for our cluster, but PacBio results were promising in that those computations completed faster than Minimap2. Due to its significant burden on computational resources and slow run time, Graphmap2 is not an ideal tool for exploration of a whole human genome generated on a long-read sequencing platform.
Collapse
Affiliation(s)
- Jonathan LoTempio
- Institute for Clinical and Translational Science, University of California, Irvine, CA, United States of America
- International Research Laboratory (IRL2006) “Epigenetics, Data, Politics (EpiDaPo)”, Centre National de la Recherche Scientifique, Washington, DC, United States of America
| | - Emmanuele Delot
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC, United States of America
- Department of Genomics and Precision Medicine, George Washington University, Washington, DC, United States of America
| | - Eric Vilain
- Institute for Clinical and Translational Science, University of California, Irvine, CA, United States of America
- International Research Laboratory (IRL2006) “Epigenetics, Data, Politics (EpiDaPo)”, Centre National de la Recherche Scientifique, Washington, DC, United States of America
| |
Collapse
|
4
|
Liu Y, Shen X, Gong Y, Liu Y, Song B, Zeng X. Sequence Alignment/Map format: a comprehensive review of approaches and applications. Brief Bioinform 2023; 24:bbad320. [PMID: 37668049 DOI: 10.1093/bib/bbad320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/06/2023] Open
Abstract
The Sequence Alignment/Map (SAM) format file is the text file used to record alignment information. Alignment is the core of sequencing analysis, and downstream tasks accept mapping results for further processing. Given the rapid development of the sequencing industry today, a comprehensive understanding of the SAM format and related tools is necessary to meet the challenges of data processing and analysis. This paper is devoted to retrieving knowledge in the broad field of SAM. First, the format of SAM is introduced to understand the overall process of the sequencing analysis. Then, existing work is systematically classified in accordance with generation, compression and application, and the involved SAM tools are specifically mined. Lastly, a summary and some thoughts on future directions are provided.
Collapse
Affiliation(s)
- Yuansheng Liu
- College of Computer Science and Electronic Engineering, Hunan University, 410086, Changsha, China
| | - Xiangzhen Shen
- College of Computer Science and Electronic Engineering, Hunan University, 410086, Changsha, China
| | - Yongshun Gong
- School of Software, Shandong University, 250100, Jinan, China
| | - Yiping Liu
- College of Computer Science and Electronic Engineering, Hunan University, 410086, Changsha, China
| | - Bosheng Song
- College of Computer Science and Electronic Engineering, Hunan University, 410086, Changsha, China
| | - Xiangxiang Zeng
- College of Computer Science and Electronic Engineering, Hunan University, 410086, Changsha, China
| |
Collapse
|
5
|
Sahlin K, Baudeau T, Cazaux B, Marchet C. A survey of mapping algorithms in the long-reads era. Genome Biol 2023; 24:133. [PMID: 37264447 PMCID: PMC10236595 DOI: 10.1186/s13059-023-02972-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 05/12/2023] [Indexed: 06/03/2023] Open
Abstract
It has been over a decade since the first publication of a method dedicated entirely to mapping long-reads. The distinctive characteristics of long reads resulted in methods moving from the seed-and-extend framework used for short reads to a seed-and-chain framework due to the seed abundance in each read. The main novelties are based on alternative seed constructs or chaining formulations. Dozens of tools now exist, whose heuristics have evolved considerably. We provide an overview of the methods used in long-read mappers. Since they are driven by implementation-specific parameters, we develop an original visualization tool to understand the parameter settings ( http://bcazaux.polytech-lille.net/Minimap2/ ).
Collapse
Affiliation(s)
- Kristoffer Sahlin
- Department of Mathematics, Science for Life Laboratory, Stockholm University, 106 91, Stockholm, Sweden.
| | - Thomas Baudeau
- Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000, Lille, France
| | - Bastien Cazaux
- Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000, Lille, France
| | - Camille Marchet
- Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000, Lille, France.
| |
Collapse
|
6
|
Firtina C, Park J, Alser M, Kim JS, Cali D, Shahroodi T, Ghiasi N, Singh G, Kanellopoulos K, Alkan C, Mutlu O. BLEND: a fast, memory-efficient and accurate mechanism to find fuzzy seed matches in genome analysis. NAR Genom Bioinform 2023; 5:lqad004. [PMID: 36685727 PMCID: PMC9853099 DOI: 10.1093/nargab/lqad004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/16/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023] Open
Abstract
Generating the hash values of short subsequences, called seeds, enables quickly identifying similarities between genomic sequences by matching seeds with a single lookup of their hash values. However, these hash values can be used only for finding exact-matching seeds as the conventional hashing methods assign distinct hash values for different seeds, including highly similar seeds. Finding only exact-matching seeds causes either (i) increasing the use of the costly sequence alignment or (ii) limited sensitivity. We introduce BLEND, the first efficient and accurate mechanism that can identify both exact-matching and highly similar seeds with a single lookup of their hash values, called fuzzy seed matches. BLEND (i) utilizes a technique called SimHash, that can generate the same hash value for similar sets, and (ii) provides the proper mechanisms for using seeds as sets with the SimHash technique to find fuzzy seed matches efficiently. We show the benefits of BLEND when used in read overlapping and read mapping. For read overlapping, BLEND is faster by 2.4×-83.9× (on average 19.3×), has a lower memory footprint by 0.9×-14.1× (on average 3.8×), and finds higher quality overlaps leading to accurate de novo assemblies than the state-of-the-art tool, minimap2. For read mapping, BLEND is faster by 0.8×-4.1× (on average 1.7×) than minimap2. Source code is available at https://github.com/CMU-SAFARI/BLEND.
Collapse
Affiliation(s)
| | - Jisung Park
- ETH Zurich, Zurich 8092, Switzerland
- POSTECH, Pohang 37673, Republic of Korea
| | | | | | | | | | | | | | | | - Can Alkan
- Bilkent University, Ankara 06800, Turkey
| | | |
Collapse
|
7
|
Alser M, Lindegger J, Firtina C, Almadhoun N, Mao H, Singh G, Gomez-Luna J, Mutlu O. From molecules to genomic variations: Accelerating genome analysis via intelligent algorithms and architectures. Comput Struct Biotechnol J 2022; 20:4579-4599. [PMID: 36090814 PMCID: PMC9436709 DOI: 10.1016/j.csbj.2022.08.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 02/01/2023] Open
Abstract
We now need more than ever to make genome analysis more intelligent. We need to read, analyze, and interpret our genomes not only quickly, but also accurately and efficiently enough to scale the analysis to population level. There currently exist major computational bottlenecks and inefficiencies throughout the entire genome analysis pipeline, because state-of-the-art genome sequencing technologies are still not able to read a genome in its entirety. We describe the ongoing journey in significantly improving the performance, accuracy, and efficiency of genome analysis using intelligent algorithms and hardware architectures. We explain state-of-the-art algorithmic methods and hardware-based acceleration approaches for each step of the genome analysis pipeline and provide experimental evaluations. Algorithmic approaches exploit the structure of the genome as well as the structure of the underlying hardware. Hardware-based acceleration approaches exploit specialized microarchitectures or various execution paradigms (e.g., processing inside or near memory) along with algorithmic changes, leading to new hardware/software co-designed systems. We conclude with a foreshadowing of future challenges, benefits, and research directions triggered by the development of both very low cost yet highly error prone new sequencing technologies and specialized hardware chips for genomics. We hope that these efforts and the challenges we discuss provide a foundation for future work in making genome analysis more intelligent.
Collapse
Affiliation(s)
| | | | - Can Firtina
- ETH Zurich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | | | - Haiyu Mao
- ETH Zurich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | | | | | - Onur Mutlu
- ETH Zurich, Gloriastrasse 35, 8092 Zürich, Switzerland
| |
Collapse
|
8
|
Wei ZG, Fan XG, Zhang H, Zhang XD, Liu F, Qian Y, Zhang SW. kngMap: Sensitive and Fast Mapping Algorithm for Noisy Long Reads Based on the K-Mer Neighborhood Graph. Front Genet 2022; 13:890651. [PMID: 35601495 PMCID: PMC9117619 DOI: 10.3389/fgene.2022.890651] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
With the rapid development of single molecular sequencing (SMS) technologies such as PacBio single-molecule real-time and Oxford Nanopore sequencing, the output read length is continuously increasing, which has dramatical potentials on cutting-edge genomic applications. Mapping these reads to a reference genome is often the most fundamental and computing-intensive step for downstream analysis. However, these long reads contain higher sequencing errors and could more frequently span the breakpoints of structural variants (SVs) than those of shorter reads, leading to many unaligned reads or reads that are partially aligned for most state-of-the-art mappers. As a result, these methods usually focus on producing local mapping results for the query read rather than obtaining the whole end-to-end alignment. We introduce kngMap, a novel k-mer neighborhood graph-based mapper that is specifically designed to align long noisy SMS reads to a reference sequence. By benchmarking exhaustive experiments on both simulated and real-life SMS datasets to assess the performance of kngMap with ten other popular SMS mapping tools (e.g., BLASR, BWA-MEM, and minimap2), we demonstrated that kngMap has higher sensitivity that can align more reads and bases to the reference genome; meanwhile, kngMap can produce consecutive alignments for the whole read and span different categories of SVs in the reads. kngMap is implemented in C++ and supports multi-threading; the source code of kngMap can be downloaded for free at: https://github.com/zhang134/kngMap for academic usage.
Collapse
Affiliation(s)
- Ze-Gang Wei
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Xing-Guo Fan
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Hao Zhang
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Xiao-Dan Zhang
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Fei Liu
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
| | - Yu Qian
- Institute of Physics and Optoelectronics Technology, Baoji University of Arts and Sciences, Baoji, China
- *Correspondence: Yu Qian, ; Shao-Wu Zhang,
| | - Shao-Wu Zhang
- Key Laboratory of Information Fusion Technology of Ministry of Education, School of Automation, Northwestern Polytechnical University, Xi’an, China
- *Correspondence: Yu Qian, ; Shao-Wu Zhang,
| |
Collapse
|
9
|
Wang Y, Zhao Y, Bollas A, Wang Y, Au KF. Nanopore sequencing technology, bioinformatics and applications. Nat Biotechnol 2021; 39:1348-1365. [PMID: 34750572 PMCID: PMC8988251 DOI: 10.1038/s41587-021-01108-x] [Citation(s) in RCA: 797] [Impact Index Per Article: 199.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 09/22/2021] [Indexed: 12/13/2022]
Abstract
Rapid advances in nanopore technologies for sequencing single long DNA and RNA molecules have led to substantial improvements in accuracy, read length and throughput. These breakthroughs have required extensive development of experimental and bioinformatics methods to fully exploit nanopore long reads for investigations of genomes, transcriptomes, epigenomes and epitranscriptomes. Nanopore sequencing is being applied in genome assembly, full-length transcript detection and base modification detection and in more specialized areas, such as rapid clinical diagnoses and outbreak surveillance. Many opportunities remain for improving data quality and analytical approaches through the development of new nanopores, base-calling methods and experimental protocols tailored to particular applications.
Collapse
Affiliation(s)
- Yunhao Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yue Zhao
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, USA
| | - Audrey Bollas
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Yuru Wang
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Kin Fai Au
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA.
- Biomedical Informatics Shared Resources, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|