1
|
Li Y, Liu X, Zhou J, Li F, Wang Y, Liu Q. Artificial intelligence in traditional Chinese medicine: advances in multi-metabolite multi-target interaction modeling. Front Pharmacol 2025; 16:1541509. [PMID: 40303920 PMCID: PMC12037568 DOI: 10.3389/fphar.2025.1541509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Traditional Chinese Medicine (TCM) utilizes multi-metabolite and multi-target interventions to address complex diseases, providing advantages over single-target therapies. However, the active metabolites, therapeutic targets, and especially the combination mechanisms remain unclear. The integration of advanced data analysis and nonlinear modeling capabilities of artificial intelligence (AI) is driving the transformation of TCM into precision medicine. This review concentrates on the application of AI in TCM target prediction, including multi-omics techniques, TCM-specialized databases, machine learning (ML), deep learning (DL), and cross-modal fusion strategies. It also critically analyzes persistent challenges such as data heterogeneity, limited model interpretability, causal confounding, and insufficient robustness validation in practical applications. To enhance the reliability and scalability of AI in TCM target prediction, future research should prioritize continuous optimization of the AI algorithms using zero-shot learning, end-to-end architectures, and self-supervised contrastive learning.
Collapse
Affiliation(s)
| | | | | | | | | | - Qingzhong Liu
- Department of Clinical Laboratory, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Shi W, Yang H, Xie L, Yin XX, Zhang Y. A review of machine learning-based methods for predicting drug-target interactions. Health Inf Sci Syst 2024; 12:30. [PMID: 38617016 PMCID: PMC11014838 DOI: 10.1007/s13755-024-00287-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/04/2024] [Indexed: 04/16/2024] Open
Abstract
The prediction of drug-target interactions (DTI) is a crucial preliminary stage in drug discovery and development, given the substantial risk of failure and the prolonged validation period associated with in vitro and in vivo experiments. In the contemporary landscape, various machine learning-based methods have emerged as indispensable tools for DTI prediction. This paper begins by placing emphasis on the data representation employed by these methods, delineating five representations for drugs and four for proteins. The methods are then categorized into traditional machine learning-based approaches and deep learning-based ones, with a discussion of representative approaches in each category and the introduction of a novel taxonomy for deep neural network models in DTI prediction. Additionally, we present a synthesis of commonly used datasets and evaluation metrics to facilitate practical implementation. In conclusion, we address current challenges and outline potential future directions in this research field.
Collapse
Affiliation(s)
- Wen Shi
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004 China
| | - Hong Yang
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
| | - Linhai Xie
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing, 102206 China
| | - Xiao-Xia Yin
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, 510006 China
| | - Yanchun Zhang
- School of Computer Science and Technology, Zhejiang Normal University, Jinhua, 321004 China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, 518000 China
| |
Collapse
|
3
|
Abubakar ML, Kapoor N, Sharma A, Gambhir L, Jasuja ND, Sharma G. Artificial Intelligence in Drug Identification and Validation: A Scoping Review. Drug Res (Stuttg) 2024; 74:208-219. [PMID: 38830370 DOI: 10.1055/a-2306-8311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The end-to-end process in the discovery of drugs involves therapeutic candidate identification, validation of identified targets, identification of hit compound series, lead identification and optimization, characterization, and formulation and development. The process is lengthy, expensive, tedious, and inefficient, with a large attrition rate for novel drug discovery. Today, the pharmaceutical industry is focused on improving the drug discovery process. Finding and selecting acceptable drug candidates effectively can significantly impact the price and profitability of new medications. Aside from the cost, there is a need to reduce the end-to-end process time, limiting the number of experiments at various stages. To achieve this, artificial intelligence (AI) has been utilized at various stages of drug discovery. The present study aims to identify the recent work that has developed AI-based models at various stages of drug discovery, identify the stages that need more concern, present the taxonomy of AI methods in drug discovery, and provide research opportunities. From January 2016 to September 1, 2023, the study identified all publications that were cited in the electronic databases including Scopus, NCBI PubMed, MEDLINE, Anthropology Plus, Embase, APA PsycInfo, SOCIndex, and CINAHL. Utilising a standardized form, data were extracted, and presented possible research prospects based on the analysis of the extracted data.
Collapse
Affiliation(s)
| | - Neha Kapoor
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | - Asha Sharma
- Department of Zoology, Swargiya P. N. K. S. Govt. PG College, Dausa, Rajasthan, India
| | - Lokesh Gambhir
- School of Basic and Applied Sciences, Shri Guru Ram Rai University, Dehradun, Uttarakhand, India
| | | | - Gaurav Sharma
- School of Applied Sciences, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| |
Collapse
|
4
|
Dehghan A, Abbasi K, Razzaghi P, Banadkuki H, Gharaghani S. CCL-DTI: contributing the contrastive loss in drug-target interaction prediction. BMC Bioinformatics 2024; 25:48. [PMID: 38291364 PMCID: PMC11264960 DOI: 10.1186/s12859-024-05671-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/22/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The Drug-Target Interaction (DTI) prediction uses a drug molecule and a protein sequence as inputs to predict the binding affinity value. In recent years, deep learning-based models have gotten more attention. These methods have two modules: the feature extraction module and the task prediction module. In most deep learning-based approaches, a simple task prediction loss (i.e., categorical cross entropy for the classification task and mean squared error for the regression task) is used to learn the model. In machine learning, contrastive-based loss functions are developed to learn more discriminative feature space. In a deep learning-based model, extracting more discriminative feature space leads to performance improvement for the task prediction module. RESULTS In this paper, we have used multimodal knowledge as input and proposed an attention-based fusion technique to combine this knowledge. Also, we investigate how utilizing contrastive loss function along the task prediction loss could help the approach to learn a more powerful model. Four contrastive loss functions are considered: (1) max-margin contrastive loss function, (2) triplet loss function, (3) Multi-class N-pair Loss Objective, and (4) NT-Xent loss function. The proposed model is evaluated using four well-known datasets: Wang et al. dataset, Luo's dataset, Davis, and KIBA datasets. CONCLUSIONS Accordingly, after reviewing the state-of-the-art methods, we developed a multimodal feature extraction network by combining protein sequences and drug molecules, along with protein-protein interaction networks and drug-drug interaction networks. The results show it performs significantly better than the comparable state-of-the-art approaches.
Collapse
Affiliation(s)
- Alireza Dehghan
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, 1417614411, Iran
| | - Karim Abbasi
- Laboratory of System Biology, Bioinformatics and Artificial Intelligence in Medicine (LBB&AI), Faculty of Mathematics and Computer Science, Kharazmi University, Tehran, 1417614411, Iran
| | - Parvin Razzaghi
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 4513766731, Iran.
| | - Hossein Banadkuki
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 1417614411, Iran.
| |
Collapse
|
5
|
Zabihian A, Sayyad FZ, Hashemi SM, Shami Tanha R, Hooshmand M, Gharaghani S. DEDTI versus IEDTI: efficient and predictive models of drug-target interactions. Sci Rep 2023; 13:9238. [PMID: 37286613 DOI: 10.1038/s41598-023-36438-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/03/2023] [Indexed: 06/09/2023] Open
Abstract
Drug repurposing is an active area of research that aims to decrease the cost and time of drug development. Most of those efforts are primarily concerned with the prediction of drug-target interactions. Many evaluation models, from matrix factorization to more cutting-edge deep neural networks, have come to the scene to identify such relations. Some predictive models are devoted to the prediction's quality, and others are devoted to the efficiency of the predictive models, e.g., embedding generation. In this work, we propose new representations of drugs and targets useful for more prediction and analysis. Using these representations, we propose two inductive, deep network models of IEDTI and DEDTI for drug-target interaction prediction. Both of them use the accumulation of new representations. The IEDTI takes advantage of triplet and maps the input accumulated similarity features into meaningful embedding corresponding vectors. Then, it applies a deep predictive model to each drug-target pair to evaluate their interaction. The DEDTI directly uses the accumulated similarity feature vectors of drugs and targets and applies a predictive model on each pair to identify their interactions. We have done a comprehensive simulation on the DTINet dataset as well as gold standard datasets, and the results show that DEDTI outperforms IEDTI and the state-of-the-art models. In addition, we conduct a docking study on new predicted interactions between two drug-target pairs, and the results confirm acceptable drug-target binding affinity between both predicted pairs.
Collapse
Affiliation(s)
- Arash Zabihian
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Bioinformatics, Kish International Campus, University of Tehran, Kish, Iran
| | - Faeze Zakaryapour Sayyad
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Seyyed Morteza Hashemi
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Reza Shami Tanha
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Mohsen Hooshmand
- Department of Computer Science and Information Technology, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran.
| | - Sajjad Gharaghani
- Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|