1
|
Ai C, Yang H, Ding Y, Tang J, Guo F. Low Rank Matrix Factorization Algorithm Based on Multi-Graph Regularization for Detecting Drug-Disease Association. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:3033-3043. [PMID: 37159322 DOI: 10.1109/tcbb.2023.3274587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Detecting potential associations between drugs and diseases plays an indispensable role in drug development, which has also become a research hotspot in recent years. Compared with traditional methods, some computational approaches have the advantages of fast speed and low cost, which greatly accelerate the progress of predicting the drug-disease association. In this study, we propose a novel similarity-based method of low-rank matrix decomposition based on multi-graph regularization. On the basis of low-rank matrix factorization with L2 regularization, the multi-graph regularization constraint is constructed by combining a variety of similarity matrices from drugs and diseases respectively. In the experiments, we analyze the difference in the combination of different similarities, resulting that combining all the similarity information on drug space is unnecessary, and only a part of the similarity information can achieve the desired performance. Then our method is compared with other existing models on three data sets (Fdataset, Cdataset and LRSSLdataset) and have a good advantage in the evaluation measurement of AUPR. Besides, a case study experiment is conducted and showing that the superior ability for predicting the potential disease-related drugs of our model. Finally, we compare our model with some methods on six real world datasets, and our model has a good performance in detecting real world data.
Collapse
|
2
|
Khojasteh H, Pirgazi J, Ghanbari Sorkhi A. Improving prediction of drug-target interactions based on fusing multiple features with data balancing and feature selection techniques. PLoS One 2023; 18:e0288173. [PMID: 37535616 PMCID: PMC10399861 DOI: 10.1371/journal.pone.0288173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 06/21/2023] [Indexed: 08/05/2023] Open
Abstract
Drug discovery relies on predicting drug-target interaction (DTI), which is an important challenging task. The purpose of DTI is to identify the interaction between drug chemical compounds and protein targets. Traditional wet lab experiments are time-consuming and expensive, that's why in recent years, the use of computational methods based on machine learning has attracted the attention of many researchers. Actually, a dry lab environment focusing more on computational methods of interaction prediction can be helpful in limiting search space for wet lab experiments. In this paper, a novel multi-stage approach for DTI is proposed that called SRX-DTI. In the first stage, combination of various descriptors from protein sequences, and a FP2 fingerprint that is encoded from drug are extracted as feature vectors. A major challenge in this application is the imbalanced data due to the lack of known interactions, in this regard, in the second stage, the One-SVM-US technique is proposed to deal with this problem. Next, the FFS-RF algorithm, a forward feature selection algorithm, coupled with a random forest (RF) classifier is developed to maximize the predictive performance. This feature selection algorithm removes irrelevant features to obtain optimal features. Finally, balanced dataset with optimal features is given to the XGBoost classifier to identify DTIs. The experimental results demonstrate that our proposed approach SRX-DTI achieves higher performance than other existing methods in predicting DTIs. The datasets and source code are available at: https://github.com/Khojasteh-hb/SRX-DTI.
Collapse
Affiliation(s)
- Hakimeh Khojasteh
- Department of Computer Engineering, University of Zanjan, Zanjan, Iran
- School of Biological Sciences Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| | - Jamshid Pirgazi
- School of Biological Sciences Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Department of Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| | - Ali Ghanbari Sorkhi
- Department of Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| |
Collapse
|
3
|
Yuan Y, Zhang Y, Meng X, Liu Z, Wang B, Miao R, Zhang R, Su W, Liu L. EDC-DTI: An end-to-end deep collaborative learning model based on multiple information for drug-target interactions prediction. J Mol Graph Model 2023; 122:108498. [PMID: 37126908 DOI: 10.1016/j.jmgm.2023.108498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Innovations in drug-target interactions (DTIs) prediction accelerate the progression of drug development. The introduction of deep learning models has a dramatic impact on DTIs prediction, with a distinct influence on saving time and money in drug discovery. This study develops an end-to-end deep collaborative learning model for DTIs prediction, called EDC-DTI, to identify new targets for existing drugs based on multiple drug-target-related information including homogeneous information and heterogeneous information by the way of deep learning. Our end-to-end model is composed of a feature builder and a classifier. Feature builder consists of two collaborative feature construction algorithms that extract the molecular properties and the topology property of networks, and the classifier consists of a feature encoder and a feature decoder which are designed for feature integration and DTIs prediction, respectively. The feature encoder, mainly based on the improved graph attention network, incorporates heterogeneous information into drug features and target features separately. The feature decoder is composed of multiple neural networks for predictions. Compared with six popular baseline models, EDC-DTI achieves highest predictive performance in the case of low computational costs. Robustness tests demonstrate that EDC-DTI is able to maintain strong predictive performance on sparse datasets. As well, we use the model to predict the most likely targets to interact with Simvastatin (DB00641), Nifedipine (DB01115) and Afatinib (DB08916) as examples. Results show that most of the predictions can be confirmed by literature with clear evidence.
Collapse
Affiliation(s)
- Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China.
| | - Yuhao Zhang
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Xiangbo Meng
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Zhenyu Liu
- School of Cyberspace Security, Gansu University of Political Science and Law, Anning West Road, Lanzhou, 730070, Gansu, China
| | - Bohan Wang
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Ruidong Miao
- School of Life Science, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Ruisheng Zhang
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Wei Su
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou, 730000, Gansu, China
| | - Lei Liu
- Duzhe Publishing Group Co. Ltd., DuZhe Road, Lanzhou, 730000, Gansu, China
| |
Collapse
|
4
|
Abbasi Mesrabadi H, Faez K, Pirgazi J. Drug-target interaction prediction based on protein features, using wrapper feature selection. Sci Rep 2023; 13:3594. [PMID: 36869062 PMCID: PMC9984486 DOI: 10.1038/s41598-023-30026-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/14/2023] [Indexed: 03/05/2023] Open
Abstract
Drug-target interaction prediction is a vital stage in drug development, involving lots of methods. Experimental methods that identify these relationships on the basis of clinical remedies are time-taking, costly, laborious, and complex introducing a lot of challenges. One group of new methods is called computational methods. The development of new computational methods which are more accurate can be preferable to experimental methods, in terms of total cost and time. In this paper, a new computational model to predict drug-target interaction (DTI), consisting of three phases, including feature extraction, feature selection, and classification is proposed. In feature extraction phase, different features such as EAAC, PSSM and etc. would be extracted from sequence of proteins and fingerprint features from drugs. These extracted features would then be combined. In the next step, one of the wrapper feature selection methods named IWSSR, due to the large amount of extracted data, is applied. The selected features are then given to rotation forest classification, to have a more efficient prediction. Actually, the innovation of our work is that we extract different features; and then select features by the use of IWSSR. The accuracy of the rotation forest classifier based on tenfold on the golden standard datasets (enzyme, ion channels, G-protein-coupled receptors, nuclear receptors) is as follows: 98.12, 98.07, 96.82, and 95.64. The results of experiments indicate that the proposed model has an acceptable rate in DTI prediction and is compatible with the proposed methods in other papers.
Collapse
Affiliation(s)
- Hengame Abbasi Mesrabadi
- Faculty of Computer and Information Technology Engineering, Qazvin Branch, Islamic Azad University, Qazvin, Iran
| | - Karim Faez
- Department of Electrical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Jamshid Pirgazi
- Department of Computer Engineering, University of Science and Technology of Mazandaran, Behshahr, Iran
| |
Collapse
|
5
|
Azuma I, Mizuno T, Kusuhara H. NRBdMF: A Recommendation Algorithm for Predicting Drug Effects Considering Directionality. J Chem Inf Model 2023; 63:474-483. [PMID: 36635231 DOI: 10.1021/acs.jcim.2c01210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Predicting the novel effects of drugs based on information about approved drugs can be regarded as a recommendation system. Matrix factorization is one of the most used recommendation systems, and various algorithms have been devised for it. A literature survey and summary of existing algorithms for predicting drug effects demonstrated that most such methods, including neighborhood regularized logistic matrix factorization, which was the best performer in benchmark tests, used a binary matrix that considers only the presence or absence of interactions. However, drug effects are known to have two opposite aspects, such as side effects and therapeutic effects. In the present study, we proposed using neighborhood regularized bidirectional matrix factorization (NRBdMF) to predict drug effects by incorporating bidirectionality, which is a characteristic property of drug effects. We used this proposed method for predicting side effects using a matrix that considered the bidirectionality of drug effects, in which known side effects were assigned a positive (+1) label and known treatment effects were assigned a negative (-1) label. The NRBdMF model, which utilizes drug bidirectional information, achieved enrichment of side effects at the top and indications at the bottom of the prediction list. This first attempt to consider the bidirectional nature of drug effects using NRBdMF showed that it reduced false positives and produced a highly interpretable output.
Collapse
Affiliation(s)
- Iori Azuma
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Tadahaya Mizuno
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Hiroyuki Kusuhara
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo113-0033, Japan
| |
Collapse
|