1
|
Asim MN, Ibrahim MA, Zaib A, Dengel A. DNA sequence analysis landscape: a comprehensive review of DNA sequence analysis task types, databases, datasets, word embedding methods, and language models. Front Med (Lausanne) 2025; 12:1503229. [PMID: 40265190 PMCID: PMC12011883 DOI: 10.3389/fmed.2025.1503229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/10/2025] [Indexed: 04/24/2025] Open
Abstract
Deoxyribonucleic acid (DNA) serves as fundamental genetic blueprint that governs development, functioning, growth, and reproduction of all living organisms. DNA can be altered through germline and somatic mutations. Germline mutations underlie hereditary conditions, while somatic mutations can be induced by various factors including environmental influences, chemicals, lifestyle choices, and errors in DNA replication and repair mechanisms which can lead to cancer. DNA sequence analysis plays a pivotal role in uncovering the intricate information embedded within an organism's genetic blueprint and understanding the factors that can modify it. This analysis helps in early detection of genetic diseases and the design of targeted therapies. Traditional wet-lab experimental DNA sequence analysis through traditional wet-lab experimental methods is costly, time-consuming, and prone to errors. To accelerate large-scale DNA sequence analysis, researchers are developing AI applications that complement wet-lab experimental methods. These AI approaches can help generate hypotheses, prioritize experiments, and interpret results by identifying patterns in large genomic datasets. Effective integration of AI methods with experimental validation requires scientists to understand both fields. Considering the need of a comprehensive literature that bridges the gap between both fields, contributions of this paper are manifold: It presents diverse range of DNA sequence analysis tasks and AI methodologies. It equips AI researchers with essential biological knowledge of 44 distinct DNA sequence analysis tasks and aligns these tasks with 3 distinct AI-paradigms, namely, classification, regression, and clustering. It streamlines the integration of AI into DNA sequence analysis tasks by consolidating information of 36 diverse biological databases that can be used to develop benchmark datasets for 44 different DNA sequence analysis tasks. To ensure performance comparisons between new and existing AI predictors, it provides insights into 140 benchmark datasets related to 44 distinct DNA sequence analysis tasks. It presents word embeddings and language models applications across 44 distinct DNA sequence analysis tasks. It streamlines the development of new predictors by providing a comprehensive survey of 39 word embeddings and 67 language models based predictive pipeline performance values as well as top performing traditional sequence encoding-based predictors and their performances across 44 DNA sequence analysis tasks.
Collapse
Affiliation(s)
- Muhammad Nabeel Asim
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
- Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
| | - Muhammad Ali Ibrahim
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Arooj Zaib
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
| | - Andreas Dengel
- German Research Center for Artificial Intelligence GmbH, Kaiserslautern, Germany
- Intelligentx GmbH (intelligentx.com), Kaiserslautern, Germany
- Department of Computer Science, Technical University of Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
2
|
Fu H, Ding Z, Wang W. Trans-m5C: A transformer-based model for predicting 5-methylcytosine (m5C) sites. Methods 2025; 234:178-186. [PMID: 39742984 DOI: 10.1016/j.ymeth.2024.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/31/2024] [Accepted: 12/11/2024] [Indexed: 01/04/2025] Open
Abstract
5-Methylcytosine (m5C) plays a pivotal role in various RNA metabolic processes, including RNA localization, stability, and translation. Current high-throughput sequencing technologies for m5C site identification are resource-intensive in terms of cost, labor, and time. As such, there is a pressing need for efficient computational approaches. Many existing computational methods rely on intricate hand-crafted features, requiring unavailable features, often leading to suboptimal prediction accuracy. Addressing these challenges, we introduce a novel deep-learning method, Trans-m5C. We first categorize m5C sites into NSUN2-dependent and NSUN6-dependent types for independent feature extraction. Subsequently, meticulously crafted transformer neural networks are employed to distill global features. The prediction of m5C sites is then accomplished using a discriminator built from a multi-layer perceptron. A rigorous evaluation for the performance of Trans-m5C on experimentally validated m5C data from human and mouse species reveals that our method offers a competitive edge over both baseline and existing methodologies.
Collapse
Affiliation(s)
- Haitao Fu
- School of Artificial Intelligence, Hubei University, Wuhan, 430062, China
| | - Zewen Ding
- University of Edinburgh, Centre for Discovery Brain Sciences, Edinburgh, EH89XD, United Kingdom
| | - Wen Wang
- University of Edinburgh, Queen's Medical Research Institute, Edinburgh, EH164TJ, United Kingdom.
| |
Collapse
|
3
|
Tahir M, Hussain S, Alarfaj FK. An Integrated Multi-Model Framework Utilizing Convolutional Neural Networks Coupled with Feature Extraction for Identification of 4mC Sites in DNA Sequences. Comput Biol Med 2024; 183:109281. [PMID: 39461102 DOI: 10.1016/j.compbiomed.2024.109281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/19/2024] [Accepted: 10/14/2024] [Indexed: 10/29/2024]
Abstract
N4-methylcytosine (4mC) is a chemical modification that occurs on one of the four nucleotide bases in DNA and plays a vital role in DNA expression, repair, and replication. It also actively participates in the regulation of cell differentiation and gene expression. Consequently, it is important to comprehend the role of 4mC in the epigenetic regulation for revealing the complications of the gene expression and their associated governing cellular operations. However, the inherent resource requirements and time constraints of the experimental procedure, present challenges to the cellular culture process. While data-driven methodologies present promising solutions to mitigate the demand for extensive experimental efforts, their performance relies on the suitability and existence of high-quality data. This study presents a multi-model framework that integrates convolutional neural network (CNN) with the distributed k-mer and embedding feature extraction techniques to enhance the identification of 4mC sites in DNA sequences. The integration of k-mers ensures the effective representation of the local sequence patterns, while the utilization of embedding enables a more holistic encoding by considering the broader context and semantics of the sequence data. Following the initial step, the obtained distributed representation of the DNA sequence seamlessly enters the CNN, triggering a crucial convolution operation wherein a set of adaptable filters systematically convolves across the sequence to detect vital local patterns. The proposed integrated multi-model framework was applied to six publicly available datasets and evaluated against the cutting-edge 4mCPred, 4mCCNN, iDNA4mC, Meta-4mCpred, DeepTorrent, 4mCPred-SVM, and DMKL-HFIS methods. The evaluation was based on accuracy, specificity, sensitivity, and Matthews Correlation Coefficient. The results demonstrated that the proposed multi-model framework outperformed the state-of-the-art methods, as well as one-hot encoding and the hybrid of one-hot & TNC features, in accurately identifying 4mC sites.
Collapse
Affiliation(s)
- Muhammad Tahir
- Department of Electrical and Computer Engineering, University of Manitoba, Winnipeg, Manitoba, R3T5V6, Canada; Department of Computer Science, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| | - Shahid Hussain
- Innovation Value Institute (IVI), School of Business, National University of Ireland Maynooth (NUIM), Maynooth, Co. Kildare, W23 F2H6, Ireland.
| | - Fawaz Khaled Alarfaj
- Department of Management Information Systems (MIS), School of Business, King Faisal University (KFU), Al-Ahsa, 31982, Saudi Arabia.
| |
Collapse
|
4
|
Xia Y, Zhang Y, Liu D, Zhu YH, Wang Z, Song J, Yu DJ. BLAM6A-Merge: Leveraging Attention Mechanisms and Feature Fusion Strategies to Improve the Identification of RNA N6-Methyladenosine Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:1803-1815. [PMID: 38913512 DOI: 10.1109/tcbb.2024.3418490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
RNA N6-methyladenosine is a prevalent and abundant type of RNA modification that exerts significant influence on diverse biological processes. To date, numerous computational approaches have been developed for predicting methylation, with most of them ignoring the correlations of different encoding strategies and failing to explore the adaptability of various attention mechanisms for methylation identification. To solve the above issues, we proposed an innovative framework for predicting RNA m6A modification site, termed BLAM6A-Merge. Specifically, it utilized a multimodal feature fusion strategy to combine the classification results of four features and Blastn tool. Apart from this, different attention mechanisms were employed for extracting higher-level features on specific features after the screening process. Extensive experiments on 12 benchmarking datasets demonstrated that BLAM6A-Merge achieved superior performance (average AUC: 0.849 for the full transcript mode and 0.784 for the mature mRNA mode). Notably, the Blastn tool was employed for the first time in the identification of methylation sites.
Collapse
|
5
|
Yu X, Yani C, Wang Z, Long H, Zeng R, Liu X, Anas B, Ren J. iDNA-ITLM: An interpretable and transferable learning model for identifying DNA methylation. PLoS One 2024; 19:e0301791. [PMID: 39480834 PMCID: PMC11527195 DOI: 10.1371/journal.pone.0301791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/20/2024] [Indexed: 11/02/2024] Open
Abstract
In this study, from the perspective of image processing, we propose the iDNA-ITLM model, using a novel data enhance strategy by continuously self-replicating a short DNA sequence into a longer DNA sequence and then embedding it into a high-dimensional matrix to enlarge the receptive field, for identifying DNA methylation sites. Our model consistently outperforms the current state-of-the-art sequence-based DNA methylation site recognition methods when evaluated on 17 benchmark datasets that cover multiple species and include three DNA methylation modifications (4mC, 5hmC, and 6mA). The experimental results demonstrate the robustness and superior performance of our model across these datasets. In addition, our model can transfer learning to RNA methylation sequences and produce good results without modifying the hyperparameters in the model. The proposed iDNA-ITLM model can be considered a universal predictor across DNA and RNA methylation species.
Collapse
Affiliation(s)
- Xia Yu
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, Hainan, China
| | - Cui Yani
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China
| | - Zhichao Wang
- Unit 32033, The People’s Liberation Army, Beijing, China
| | - Haixia Long
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, Hainan, China
| | - Rao Zeng
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, Hainan, China
| | - Xiling Liu
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, Hainan, China
| | - Bilal Anas
- Key Laboratory of Data Science and Smart Education, Ministry of Education, Hainan Normal University, Haikou, Hainan, China
| | - Jia Ren
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China
| |
Collapse
|
6
|
Yu X, Ren J, Long H, Zeng R, Zhang G, Bilal A, Cui Y. iDNA-OpenPrompt: OpenPrompt learning model for identifying DNA methylation. Front Genet 2024; 15:1377285. [PMID: 38689652 PMCID: PMC11058834 DOI: 10.3389/fgene.2024.1377285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 03/07/2024] [Indexed: 05/02/2024] Open
Abstract
Introduction: DNA methylation is a critical epigenetic modification involving the addition of a methyl group to the DNA molecule, playing a key role in regulating gene expression without changing the DNA sequence. The main difficulty in identifying DNA methylation sites lies in the subtle and complex nature of methylation patterns, which may vary across different tissues, developmental stages, and environmental conditions. Traditional methods for methylation site identification, such as bisulfite sequencing, are typically labor-intensive, costly, and require large amounts of DNA, hindering high-throughput analysis. Moreover, these methods may not always provide the resolution needed to detect methylation at specific sites, especially in genomic regions that are rich in repetitive sequences or have low levels of methylation. Furthermore, current deep learning approaches generally lack sufficient accuracy. Methods: This study introduces the iDNA-OpenPrompt model, leveraging the novel OpenPrompt learning framework. The model combines a prompt template, prompt verbalizer, and Pre-trained Language Model (PLM) to construct the prompt-learning framework for DNA methylation sequences. Moreover, a DNA vocabulary library, BERT tokenizer, and specific label words are also introduced into the model to enable accurate identification of DNA methylation sites. Results and Discussion: An extensive analysis is conducted to evaluate the predictive, reliability, and consistency capabilities of the iDNA-OpenPrompt model. The experimental outcomes, covering 17 benchmark datasets that include various species and three DNA methylation modifications (4mC, 5hmC, 6mA), consistently indicate that our model surpasses outstanding performance and robustness approaches.
Collapse
Affiliation(s)
- Xia Yu
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Jia Ren
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China
| | - Haixia Long
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Rao Zeng
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Guoqiang Zhang
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Anas Bilal
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Yani Cui
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China
| |
Collapse
|
7
|
Xin R, Zhang F, Zheng J, Zhang Y, Yu C, Feng X. SDBA: Score Domain-Based Attention for DNA N4-Methylcytosine Site Prediction from Multiperspectives. J Chem Inf Model 2024; 64:2839-2853. [PMID: 37646411 DOI: 10.1021/acs.jcim.3c00688] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In tasks related to DNA sequence classification, choosing the appropriate encoding methods is challenging. Some of the methods encode sequences based on prior knowledge that limits the ability of the model to obtain multiperspective information from the sequences. We introduced a new trainable ensemble method based on the attention mechanism SDBA, which stands for Score Domain-Based Attention. Unlike other methods, we fed the task-independent encoding results into the models and dynamically ensembled features from different perspectives using the SDBA mechanism. This approach allows the model to acquire and weight sequence features voluntarily. SDBA is conceptually general and empirically powerful. It has achieved new state-of-the-art results on the benchmark data sets associated with DNA N4-methylcytosine site prediction.
Collapse
Affiliation(s)
- Ruihao Xin
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 130000, P.R. China
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, P.R. China
| | - Fan Zhang
- College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 130000, P.R. China
| | - Jiaxin Zheng
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, P.R. China
| | - Yangyi Zhang
- University of Melbourne Centre for Cancer Research, Victorian Comprehensive Cancer Centre, University of Melbourne, Parkville, Victoria 3050, Australia
| | - Cuinan Yu
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun 130012, P.R. China
| | - Xin Feng
- School of Science, Jilin Institute of Chemical Technology, Jilin 130000, P.R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, P.R. China
| |
Collapse
|
8
|
Yan W, Tan L, Mengshan L, Weihong Z, Sheng S, Jun W, Fu-An W. Time series-based hybrid ensemble learning model with multivariate multidimensional feature coding for DNA methylation prediction. BMC Genomics 2023; 24:758. [PMID: 38082253 PMCID: PMC10712061 DOI: 10.1186/s12864-023-09866-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/02/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND DNA methylation is a form of epigenetic modification that impacts gene expression without modifying the DNA sequence, thereby exerting control over gene function and cellular development. The prediction of DNA methylation is vital for understanding and exploring gene regulatory mechanisms. Currently, machine learning algorithms are primarily used for model construction. However, several challenges remain to be addressed, including limited prediction accuracy, constrained generalization capability, and insufficient learning capacity. RESULTS In response to the aforementioned challenges, this paper leverages the similarities between DNA sequences and time series to introduce a time series-based hybrid ensemble learning model, called Multi2-Con-CAPSO-LSTM. The model utilizes multivariate and multidimensional encoding approach, combining three types of time series encodings with three kinds of genetic feature encodings, resulting in a total of nine types of feature encoding matrices. Convolutional Neural Networks are utilized to extract features from DNA sequences, including temporal, positional, physicochemical, and genetic information, thereby creating a comprehensive feature matrix. The Long Short-Term Memory model is then optimized using the Chaotic Accelerated Particle Swarm Optimization algorithm for predicting DNA methylation. CONCLUSIONS Through cross-validation experiments conducted on 17 species involving three types of DNA methylation (6 mA, 5hmC, and 4mC), the results demonstrate the robust predictive capabilities of the Multi2-Con-CAPSO-LSTM model in DNA methylation prediction across various types and species. Compared with other benchmark models, the Multi2-Con-CAPSO-LSTM model demonstrates significant advantages in sensitivity, specificity, accuracy, and correlation. The model proposed in this paper provides valuable insights and inspiration across various disciplines, including sequence alignment, genetic evolution, time series analysis, and structure-activity relationships.
Collapse
Affiliation(s)
- Wu Yan
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China.
- School of Mathematics and Computer Science, Gannan Normal University, Ganzhou, Jiangxi, 341000, China.
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| | - Li Tan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| | - Li Mengshan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China.
| | - Zhou Weihong
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Sheng Sheng
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Wang Jun
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China
| | - Wu Fu-An
- School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212018, China.
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu, 212018, China.
| |
Collapse
|
9
|
Liu N, Zhang Z, Wu Y, Wang Y, Liang Y. CRBSP:Prediction of CircRNA-RBP Binding Sites Based on Multimodal Intermediate Fusion. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:2898-2906. [PMID: 37130249 DOI: 10.1109/tcbb.2023.3272400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Circular RNA (CircRNA) is widely expressed and has physiological and pathological significance, regulating post-transcriptional processes via its protein-binding activity. However, whereas much work has been done on linear RNA and RNA binding protein (RBP), little is known about the binding sites of CircRNA. The current report is on the development of a medium-term multimodal data fusion strategy, CRBSP, to predict CircRNA-RBP binding sites. CRBSP represents the CircRNA trinucleotide semantic, location, composition and frequency information as the corresponding coding methods of Word to vector (Word2vec), Position-specific trinucleotide propensity (PSTNP), Pseudo trinucleotide composition (PseTNC) and Trinucleotide nucleotide composition (TNC), respectively. CNN (Convolution Neural Networks) was used to extract global information and BiLSTM (bidirectional Long- and Short-Term Memory network) encoder and LSTM (Long- and Short-Term Memory network) decoder for local sequence information. Enhancement of the contributions of key features by the self-attention mechanism was followed by mid-term fusion of the four enhanced features. Logistic Regression (LR) classifier showed that CRBSP gives a mean AUC value of 0.9362 through 5-fold Cross Validation of all 37 datasets, a performance which is superior to five current state-of-the-art models. Similar evaluation of linear RNA-RBP binding sites gave an AUC value of 0.7615 which is also higher than other prediction methods, demonstrating the robustness of CRBSP.
Collapse
|
10
|
Qiu S, Liu R, Liang Y. GR-m6A: Prediction of N6-methyladenosine sites in mammals with molecular graph and residual network. Comput Biol Med 2023; 163:107202. [PMID: 37450964 DOI: 10.1016/j.compbiomed.2023.107202] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/14/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
RNA N6-methyladenine (m6A), which is produced by the methylation of the N6 position of eukaryotic adenine, is a relatively common post-transcriptional modification on the surface of the molecule, which frequently plays a crucial role in biological processes. Biological experimental methods to identify m6A have been studied and implemented in recent years, but they cannot be promoted widely due to drawbacks such as the time and cost of reagents and equipment. Therefore, researchers have proposed computational strategies for identifying m6A sites, but these strategies do not account for the mechanism of methylation occurrence or the structure of RNA molecules. This study, therefore, proposed a novel deep learning model for predicting m6A sites, GR-m6A, which predicts m6A sites by extracting features from the physicochemical properties and spatial structure of molecules via residual networks. In GR-m6A, each RNA base string is represented by SMILES as two matrices comprising topology structural information and node attributes with molecular physicochemical characteristics. The feature encoding matrix was then obtained by fusing the topology matrix and the node matrix in accordance with the graphical convolutional network principle. Correspondingly, the more discriminative features were extracted from the encoding matrix using the residual neural network and predicted using a multilayer perceptron. As evident from the 5-fold cross-validation and independent validation, the GR-m6A model outperformed other existing methods. Thus, we hope that GR-m6A can aid researchers in predicting mammalian m6A loci. The source code and database are available at https://github.com/YingLiangjxau/GR-m6A.
Collapse
Affiliation(s)
- Shi Qiu
- College of Engineering, Jiangxi Agricultural University, Nanchang 310045, Jiangxi, China.
| | - Renxin Liu
- College of Engineering, Jiangxi Agricultural University, Nanchang 310045, Jiangxi, China.
| | - Ying Liang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang 310045, Jiangxi, China.
| |
Collapse
|
11
|
Hu W, Guan L, Li M. Prediction of DNA Methylation based on Multi-dimensional feature encoding and double convolutional fully connected convolutional neural network. PLoS Comput Biol 2023; 19:e1011370. [PMID: 37639434 PMCID: PMC10461834 DOI: 10.1371/journal.pcbi.1011370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2023] [Indexed: 08/31/2023] Open
Abstract
DNA methylation takes on critical significance to the regulation of gene expression by affecting the stability of DNA and changing the structure of chromosomes. DNA methylation modification sites should be identified, which lays a solid basis for gaining more insights into their biological functions. Existing machine learning-based methods of predicting DNA methylation have not fully exploited the hidden multidimensional information in DNA gene sequences, such that the prediction accuracy of models is significantly limited. Besides, most models have been built in terms of a single methylation type. To address the above-mentioned issues, a deep learning-based method was proposed in this study for DNA methylation site prediction, termed the MEDCNN model. The MEDCNN model is capable of extracting feature information from gene sequences in three dimensions (i.e., positional information, biological information, and chemical information). Moreover, the proposed method employs a convolutional neural network model with double convolutional layers and double fully connected layers while iteratively updating the gradient descent algorithm using the cross-entropy loss function to increase the prediction accuracy of the model. Besides, the MEDCNN model can predict different types of DNA methylation sites. As indicated by the experimental results,the deep learning method based on coding from multiple dimensions outperformed single coding methods, and the MEDCNN model was highly applicable and outperformed existing models in predicting DNA methylation between different species. As revealed by the above-described findings, the MEDCNN model can be effective in predicting DNA methylation sites.
Collapse
Affiliation(s)
- Wenxing Hu
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Lixin Guan
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, China
| | - Mengshan Li
- College of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, China
| |
Collapse
|
12
|
Zhou L, Wang Y, Peng L, Li Z, Luo X. Identifying potential drug-target interactions based on ensemble deep learning. Front Aging Neurosci 2023; 15:1176400. [PMID: 37396659 PMCID: PMC10309650 DOI: 10.3389/fnagi.2023.1176400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction Drug-target interaction prediction is one important step in drug research and development. Experimental methods are time consuming and laborious. Methods In this study, we developed a novel DTI prediction method called EnGDD by combining initial feature acquisition, dimensional reduction, and DTI classification based on Gradient boosting neural network, Deep neural network, and Deep Forest. Results EnGDD was compared with seven stat-of-the-art DTI prediction methods (BLM-NII, NRLMF, WNNGIP, NEDTP, DTi2Vec, RoFDT, and MolTrans) on the nuclear receptor, GPCR, ion channel, and enzyme datasets under cross validations on drugs, targets, and drug-target pairs, respectively. EnGDD computed the best recall, accuracy, F1-score, AUC, and AUPR under the majority of conditions, demonstrating its powerful DTI identification performance. EnGDD predicted that D00182 and hsa2099, D07871 and hsa1813, DB00599 and hsa2562, D00002 and hsa10935 have a higher interaction probabilities among unknown drug-target pairs and may be potential DTIs on the four datasets, respectively. In particular, D00002 (Nadide) was identified to interact with hsa10935 (Mitochondrial peroxiredoxin3) whose up-regulation might be used to treat neurodegenerative diseases. Finally, EnGDD was used to find possible drug targets for Parkinson's disease and Alzheimer's disease after confirming its DTI identification performance. The results show that D01277, D04641, and D08969 may be applied to the treatment of Parkinson's disease through targeting hsa1813 (dopamine receptor D2) and D02173, D02558, and D03822 may be the clues of treatment for patients with Alzheimer's disease through targeting hsa5743 (prostaglandinendoperoxide synthase 2). The above prediction results need further biomedical validation. Discussion We anticipate that our proposed EnGDD model can help discover potential therapeutic clues for various diseases including neurodegenerative diseases.
Collapse
Affiliation(s)
- Liqian Zhou
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Yuzhuang Wang
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Lihong Peng
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| | - Zejun Li
- School of Computer Science, Hunan Institute of Technology, Hengyang, China
| | - Xueming Luo
- School of Computer Science, Hunan University of Technology, Zhuzhou, China
| |
Collapse
|
13
|
Li F, Liu S, Li K, Zhang Y, Duan M, Yao Z, Zhu G, Guo Y, Wang Y, Huang L, Zhou F. EpiTEAmDNA: Sequence feature representation via transfer learning and ensemble learning for identifying multiple DNA epigenetic modification types across species. Comput Biol Med 2023; 160:107030. [PMID: 37196456 DOI: 10.1016/j.compbiomed.2023.107030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/21/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Methylation is a major DNA epigenetic modification for regulating the biological processes without altering the DNA sequence, and multiple types of DNA methylations have been discovered, including 6mA, 5hmC, and 4mC. Multiple computational approaches were developed to automatically identify the DNA methylation residues using machine learning or deep learning algorithms. The machine learning (ML) based methods are difficult to be transferred to the other predicting tasks of the DNA methylation sites using additional knowledge. Deep learning (DL) may facilitate the transfer learning of knowledge from similar tasks, but they are often ineffective on small datasets. This study proposes an integrated feature representation framework EpiTEAmDNA based on the strategies of transfer learning and ensemble learning, which is evaluated on multiple DNA methylation types across 15 species. EpiTEAmDNA integrates convolutional neural network (CNN) and conventional machine learning methods, and shows improved performances than the existing DL-based methods on small datasets when no additional knowledge is available. The experimental data suggests that the EpiTEAmDNA models may be further improved via transfer learning based on additional knowledge. The evaluation experiments on the independent test datasets also suggest that the proposed EpiTEAmDNA framework outperforms the existing models in most prediction tasks of the 3 DNA methylation types across 15 species. The source code, pre-trained global model, and the EpiTEAmDNA feature representation framework are freely available at http://www.healthinformaticslab.org/supp/.
Collapse
Affiliation(s)
- Fei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Shuai Liu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Kewei Li
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Yaqi Zhang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Meiyu Duan
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China.
| | - Zhaomin Yao
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, 110167, China
| | - Gancheng Zhu
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Yutong Guo
- College of Life Sciences, Jilin University, Changchun, Jilin, 130012, China
| | - Ying Wang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Lan Huang
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China
| | - Fengfeng Zhou
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China; College of Computer Science and Technology, Jilin University, Changchun, Jilin, 130012, China.
| |
Collapse
|
14
|
Yu X, Ren J, Cui Y, Zeng R, Long H, Ma C. DRSN4mCPred: accurately predicting sites of DNA N4-methylcytosine using deep residual shrinkage network for diagnosis and treatment of gastrointestinal cancer in the precision medicine era. Front Med (Lausanne) 2023; 10:1187430. [PMID: 37215722 PMCID: PMC10192687 DOI: 10.3389/fmed.2023.1187430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/05/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction The DNA N4-methylcytosine (4mC) site levels of those suffering from digestive system cancers were higher, and the pathogenesis of digestive system cancers may also be related to the changes in DNA 4mC levels. Identifying DNA 4mC sites is a very important step in studying the analysis of biological function and cancer prediction. Extracting accurate features from DNA sequences is the key to establishing a prediction model of effective DNA 4mC sites. This study sought to develop a new predictive model, DRSN4mCPred, which aimed to improve the performance of the predicting DNA 4mC sites. Methods The model adopted multi-scale channel attention to extract features and used attention feature fusion (AFF) to fuse features. In order to capture features information more accurately and effectively, this model utilized Deep Residual Shrinkage Network with Channel-Wise thresholds (DRSN-CW) to eliminate noise-related features and achieve a more precise feature representation, thereby, distinguishing the sites in DNA with 4mC and non-4mC. Additionally, the predictive model incorporated an inverted residual block, a Multi-scale Channel Attention Module (MS-CAM), a Bi-directional Long Short Term Memory Network (Bi-LSTM), AFF, and DRSN-CW. Results and Discussion The results indicated the predictive model DRSN4mCPred had extremely good performance in predicting the DNA 4mC sites across different species. This paper will potentially provide support for the diagnosis and treatment of gastrointestinal cancer based on artificial intelligence in the precise medical era.
Collapse
Affiliation(s)
- Xia Yu
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Jia Ren
- Industrial Design School, Shandong University of ART and Design, Jinan, Shandong, China
| | - Yani Cui
- School of Information and Communication Engineering, Hainan University, Haikou, Hainan, China
| | - Rao Zeng
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Haixia Long
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| | - Cuihua Ma
- School of Information Science and Technology, Hainan Normal University, Haikou, Hainan, China
| |
Collapse
|
15
|
Yang S, Yang Z, Yang J. 4mCBERT: A computing tool for the identification of DNA N4-methylcytosine sites by sequence- and chemical-derived information based on ensemble learning strategies. Int J Biol Macromol 2023; 231:123180. [PMID: 36646347 DOI: 10.1016/j.ijbiomac.2023.123180] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/26/2022] [Accepted: 12/30/2022] [Indexed: 01/15/2023]
Abstract
N4-methylcytosine (4mC) is an important DNA chemical modification pattern which is a new methylation modification discovered in recent years and plays critical roles in gene expression regulation, defense against invading genetic elements, genomic imprinting, and so on. Identifying 4mC site from DNA sequence segment contributes to discovering more novel modification patterns. In this paper, we present a model called 4mCBERT that encodes DNA sequence segments by sequence characteristics including one-hot, electron-ion interaction pseudopotential, nucleotide chemical property, word2vec and chemical information containing physicochemical properties (PCP), chemical bidirectional encoder representations from transformers (chemical BERT) and employs ensemble learning framework to develop a prediction model. PCP and chemical BERT features are firstly constructed and applied to predict 4mC sites and show positive contributions to identifying 4mC. For the Matthew's Correlation Coefficient, 4mCBERT significantly outperformed other state-of-the-art models on six independent benchmark datasets including A. thaliana, C. elegans, D. melanogaster, E. coli, G. Pickering, and G. subterraneous by 4.32 % to 24.39 %, 2.52 % to 31.65 %, 2 % to 16.49 %, 6.63 % to 35.15, 8.59 % to 61.85 %, and 8.45 % to 34.45 %. Moreover, 4mCBERT is designed to allow users to predict 4mC sites and retrain 4mC prediction models. In brief, 4mCBERT shows higher performance on six benchmark datasets by incorporating sequence- and chemical-driven information and is available at http://cczubio.top/4mCBERT and https://github.com/abcair/4mCBERT.
Collapse
Affiliation(s)
- Sen Yang
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou 213164, China; The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, Changzhou 213164, China.
| | - Zexi Yang
- School of Computer Science and Artificial Intelligence, Aliyun School of Big Data, School of Software, Changzhou 213164, China
| | - Jun Yang
- School of Educational Sciences, Yili Normal University, Yining 835000, China
| |
Collapse
|
16
|
Li S, Chang M, Tong L, Wang Y, Wang M, Wang F. Screening potential lncRNA biomarkers for breast cancer and colorectal cancer combining random walk and logistic matrix factorization. Front Genet 2023; 13:1023615. [PMID: 36744179 PMCID: PMC9895102 DOI: 10.3389/fgene.2022.1023615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/10/2022] [Indexed: 01/21/2023] Open
Abstract
Breast cancer and colorectal cancer are two of the most common malignant tumors worldwide. They cause the leading causes of cancer mortality. Many researches have demonstrated that long noncoding RNAs (lncRNAs) have close linkages with the occurrence and development of the two cancers. Therefore, it is essential to design an effective way to identify potential lncRNA biomarkers for them. In this study, we developed a computational method (LDA-RWLMF) by integrating random walk with restart and Logistic Matrix Factorization to investigate the roles of lncRNA biomarkers in the prognosis and diagnosis of the two cancers. We first fuse disease semantic and Gaussian association profile similarities and lncRNA functional and Gaussian association profile similarities. Second, we design a negative selection algorithm to extract negative LncRNA-Disease Associations (LDA) based on random walk. Third, we develop a logistic matrix factorization model to predict possible LDAs. We compare our proposed LDA-RWLMF method with four classical LDA prediction methods, that is, LNCSIM1, LNCSIM2, ILNCSIM, and IDSSIM. The results from 5-fold cross validation on the MNDR dataset show that LDA-RWLMF computes the best AUC value of 0.9312, outperforming the above four LDA prediction methods. Finally, we rank all lncRNA biomarkers for the two cancers after determining the performance of LDA-RWLMF, respectively. We find that 48 and 50 lncRNAs have the highest association scores with breast cancer and colorectal cancer among all lncRNAs known to associate with them on the MNDR dataset, respectively. We predict that lncRNAs HULC and HAR1A could be separately potential biomarkers for breast cancer and colorectal cancer and need to biomedical experimental validation.
Collapse
|
17
|
Zhang Z, Xu J, Wu Y, Liu N, Wang Y, Liang Y. CapsNet-LDA: predicting lncRNA-disease associations using attention mechanism and capsule network based on multi-view data. Brief Bioinform 2023; 24:6889447. [PMID: 36511221 DOI: 10.1093/bib/bbac531] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/15/2022] Open
Abstract
Cumulative studies have shown that many long non-coding RNAs (lncRNAs) are crucial in a number of diseases. Predicting potential lncRNA-disease associations (LDAs) can facilitate disease prevention, diagnosis and treatment. Therefore, it is vital to develop practical computational methods for LDA prediction. In this study, we propose a novel predictor named capsule network (CapsNet)-LDA for LDA prediction. CapsNet-LDA first uses a stacked autoencoder for acquiring the informative low-dimensional representations of the lncRNA-disease pairs under multiple views, then the attention mechanism is leveraged to implement an adaptive allocation of importance weights to them, and they are subsequently processed using a CapsNet-based architecture for predicting LDAs. Different from the conventional convolutional neural networks (CNNs) that have some restrictions with the usage of scalar neurons and pooling operations. the CapsNets use vector neurons instead of scalar neurons that have better robustness for the complex combination of features and they use dynamic routing processes for updating parameters. CapsNet-LDA is superior to other five state-of-the-art models on four benchmark datasets, four perturbed datasets and an independent test set in the comparison experiments, demonstrating that CapsNet-LDA has excellent performance and robustness against perturbation, as well as good generalization ability. The ablation studies verify the effectiveness of some modules of CapsNet-LDA. Moreover, the ability of multi-view data to improve performance is proven. Case studies further indicate that CapsNet-LDA can accurately predict novel LDAs for specific diseases.
Collapse
Affiliation(s)
- Zequn Zhang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, 310045 Jiangxi, China
| | - Junlin Xu
- College of Information Science and Engineering, Hunan University, Changsha 410082, Hunan, China
| | - Yanan Wu
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, 310045 Jiangxi, China
| | - Niannian Liu
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, 310045 Jiangxi, China
| | - Yinglong Wang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, 310045 Jiangxi, China
| | - Ying Liang
- College of Computer and Information Engineering, Jiangxi Agricultural University, Nanchang, 310045 Jiangxi, China
| |
Collapse
|
18
|
Zeng W, Gautam A, Huson DH. MuLan-Methyl-multiple transformer-based language models for accurate DNA methylation prediction. Gigascience 2022; 12:giad054. [PMID: 37489753 PMCID: PMC10367125 DOI: 10.1093/gigascience/giad054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/09/2023] [Accepted: 07/18/2023] [Indexed: 07/26/2023] Open
Abstract
Transformer-based language models are successfully used to address massive text-related tasks. DNA methylation is an important epigenetic mechanism, and its analysis provides valuable insights into gene regulation and biomarker identification. Several deep learning-based methods have been proposed to identify DNA methylation, and each seeks to strike a balance between computational effort and accuracy. Here, we introduce MuLan-Methyl, a deep learning framework for predicting DNA methylation sites, which is based on 5 popular transformer-based language models. The framework identifies methylation sites for 3 different types of DNA methylation: N6-adenine, N4-cytosine, and 5-hydroxymethylcytosine. Each of the employed language models is adapted to the task using the "pretrain and fine-tune" paradigm. Pretraining is performed on a custom corpus of DNA fragments and taxonomy lineages using self-supervised learning. Fine-tuning aims at predicting the DNA methylation status of each type. The 5 models are used to collectively predict the DNA methylation status. We report excellent performance of MuLan-Methyl on a benchmark dataset. Moreover, we argue that the model captures characteristic differences between different species that are relevant for methylation. This work demonstrates that language models can be successfully adapted to applications in biological sequence analysis and that joint utilization of different language models improves model performance. Mulan-Methyl is open source, and we provide a web server that implements the approach.
Collapse
Affiliation(s)
- Wenhuan Zeng
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Anupam Gautam
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany
| | - Daniel H Huson
- Algorithms in Bioinformatics, Institute for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- International Max Planck Research School “From Molecules to Organisms”, Max Planck Institute for Biology Tübingen, 72076 Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
19
|
Peng L, Yang J, Wang M, Zhou L. Editorial: Machine learning-based methods for RNA data analysis—Volume II. Front Genet 2022; 13:1010089. [DOI: 10.3389/fgene.2022.1010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 12/02/2022] Open
|
20
|
Charoenkwan P, Schaduangrat N, Lio’ P, Moni MA, Shoombuatong W, Manavalan B. Computational prediction and interpretation of druggable proteins using a stacked ensemble-learning framework. iScience 2022; 25:104883. [PMID: 36046193 PMCID: PMC9421381 DOI: 10.1016/j.isci.2022.104883] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 08/02/2022] [Indexed: 11/22/2022] Open
Abstract
Discovery of potential drugs requires rapid and precise identification of drug targets. Although traditional experimental methodologies can accurately identify drug targets, they are time-consuming and inappropriate for high-throughput screening. Computational approaches based on machine learning (ML) algorithms can expedite the prediction of druggable proteins; however, the performance of the existing computational methods remains unsatisfactory. This study proposes a computational tool, SPIDER, to enhance the accurate prediction of druggable proteins. SPIDER employs various feature descriptors pertaining to several aspects, including physicochemical properties, compositional information, and composition-transition-distribution information, coupled with well-known ML algorithms to facilitate the construction of the final meta-predictor. The experimental results showed that SPIDER enabled more precise and robust prediction of druggable proteins than the baseline models and current existing methods in terms of the independent test dataset. An online web server was established and made freely available online.
Collapse
Affiliation(s)
- Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Nalini Schaduangrat
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Pietro Lio’
- Department of Computer Science and Technology, University of Cambridge, Cambridge CB3 0FD, UK
| | - Mohammad Ali Moni
- Artificial Intelligence & Digital Health, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Watshara Shoombuatong
- Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand
| | - Balachandran Manavalan
- Computational Biology and Bioinformatics Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Gyeonggi-do, Republic of Korea
| |
Collapse
|