1
|
Murugan G, Kothandan G, Padmanaban R. Anticipatory in silico vaccine designing based on specific antigenic epitopes from Streptococcus mutans against diabetic pathogenesis. In Silico Pharmacol 2024; 12:86. [PMID: 39310673 PMCID: PMC11411028 DOI: 10.1007/s40203-024-00260-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024] Open
Abstract
The metabolic disorder Type 2 Diabetes Mellitus (T2DM) is characterized by hyperglycaemia, causing increased mortality and healthcare burden globally. Recent studies emphasize the impact of metabolites in the gut microbiome on T2DM pathogenesis. One such microbial metabolite, imidazole propionate (Imp) derived from histidine metabolism, is shown to interfere with insulin signalling and other key metabolic processes. The key enzyme urocanate reductase (UrdA) is involved in ImP production. Hence, we propose to develop a novel therapeutic vaccine against the gut microbe producing Imp based on UrdA as a target for treating T2DM using immunoinformatics approach. Antigenic, non-allergic, non-toxic, and immunogenic B cell and T cell potential epitopes were predicted using immunoinformatics servers and tools. These epitopes were adjoined using linker sequences, and to increase immunogenicity, adjuvants were added at the N-terminal end of the final vaccine construct. Further, to confirm the vaccine's safety, antigenic and non-allergic characteristics of the developed vaccine construct were assessed. The tertiary structure of the UrdA vaccine sequence was predicted using molecular modelling tools. A molecular docking study was utilized to understand the vaccine construct interaction with immune receptors, followed by molecular dynamics simulation and binding free energy calculations to assess stability of the complex. In silico cloning techniques were employed to evaluate the expression and translation effectiveness of the developed vaccine in pET vector. In conclusion, this study developed an in silico epitope-based vaccine construct as a novel adjunct therapeutic for T2DM. Graphical Abstract
Collapse
Affiliation(s)
- Gopinath Murugan
- Immunodynamics and Interface Laboratory, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu 600025 India
| | - Gugan Kothandan
- Biopolymer Modeling Laboratory, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, India
| | - Rajashree Padmanaban
- Immunodynamics and Interface Laboratory, Centre for Advanced Study in Crystallography and Biophysics, University of Madras, Chennai, Tamil Nadu 600025 India
| |
Collapse
|
2
|
Oladipo EK, Ojo TO, Elegbeleye OE, Bolaji OQ, Oyewole MP, Ogunlana AT, Olalekan EO, Abiodun B, Adediran DA, Obideyi OA, Olufemi SE, Salamatullah AM, Bourhia M, Younous YA, Adelusi TI. Exploring the nuclear proteins, viral capsid protein, and early antigen protein using immunoinformatic and molecular modeling approaches to design a vaccine candidate against Epstein Barr virus. Sci Rep 2024; 14:16798. [PMID: 39039173 PMCID: PMC11263613 DOI: 10.1038/s41598-024-66828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/04/2024] [Indexed: 07/24/2024] Open
Abstract
The available Epstein Barr virus vaccine has tirelessly harnessed the gp350 glycoprotein as its target epitope, but the result has not been preventive. Right here, we designed a global multi-epitope vaccine for EBV; with special attention to making sure all strains and preventive antigens are covered. Using a robust computational vaccine design approach, our proposed vaccine is armed with 6-16 mers linear B-cell epitopes, 4-9 mer CTL epitopes, and 8-15 mer HTL epitopes which are verified to induce interleukin 4, 10 & IFN-gamma. We employed deep computational mining coupled with expert intelligence in designing the vaccine, using human Beta defensin-3-which has been reported to induce the same TLRs as EBV-as the adjuvant. The tendency of the vaccine to cause autoimmune disorder is quenched by the assurance that the construct contains no EBNA-1 homolog. The protein vaccine construct exhibited excellent physicochemical attributes such as Aliphatic index 59.55 and GRAVY - 0.710; and a ProsaWeb Z score of - 3.04. Further computational analysis revealed the vaccine docked favorably with EBV indicted TLR 1, 2, 4 & 9 with satisfactory interaction patterns. With global coverage of 85.75% and the stable molecular dynamics result obtained for the best two interactions, we are optimistic that our nontoxic, non-allergenic multi-epitope vaccine will help to ameliorate the EBV-associated diseases-which include various malignancies, tumors, and cancers-preventively.
Collapse
Affiliation(s)
- Elijah Kolawole Oladipo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Department of Microbiology, Laboratory of Molecular Biology, Immunology and Bioinformatics, Adeleke University, Ede, 232104, Nigeria
| | - Taiwo Ooreoluwa Ojo
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Oluwabamise Emmanuel Elegbeleye
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Olawale Quadri Bolaji
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Moyosoluwa Precious Oyewole
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
- Department of Biochemistry, Bowen University, Iwo, 232101, Nigeria
| | - Abdeen Tunde Ogunlana
- Institute of Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, 200005, Nigeria
| | - Emmanuel Obanijesu Olalekan
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Bamidele Abiodun
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria
| | - Daniel Adewole Adediran
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
| | | | - Seun Elijah Olufemi
- Division of Vaccine Design and Development, Helix Biogen Institute, Ogbomoso, 210214, Nigeria
| | - Ahmad Mohammad Salamatullah
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, 11, P.O. Box 2460, 11451, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Laboratory of Therapeutic and Organic Chemistry, Faculty of Pharmacy, University of Montpellier, Montpellier, 34000, France
| | | | - Temitope Isaac Adelusi
- Computational Biology and Drug Discovery Laboratory, Department of Biochemistry, Ladoke Akintola University of Technology, (LAUTECH), Ogbomoso, 210214, Nigeria.
- Department of Surgery, School of Medicine, University of Connecticut Health, Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
3
|
Abass OA, Timofeev VI, Sarkar B, Onobun DO, Ogunsola SO, Aiyenuro AE, Aborode AT, Aigboje AE, Omobolanle BN, Imolele AG, Abiodun AA. Immunoinformatics analysis to design novel epitope based vaccine candidate targeting the glycoprotein and nucleoprotein of Lassa mammarenavirus (LASMV) using strains from Nigeria. J Biomol Struct Dyn 2021; 40:7283-7302. [PMID: 33719908 DOI: 10.1080/07391102.2021.1896387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Lassa mammarenavirus (LASMV) is responsible for a specific type of acute viral hemorrhagic fever known as Lassa fever. Lack of effective treatments and counter-measures against the virus has resulted in a high mortality rate in its endemic regions. Therefore, in this study, a novel epitope-based vaccine has been designed using the methods of immunoinformatics targeting the glycoprotein and nucleoprotein of the virus. After numerous robust analyses, two CTL epitopes, eight HTL epitopes and seven B-cell epitopes were finally selected for constructing the vaccine. All these most promising epitopes were found to be antigenic, non-allergenic, nontoxic and non-human homolog, which made them suitable for designing the subunit vaccine. Furthermore, the selected T-cell epitopes which were found to be fully conserved across different isolates of the virus, were also considered for final vaccine construction. After that, numerous validation experiments, i.e. molecular docking, molecular dynamics simulation and immune simulation were conducted, which predicted that our designed vaccine should be stable within the biological environment and effective in combating the LASMV infection. In the end, codon adaptation and in silico cloning studies were performed to design a recombinant plasmid for producing the vaccine industrially. However, further in vitro and in vivo assessments should be done on the constructed vaccine to finally confirm its safety and efficacy.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ohilebo Abdulateef Abass
- Department of Bioinformatics & Computational Biology, Centre for BioCode, Benin, Nigeria.,Department of Biochemistry, Faculty of Life Sciences, Ambrose Alli University, Ekpoma, Nigeria
| | - Vladimir I Timofeev
- Shubnikov Institute of Crystallography of Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Sciences, Moscow, Russian Federation
| | - Bishajit Sarkar
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Desmond Odiamehi Onobun
- Department of Bioinformatics & Computational Biology, Centre for BioCode, Benin, Nigeria.,Department of Biochemistry, Faculty of Life Sciences, Ambrose Alli University, Ekpoma, Nigeria
| | | | | | - Abdullahi Tunde Aborode
- Research & Development, Shaping Women in STEM (SWIS) Africa, Lagos, Nigeria.,Research & Development, Healthy Africans Platform, Ibadan, Nigeria
| | | | | | | | - Alade Adebowale Abiodun
- Bio-Computing Research Unit, Molecular Biology & Simulations (Mols & Sims) Centre, Ado-Ekiti, Nigeria
| |
Collapse
|