1
|
Ambreen S, Umar M, Noor A, Jain H, Ali R. Advanced AI and ML frameworks for transforming drug discovery and optimization: With innovative insights in polypharmacology, drug repurposing, combination therapy and nanomedicine. Eur J Med Chem 2025; 284:117164. [PMID: 39721292 DOI: 10.1016/j.ejmech.2024.117164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024]
Abstract
Artificial Intelligence (AI) and Machine Learning (ML) are transforming drug discovery by overcoming traditional challenges like high costs, time-consuming, and frequent failures. AI-driven approaches streamline key phases, including target identification, lead optimization, de novo drug design, and drug repurposing. Frameworks such as deep neural networks (DNNs), convolutional neural networks (CNNs), and deep reinforcement learning (DRL) models have shown promise in identifying drug targets, optimizing delivery systems, and accelerating drug repurposing. Generative adversarial networks (GANs) and variational autoencoders (VAEs) aid de novo drug design by creating novel drug-like compounds with desired properties. Case studies, such as DDR1 kinase inhibitors designed using generative models and CDK20 inhibitors developed via structure-based methods, highlight AI's ability to produce highly specific therapeutics. Models like SNF-CVAE and DeepDR further advance drug repurposing by uncovering new therapeutic applications for existing drugs. Advanced ML algorithms enhance precision in predicting drug efficacy, toxicity, and ADME-Tox properties, reducing development costs and improving drug-target interactions. AI also supports polypharmacology by optimizing multi-target drug interactions and enhances combination therapy through predictions of drug synergies and antagonisms. In nanomedicine, AI models like CURATE.AI and the Hartung algorithm optimize personalized treatments by predicting toxicological risks and real-time dosing adjustments with high accuracy. Despite its potential, challenges like data quality, model interpretability, and ethical concerns must be addressed. High-quality datasets, transparent models, and unbiased algorithms are essential for reliable AI applications. As AI continues to evolve, it is poised to revolutionize drug discovery and personalized medicine, advancing therapeutic development and patient care.
Collapse
Affiliation(s)
- Subiya Ambreen
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Mohammad Umar
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Aaisha Noor
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Himangini Jain
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India
| | - Ruhi Ali
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSRU, Pushp Vihar, New Delhi, 110017, India.
| |
Collapse
|
2
|
Bian Q, Shen Z, Gao J, Shen L, Lu Y, Zhang Q, Chen R, Xu D, Liu T, Che J, Lu Y, Dong X. PPI-CoAttNet: A Web Server for Protein-Protein Interaction Tasks Using a Coattention Model. J Chem Inf Model 2025; 65:461-471. [PMID: 39761551 DOI: 10.1021/acs.jcim.4c01365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Predicting protein-protein interactions (PPIs) is crucial for advancing drug discovery. Despite the proposal of numerous advanced computational methods, these approaches often suffer from poor usability for biologists and lack generalization. In this study, we designed a deep learning model based on a coattention mechanism that was capable of both PPI and site prediction and used this model as the foundation for PPI-CoAttNet, a user-friendly, multifunctional web server for PPI prediction. This platform provides comprehensive services for online PPI model training, PPI and site prediction, and prediction of interactions with proteins associated with highly prevalent cancers. In our Homo sapiens test set for PPI prediction, PPI-CoAttNet achieved an AUC of 0.9841 and an F1 score of 0.9440, outperforming most state-of-the-art models. Additionally, these results are generated in real time, delivering outcomes within minutes. We also evaluated PPI-CoAttNet for downstream tasks, including novel E3 ligase scoring, demonstrating outstanding accuracy. We believe that this tool will empower researchers, especially those without computational expertise, to leverage AI for accelerating drug development.
Collapse
Affiliation(s)
- Qingyu Bian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
| | - Zheyuan Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jian Gao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
| | - Liteng Shen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yang Lu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
| | - Qingnan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Roufen Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
| | - Donghang Xu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tao Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jinxin Che
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yan Lu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiaowu Dong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Zhou L, Wang X, Peng L, Chen M, Wen H. SEnSCA: Identifying possible ligand-receptor interactions and its application in cell-cell communication inference. J Cell Mol Med 2024; 28:e18372. [PMID: 38747737 PMCID: PMC11095317 DOI: 10.1111/jcmm.18372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Multicellular organisms have dense affinity with the coordination of cellular activities, which severely depend on communication across diverse cell types. Cell-cell communication (CCC) is often mediated via ligand-receptor interactions (LRIs). Existing CCC inference methods are limited to known LRIs. To address this problem, we developed a comprehensive CCC analysis tool SEnSCA by integrating single cell RNA sequencing and proteome data. SEnSCA mainly contains potential LRI acquisition and CCC strength evaluation. For acquiring potential LRIs, it first extracts LRI features and reduces the feature dimension, subsequently constructs negative LRI samples through K-means clustering, finally acquires potential LRIs based on Stacking ensemble comprising support vector machine, 1D-convolutional neural networks and multi-head attention mechanism. During CCC strength evaluation, SEnSCA conducts LRI filtering and then infers CCC by combining the three-point estimation approach and single cell RNA sequencing data. SEnSCA computed better precision, recall, accuracy, F1 score, AUC and AUPR under most of conditions when predicting possible LRIs. To better illustrate the inferred CCC network, SEnSCA provided three visualization options: heatmap, bubble diagram and network diagram. Its application on human melanoma tissue demonstrated its reliability in CCC detection. In summary, SEnSCA offers a useful CCC inference tool and is freely available at https://github.com/plhhnu/SEnSCA.
Collapse
Affiliation(s)
- Liqian Zhou
- School of Life Sciences and ChemistryHunan University of TechnologyHunanChina
| | - Xiwen Wang
- School of Life Sciences and ChemistryHunan University of TechnologyHunanChina
| | - Lihong Peng
- School of Life Sciences and ChemistryHunan University of TechnologyHunanChina
| | - Min Chen
- School of Computer ScienceHunan Institute of TechnologyHengyangChina
| | - Hong Wen
- School of Computer ScienceHunan University of TechnologyHunanChina
| |
Collapse
|
4
|
Wang X, Zeng H, Lin L, Huang Y, Lin H, Que Y. Deep learning-empowered crop breeding: intelligent, efficient and promising. FRONTIERS IN PLANT SCIENCE 2023; 14:1260089. [PMID: 37860239 PMCID: PMC10583549 DOI: 10.3389/fpls.2023.1260089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/13/2023] [Indexed: 10/21/2023]
Abstract
Crop breeding is one of the main approaches to increase crop yield and improve crop quality. However, the breeding process faces challenges such as complex data, difficulties in data acquisition, and low prediction accuracy, resulting in low breeding efficiency and long cycle. Deep learning-based crop breeding is a strategy that applies deep learning techniques to improve and optimize the breeding process, leading to accelerated crop improvement, enhanced breeding efficiency, and the development of higher-yielding, more adaptive, and disease-resistant varieties for agricultural production. This perspective briefly discusses the mechanisms, key applications, and impact of deep learning in crop breeding. We also highlight the current challenges associated with this topic and provide insights into its future application prospects.
Collapse
Affiliation(s)
- Xiaoding Wang
- Fujian Provincial Key Lab of Network Security & Cryptology, College of Computer and Cyber Security, Fujian Normal University, Fuzhou, China
| | - Haitao Zeng
- Fujian Provincial Key Lab of Network Security & Cryptology, College of Computer and Cyber Security, Fujian Normal University, Fuzhou, China
| | - Limei Lin
- Fujian Provincial Key Lab of Network Security & Cryptology, College of Computer and Cyber Security, Fujian Normal University, Fuzhou, China
| | - Yanze Huang
- School of Computer Science and Mathematics, Fujian Provincial Key Laboratory of Big Data Mining and Applications, Fujian University of Technology, Fuzhou, China
| | - Hui Lin
- Fujian Provincial Key Lab of Network Security & Cryptology, College of Computer and Cyber Security, Fujian Normal University, Fuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, China
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Hainan, China
| |
Collapse
|
5
|
Peng L, Yuan R, Han C, Han G, Tan J, Wang Z, Chen M, Chen X. CellEnBoost: A Boosting-Based Ligand-Receptor Interaction Identification Model for Cell-to-Cell Communication Inference. IEEE Trans Nanobioscience 2023; 22:705-715. [PMID: 37216267 DOI: 10.1109/tnb.2023.3278685] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cell-to-cell communication (CCC) plays important roles in multicellular organisms. The identification of communication between cancer cells themselves and one between cancer cells and normal cells in tumor microenvironment helps understand cancer genesis, development and metastasis. CCC is usually mediated by Ligand-Receptor Interactions (LRIs). In this manuscript, we developed a Boosting-based LRI identification model (CellEnBoost) for CCC inference. First, potential LRIs are predicted by data collection, feature extraction, dimensional reduction, and classification based on an ensemble of Light gradient boosting machine and AdaBoost combining convolutional neural network. Next, the predicted LRIs and known LRIs are filtered. Third, the filtered LRIs are applied to CCC elucidation by combining CCC strength measurement and single-cell RNA sequencing data. Finally, CCC inference results are visualized using heatmap view, Circos plot view, and network view. The experimental results show that CellEnBoost obtained the best AUCs and AUPRs on the collected four LRI datasets. Case study in human head and neck squamous cell carcinoma (HNSCC) tissues demonstrates that fibroblasts were more likely to communicate with HNSCC cells, which is in accord with the results from iTALK. We anticipate that this work can contribute to the diagnosis and treatment of cancers.
Collapse
|
6
|
Lee M. Recent Advances in Deep Learning for Protein-Protein Interaction Analysis: A Comprehensive Review. Molecules 2023; 28:5169. [PMID: 37446831 DOI: 10.3390/molecules28135169] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Deep learning, a potent branch of artificial intelligence, is steadily leaving its transformative imprint across multiple disciplines. Within computational biology, it is expediting progress in the understanding of Protein-Protein Interactions (PPIs), key components governing a wide array of biological functionalities. Hence, an in-depth exploration of PPIs is crucial for decoding the intricate biological system dynamics and unveiling potential avenues for therapeutic interventions. As the deployment of deep learning techniques in PPI analysis proliferates at an accelerated pace, there exists an immediate demand for an exhaustive review that encapsulates and critically assesses these novel developments. Addressing this requirement, this review offers a detailed analysis of the literature from 2021 to 2023, highlighting the cutting-edge deep learning methodologies harnessed for PPI analysis. Thus, this review stands as a crucial reference for researchers in the discipline, presenting an overview of the recent studies in the field. This consolidation helps elucidate the dynamic paradigm of PPI analysis, the evolution of deep learning techniques, and their interdependent dynamics. This scrutiny is expected to serve as a vital aid for researchers, both well-established and newcomers, assisting them in maneuvering the rapidly shifting terrain of deep learning applications in PPI analysis.
Collapse
Affiliation(s)
- Minhyeok Lee
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
7
|
Madan S, Demina V, Stapf M, Ernst O, Fröhlich H. Accurate prediction of virus-host protein-protein interactions via a Siamese neural network using deep protein sequence embeddings. PATTERNS (NEW YORK, N.Y.) 2022; 3:100551. [PMID: 36124304 PMCID: PMC9481957 DOI: 10.1016/j.patter.2022.100551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/28/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022]
Abstract
Prediction and understanding of virus-host protein-protein interactions (PPIs) have relevance for the development of novel therapeutic interventions. In addition, virus-like particles open novel opportunities to deliver therapeutics to targeted cell types and tissues. Given our incomplete knowledge of PPIs on the one hand and the cost and time associated with experimental procedures on the other, we here propose a deep learning approach to predict virus-host PPIs. Our method (Siamese Tailored deep sequence Embedding of Proteins [STEP]) is based on recent deep protein sequence embedding techniques, which we integrate into a Siamese neural network. After showing the state-of-the-art performance of STEP on external datasets, we apply it to two use cases, severe acute respiratory syndrome coronavirus 2 and John Cunningham polyomavirus, to predict virus-host PPIs. Altogether our work highlights the potential of deep sequence embedding techniques originating from the field of NLP as well as explainable artificial intelligence methods for the analysis of biological sequences.
Collapse
Affiliation(s)
- Sumit Madan
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Institute of Computer Science, University of Bonn, 53115 Bonn, Germany
| | | | - Marcus Stapf
- NEUWAY Pharma GmbH, In den Dauen 6A, 53117 Bonn, Germany
| | - Oliver Ernst
- NEUWAY Pharma GmbH, In den Dauen 6A, 53117 Bonn, Germany
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Schloss Birlinghoven, 53757 Sankt Augustin, Germany
- Bonn-Aachen International Center for Information Technology (B-IT), University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
8
|
Robin V, Bodein A, Scott-Boyer MP, Leclercq M, Périn O, Droit A. Overview of methods for characterization and visualization of a protein-protein interaction network in a multi-omics integration context. Front Mol Biosci 2022; 9:962799. [PMID: 36158572 PMCID: PMC9494275 DOI: 10.3389/fmolb.2022.962799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
At the heart of the cellular machinery through the regulation of cellular functions, protein-protein interactions (PPIs) have a significant role. PPIs can be analyzed with network approaches. Construction of a PPI network requires prediction of the interactions. All PPIs form a network. Different biases such as lack of data, recurrence of information, and false interactions make the network unstable. Integrated strategies allow solving these different challenges. These approaches have shown encouraging results for the understanding of molecular mechanisms, drug action mechanisms, and identification of target genes. In order to give more importance to an interaction, it is evaluated by different confidence scores. These scores allow the filtration of the network and thus facilitate the representation of the network, essential steps to the identification and understanding of molecular mechanisms. In this review, we will discuss the main computational methods for predicting PPI, including ones confirming an interaction as well as the integration of PPIs into a network, and we will discuss visualization of these complex data.
Collapse
Affiliation(s)
- Vivian Robin
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Marie-Pier Scott-Boyer
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Mickaël Leclercq
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| | - Olivier Périn
- Digital Sciences Department, L'Oréal Advanced Research, Aulnay-sous-bois, France
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC, Canada
| |
Collapse
|
9
|
Ip RH, Wu K. A Markov random field model with cumulative logistic functions for spatially dependent ordinal data. J Appl Stat 2022; 51:70-86. [PMID: 38179165 PMCID: PMC10763883 DOI: 10.1080/02664763.2022.2115985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2022] [Indexed: 10/14/2022]
Abstract
This paper presents a class of regression models with cumulative logistic functions that are chiefly designed to analyse spatially dependent ordinal data. In contrast to previous works, the proposed model requires neither the sites to be regularly spaced nor the assumption of an underlying continuous variable. It belongs to a more general class of Markov random field models, and can be considered an extension of the ordinal regression model with the proportional odds link function. Our proposed model allows practitioners to interpret the model parameters using odds ratios. Apart from the theoretical developments, this work also highlights the practical aspects of model fitting, including parameterisation, selection of neighbourhood, and calculation of standard errors. Simulation studies with regularly and irregularly spaced sites were conducted. Modelling strategies including pseudo-likelihood methods were found to be useful in both settings. The proposed model and the non-spatial counterpart were applied to the daily air quality index measured in the United Kingdom. The results indicate the presence of spatial effects and the incorporation of spatial effects led to better model performance in terms of various goodness-of-fit measures.
Collapse
Affiliation(s)
- Ryan H.L. Ip
- School of Computing, Mathematics and Engineering, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - K.Y.K. Wu
- The School of Business, Singapore University of Social Sciences, Singapore
| |
Collapse
|
10
|
Peng J, Zhang K, Wang L, Peng F, Zhang C, Long K, Chen J, Zhou X, Gao P, Fan G. Integrating network pharmacology and molecular docking to explore the potential mechanism of Xinguan No. 3 in the treatment of COVID-19. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Xinguan No. 3 has been recommended for the treatment of coronavirus disease 2019 (COVID-19); however, its potential mechanisms are unclear. This study aims to explore the mechanisms of Xinguan No. 3 against COVID-19 through network pharmacology and molecular docking. We first searched the ingredients of Xinguan No. 3 in three databases (Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform, Traditional Chinese Medicines Integrated Database, and The Encyclopedia of Traditional Chinese Medicine). The active components and their potential targets were predicted through the SwissTargetPrediction website. The targets of COVID-19 can be found on the GeneCards website. Protein interaction analysis, screening of key targets, functional enrichment of key target genes, and signaling pathway analysis were performed through Search Tool for the Retrieval of Interacting Genes databases, Metascape databases, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway databases. Finally, the affinity of the key active components with the core targets was verified by molecular docking. The results showed that five core targets had been screened, including MAPK1, NF-κB1, RELA, AKT1, and MAPK14. Gene ontology enrichment analysis revealed that the key targets were associated with inflammatory responses and responses to external stimuli. KEGG enrichment analysis indicated that the main pathways were influenza A, hepatitis B, Toll-like receptor signaling pathway, NOD-like receptor signaling pathway, and TNF signaling pathway. Therefore, Xinguan No. 3 might play a role in treating COVID-19 through anti-inflammatory, immune responses, and regulatory responses to external stimuli.
Collapse
Affiliation(s)
- Jiayan Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| | - Kun Zhang
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| | - Lijie Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| | - Fang Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| | - Chuantao Zhang
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Kunlan Long
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Jun Chen
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Xiujuan Zhou
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Peiyang Gao
- Department of Critical Care Medicine, Hospital of Chengdu University of Traditional Chinese Medicine , Chengdu 611130 , P. R. China
| | - Gang Fan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
- School of Ethnic Medicine, Chengdu University of Traditional Chinese Medicine , Chengdu 611137 , P. R. China
| |
Collapse
|
11
|
Affiliation(s)
- Jongwon Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea
| | - Minsu Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, Korea
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
12
|
Lee J, Yoo M, Choi J. Recent advances in spatially resolved transcriptomics: challenges and opportunities. BMB Rep 2022; 55:113-124. [PMID: 35168703 PMCID: PMC8972138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 03/09/2024] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has greatly advanced our understanding of cellular heterogeneity by profiling individual cell transcriptomes. However, cell dissociation from the tissue structure causes a loss of spatial information, which hinders the identification of intercellular communication networks and global transcriptional patterns present in the tissue architecture. To overcome this limitation, novel transcriptomic platforms that preserve spatial information have been actively developed. Significant achievements in imaging technologies have enabled in situ targeted transcriptomic profiling in single cells at singlemolecule resolution. In addition, technologies based on mRNA capture followed by sequencing have made possible profiling of the genome-wide transcriptome at the 55-100 μm resolution. Unfortunately, neither imaging-based technology nor capturebased method elucidates a complete picture of the spatial transcriptome in a tissue. Therefore, addressing specific biological questions requires balancing experimental throughput and spatial resolution, mandating the efforts to develop computational algorithms that are pivotal to circumvent technology-specific limitations. In this review, we focus on the current state-of-the-art spatially resolved transcriptomic technologies, describe their applications in a variety of biological domains, and explore recent discoveries demonstrating their enormous potential in biomedical research. We further highlight novel integrative computational methodologies with other data modalities that provide a framework to derive biological insight into heterogeneous and complex tissue organization. [BMB Reports 2022; 55(3): 113-124].
Collapse
Affiliation(s)
- Jongwon Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, USA
- Brain Korea 21 Plus Project for Biomedical Science, Korea University College of Medicine, Seoul 02841, Korea, CT 06510, USA
| | - Minsu Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, USA
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
13
|
Hirata K, Sugimori H, Fujima N, Toyonaga T, Kudo K. Artificial intelligence for nuclear medicine in oncology. Ann Nucl Med 2022; 36:123-132. [PMID: 35028877 DOI: 10.1007/s12149-021-01693-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 11/07/2021] [Indexed: 12/12/2022]
Abstract
As in all other medical fields, artificial intelligence (AI) is increasingly being used in nuclear medicine for oncology. There are many articles that discuss AI from the viewpoint of nuclear medicine, but few focus on nuclear medicine from the viewpoint of AI. Nuclear medicine images are characterized by their low spatial resolution and high quantitativeness. It is noted that AI has been used since before the emergence of deep learning. AI can be divided into three categories by its purpose: (1) assisted interpretation, i.e., computer-aided detection (CADe) or computer-aided diagnosis (CADx). (2) Additional insight, i.e., AI provides information beyond the radiologist's eye, such as predicting genes and prognosis from images. It is also related to the field called radiomics/radiogenomics. (3) Augmented image, i.e., image generation tasks. To apply AI to practical use, harmonization between facilities and the possibility of black box explanations need to be resolved.
Collapse
Affiliation(s)
- Kenji Hirata
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan. .,Department of Nuclear Medicine, Hokkaido University Hospital, Sapporo, Japan. .,Division of Medical AI Education and Research, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | | | - Noriyuki Fujima
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.,Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan
| | - Takuya Toyonaga
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA
| | - Kohsuke Kudo
- Department of Diagnostic Imaging, Hokkaido University Graduate School of Medicine, Kita 15, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.,Division of Medical AI Education and Research, Hokkaido University Graduate School of Medicine, Sapporo, Japan.,Department of Diagnostic and Interventional Radiology, Hokkaido University Hospital, Sapporo, Japan.,Global Center for Biomedical Science and Engineering, Hokkaido University Faculty of Medicine, Sapporo, Japan
| |
Collapse
|