1
|
Xu C, Qin D, Lu X, Qi Q, Wu Y, Wang Q, Han Z, Nie X, Jiang Y, Deng D, Xie W, Gao Z, Li L. The subcortical maternal complex safeguards mouse oocyte-to-embryo transition by preventing nuclear entry of SPIN1. Nat Struct Mol Biol 2025:10.1038/s41594-025-01538-0. [PMID: 40247146 DOI: 10.1038/s41594-025-01538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/18/2025] [Indexed: 04/19/2025]
Abstract
How cytoplasmic regulators control nuclear events in mammalian oocytes and early embryos remains largely enigmatic. We previously identified a subcortical maternal complex (SCMC) that specifically resides in the cytoplasm of mammalian oocytes and early embryos but is also involved in nuclear events. Nevertheless, how the cytoplasmic SCMC exerts its role in nuclear processes remains unknown. In this study, we unveil SPIN1, a histone methylation reader, as a novel member of the SCMC. The SCMC component FILIA tightly regulates the expression and cytoplasmic localization of SPIN1 through direct interaction. When the expression of FILIA is decreased because of genetic mutations of SCMC genes, SPIN1 expression is dramatically reduced but the residual SPIN1 translocates into the nucleus. The abnormal nuclear presence of SPIN1 impairs H3K4me3 reprogramming, zygotic genome activation and physiological embryonic development. Inhibiting the interaction between SPIN1 and H3K4me3 partially rescues the abnormal phenotype in FILIA-null embryos. Mechanistically, SPIN1 partially perturbs the demethylation process by competing with KDM5B for binding to H3K4me3. Collectively, our work highlights the complexity of the mammalian SCMC and oocyte-to-embryo transition, revealing an intricate regulatory mechanism that facilitates the smooth progression of this process.
Collapse
Affiliation(s)
- Chengpeng Xu
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dandan Qin
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xukun Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, China
| | - Qianqian Qi
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yu Wu
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Qizhi Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Han
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoqing Nie
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yongmei Jiang
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Dong Deng
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Wei Xie
- Center for Stem Cell Biology and Regenerative Medicine, MOE Key Laboratory of Bioinformatics, New Cornerstone Science Laboratory, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Key Laboratory for Reproductive Medicine of Guangdong Province, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Lei Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Beijing Institute for Stem Cell and Regenerative Medicine, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Cosseddu C, Succu S, Frau A, Mossa F, Versace SV, Brevini TAL, Ledda S, Bebbere D. m6A RNA methylation dynamics during in vitro maturation of cumulus-oocyte complexes derived from adult or prepubertal sheep. J Assist Reprod Genet 2025:10.1007/s10815-025-03444-2. [PMID: 40097858 DOI: 10.1007/s10815-025-03444-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
PURPOSE N6-methyladenosine (m6A) is the most prevalent base epigenetic modification within eukaryotic mRNAs. It participates in post-transcriptional regulation, including maternal RNA maintenance and decay in mouse oocytes and during maternal-to-zygotic transition. The landscape in other mammalian species remains largely unexplored. The present work analyzed m6A dynamics in sheep cumulus oocyte complexes (COCs), during in vitro maturation. To explore potential relationships with oocyte developmental competence, a previously established model consisting of oocytes derived from adult and prepubertal sheep was adopted. METHODS m6a dynamics were analyzed in terms of m6A RNA methylation abundance in cumulus cells (CCs) by colorimetric assay and expression of key m6A methylation-related proteins (METTL3, METTL14, METTL16, VIRMA, YTHDC1, YTHDC2, YTHDF2, YTHDF3, ALKBH5, and FTO) in both cumulus cells and oocytes by real-time PCR. RESULTS We report the dynamics of m6A in sheep COCs, and reveal alterations in both oocytes and cumulus cells derived from prepubertal donors. These changes were observed in terms of m6A RNA methylation levels and transcript dynamics of several m6A methylation-related proteins. Notably, our study shows that dysregulations occur after IVM. CONCLUSION Overall, this work describes for the first time the dynamics of m6A in sheep COCs and uncovers the involvement of m6A RNA methylation in oocyte developmental potential.
Collapse
Affiliation(s)
- Chiara Cosseddu
- Department of Veterinary Medicine, Obstetrics and Gynecology Clinics, University of Sassari, 07100, Sassari, Italy
| | - Sara Succu
- Department of Veterinary Medicine, Anatomy, University of Sassari, 07100, Sassari, Italy
| | - Adele Frau
- Department of Veterinary Medicine, Obstetrics and Gynecology Clinics, University of Sassari, 07100, Sassari, Italy
| | - Francesca Mossa
- Department of Veterinary Medicine, Obstetrics and Gynecology Clinics, University of Sassari, 07100, Sassari, Italy
| | - Sylvia Virginie Versace
- Department of Veterinary Medicine, Veterinary Teaching Hospital, University of Sassari, 07100, Sassari, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology, Department of Veterinary Medicine and Animal Science and Center for Stem Cell Research, University of Milano, 26900, Lodi, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, Obstetrics and Gynecology Clinics, University of Sassari, 07100, Sassari, Italy
| | - Daniela Bebbere
- Department of Veterinary Medicine, Obstetrics and Gynecology Clinics, University of Sassari, 07100, Sassari, Italy.
| |
Collapse
|
3
|
Rodrigues GRD, Cyrillo JNSG, Mota LFM, Schmidt PI, Valente JPS, Oliveira ES, Albuquerque LG, Brito LF, Mercadante MEZ. Effect of genomic regions harboring putative lethal haplotypes on reproductive performance in closed experimental selection lines of Nellore cattle. Sci Rep 2025; 15:4113. [PMID: 39900660 PMCID: PMC11791054 DOI: 10.1038/s41598-025-88501-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 01/28/2025] [Indexed: 02/05/2025] Open
Abstract
Lethal alleles are mutations in the genome that cause embryonic losses in affected homozygous embryos and, therefore, can negatively influence reproduction rates in commercial populations. Thus, this study aimed to identify genomic regions containing potential lethal haplotypes in Nellore breed; identify candidate genes located within these regions; and investigate the reproductive performance of heterozygous carriers of lethal haplotypes in Nellore cattle. Forty-five genomic regions harboring putative lethal haplotypes were identified, which overlap with 360 genes. Gene ontology analyses of these genes revealed biological processes associated with the development of sexual traits in males and females, key functions of the immune system, energy homeostasis, and embryonic development. The gene networks were involved in metabolic pathways including ovarian steroidogenesis, oocyte meiosis, and insulin secretion. Matings between carrier dam and carrier sire led to a reduction of up to -203.46% in pregnancy success probability, an increase of 275.15% in probability of pregnancy loss, 295.03% for stillbirth occurrence, and 301.40% for pre-weaning mortality when compared to non-carrier dam and sire matings. The results highlight the importance of identifying animals that are carriers of lethal haplotypes to avoid the propagation of these haplotypes in the population.
Collapse
Affiliation(s)
- Gustavo R D Rodrigues
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil.
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, 14174-000, SP, Brazil.
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Joslaine N S G Cyrillo
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, 14174-000, SP, Brazil
| | - Lúcio F M Mota
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
| | - Patrícia I Schmidt
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
| | - Júlia P S Valente
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, 14174-000, SP, Brazil
| | - Eduarda S Oliveira
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
| | - Lúcia G Albuquerque
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil
- National Council for Science and Technological Development, Brasilia, 71605-001, DF, Brazil
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Maria E Z Mercadante
- School of Agriculture and Veterinary Science, São Paulo State University, Jaboticabal, 14884-900, SP, Brazil.
- Institute of Animal Science, Beef Cattle Research Center, Sertãozinho, 14174-000, SP, Brazil.
- National Council for Science and Technological Development, Brasilia, 71605-001, DF, Brazil.
| |
Collapse
|
4
|
Hassan S, Ashraf N, Hanif K, Khan NU. Subcortical Maternal Complex in Female Infertility: A Transition from Animal Models to Human Studies. Mol Biol Rep 2025; 52:108. [PMID: 39775990 DOI: 10.1007/s11033-025-10220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Female infertility is a significant healthcare burden that is frequently encountered among couples globally. While environmental factors, comorbidities, and lifestyle determine reproductive health, certain genetic variants in key reproductive genes can potentially cause unsuccessful pregnancies. Such crucial proteins have been identified within the subcortical maternal complex (SCMC) and play an integral role in the early stages of embryogenesis before embryo implantation. SCMC proteins are associated with crucial pathways during embryogenesis, causing changes that are necessary for the transition of an oocyte to an embryo. These vital processes include the formation of cytoplasmic spindles and lattices, accurate positioning of meiotic spindles, regulatory roles in various gene translations, organelle redistribution, and zygotic genome reprogramming. While these genes are well studied in animal models, often mice, translation to clinical studies is comparatively less. The present study elucidates the transition in genetic studies from animal to human models of SCMC proteins. The present literature review shows that the expression of various SCMC proteins impairs embryo development at different stages. The clinical translation of SCMC occurs via various pathways. Therefore, females experiencing multiple unsuccessful pregnancies after natural or assisted conception techniques are candidates for underlying SCMC mutations. Although the phenotype of affected individuals has been identified, the molecular mechanisms that lead to impaired pathways still require investigation. Therefore, the present study paves the way for future research leading to the early diagnosis of lethal variants and possible subsequent management.
Collapse
Affiliation(s)
- Sibte Hassan
- Reproductive Medicine Physician SEHA Corniche Hospital, Abu Dhabi, UAE.
| | - Nomia Ashraf
- Department of obstetrics and gynaecology, Fatima Jinnah Medical University Lahore, Lahore, Pakistan
| | - Khola Hanif
- Genova Invitro Fertilization Clinic Lahore, Lahore, Pakistan
| | - Najeeb Ullah Khan
- Institute of Biotechnology and Genetic Engineering, The University of Agriculture, Peshawar, Pakistan.
| |
Collapse
|
5
|
Chai M, Wen X, Yang D, Zhang Q, Yang N, Cao Y, Zhang Z, Li L, Chen B. A novel homozygous mutation in the NLRP2 gene causes early embryonic arrest. J Assist Reprod Genet 2024; 41:3347-3355. [PMID: 39585517 PMCID: PMC11707221 DOI: 10.1007/s10815-024-03279-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/24/2024] [Indexed: 11/26/2024] Open
Abstract
PURPOSE Successful reproduction in humans requires maturation and fertilization of gametes as well as early embryonic development. Any deviation from these processes leads to infertility. Early embryonic arrest (EEA) is common in female infertility and is primarily attributed to genetic factors. Mutations in the NLRP2 gene have been identified as the causative factors for EEA. In the present study, a novel mutation identified in NLRP2 underscored the novel homozygous variant and phenotypes that might contribute to its inclusion in the genetic counseling of infertile patients. METHODS We recruited a proband from a consanguineous family with a diagnosis of EEA. Peripheral blood samples were collected from the proband and family members for whole-exome sequencing to identify the genes and inheritance patterns associated with infertility; the results were substantiated by Sanger sequencing. All genetic variants and protein structures were analyzed based on computational predictions. Wild-type and mutant plasmids were constructed and transfected into HeLa cells. Subsequent in vitro analyses elucidated the functional impact of the variant. RESULTS A novel homozygous mutation in NLRP2 was identified in the proband. The patient harbored a frameshift deletion mutation (c.195delC: p.Tyr66Thrfs*32) in the pyrin structural domain. This genetic alteration resulted in the down-regulation of NLRP2 mRNA expression, truncation of the protein structure, and altered protein localization in cells. CONCLUSIONS The current findings broaden the spectra of NLRP2 variants, especially concerning EEA. Also, potential diagnostic markers for patients experiencing recurrent IVF/ICSI failure were identified, and a solid foundation was laid for genetic counseling for female infertility.
Collapse
Affiliation(s)
- Menghan Chai
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Xingxing Wen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Dandan Yang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Qiannan Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Ni Yang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China
| | - Zhiguo Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China.
- Department of Biomedical Engineering, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China.
| | - Lin Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Dongcheng, Beijing, 100006, China.
| | - Beili Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, No. 218 Jixi Road, Hefei, 230032, China.
- NHC Key Laboratory of Study On Abnormal Gametes and Reproductive Tract, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, China.
| |
Collapse
|
6
|
Kazama K, Miyagoshi Y, Nishizono H. Tle6 deficiency in male mice led to abnormal sperm morphology and reduced sperm motility. Front Cell Dev Biol 2024; 12:1481659. [PMID: 39512902 PMCID: PMC11540623 DOI: 10.3389/fcell.2024.1481659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
Infertility affects over 15% of the global population, and genetic mutations are a substantial cause of infertility. Recent studies have focused on the subcortical maternal complex and its role in early embryonic development. TLE6, a core protein in the subcortical maternal complex, is crucial for female fertility; however, its role in male germ cells remains poorly understood. In this study, we generated a novel Tle6 knockout mouse model using CRISPR-Cas9 to examine the impact of Tle6 mutations on male fertility. Tle6 knockout males exhibited a reduced total sperm count compared to wild-type mice, with a marked decrease in highly motile sperm. Histological observation of Tle6 +/- mouse testes showed no apparent structural changes, though impaired sperm maturation was observed. Immunofluorescence staining showed that TLE6 localizes to the midpiece of sperm. It was also confirmed that the expression of Tle6 is reduced in Tle6 +/- male mice. In addition, Tle6 +/- mice exhibited a significant increase in serum testosterone levels compared to wild-type mice. Changes in the expression of genes related to sperm function were also observed in the testes of Tle6 knockout mice. These findings suggest that TLE6 is involved in sperm production and function, and that mutations in TLE6 may impair the production of functional sperm in humans, potentially leading to infertility.
Collapse
Affiliation(s)
- Kousuke Kazama
- Research Support Center, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
- Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Yuki Miyagoshi
- Research Support Center, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Hirofumi Nishizono
- Research Support Center, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| |
Collapse
|
7
|
Temerario L, Martino NA, Bennink M, de Wit A, Hiemstra SJ, Dell’Aquila ME, Lamy J. Effects of Cryoprotectant Concentration and Exposure Time during Vitrification of Immature Pre-Pubertal Lamb Cumulus-Oocyte Complexes on Nuclear and Cytoplasmic Maturation. Animals (Basel) 2024; 14:2351. [PMID: 39199884 PMCID: PMC11350855 DOI: 10.3390/ani14162351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Oocyte vitrification allows for the storing of endangered breed female gametes. Cryoprotectant (CPA) concentration and exposure time should ensure cell protection with minimal toxicity. In the present study, a high concentration-rapid exposure (HC-RE) and a low concentration-slow exposure (LC-SE) vitrification protocol, using dimethyl sulfoxide (DMSO) and ethylene glycol (EG) as permeating CPAs, were evaluated on meiotic competence and bioenergetic-oxidative status of pre-pubertal lamb immature COCs after in vitro maturation (IVM). For each protocol, COCs vitrified through a traditional protocol and fresh ones were used as controls. Both protocols allowed COC morphology preservation after vitrification-warming (V-W) and cumulus expansion after IVM. The maturation rate (7% and 14%) was comparable to the vitrified control (13% and 21%) but not satisfactory compared to fresh ones (58% and 64%; p < 0.001). The rate of mature oocytes displaying a perinuclear/subcortical (P/S) mitochondrial distribution pattern, an index of cytoplasmic maturity, was comparable between vitrified and fresh oocytes. The LC-SE vitrification protocol did not affect quantitative bioenergetic-oxidative parameters compared to both controls whereas HC-RE protocol significantly reduced intracellular reactive oxygen species (ROS) levels, indicating cell viability loss. In conclusion, to improve pre-pubertal lamb immature COC vitrification, the combination of low CPA concentrations with prolonged exposure time could be more promising to investigate further.
Collapse
Affiliation(s)
- Letizia Temerario
- Department of Biosciences, Biotechnology & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, 70010 Valenzano, Italy; (N.A.M.); (M.E.D.)
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnology & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, 70010 Valenzano, Italy; (N.A.M.); (M.E.D.)
| | - Monika Bennink
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (M.B.); (A.d.W.); (S.J.H.); (J.L.)
| | - Agnes de Wit
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (M.B.); (A.d.W.); (S.J.H.); (J.L.)
| | - Sipke Joost Hiemstra
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (M.B.); (A.d.W.); (S.J.H.); (J.L.)
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnology & Environment, University of Bari Aldo Moro, Strada per Casamassima km 3, 70010 Valenzano, Italy; (N.A.M.); (M.E.D.)
| | - Julie Lamy
- Animal Breeding and Genomics, Wageningen University & Research, 6700 AH Wageningen, The Netherlands; (M.B.); (A.d.W.); (S.J.H.); (J.L.)
| |
Collapse
|
8
|
Pasquariello R, Bogliolo L, Di Filippo F, Leoni GG, Nieddu S, Podda A, Brevini TAL, Gandolfi F. Use of assisted reproductive technologies (ARTs) to shorten the generational interval in ruminants: current status and perspectives. Theriogenology 2024; 225:16-32. [PMID: 38788626 DOI: 10.1016/j.theriogenology.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/18/2024] [Accepted: 05/18/2024] [Indexed: 05/26/2024]
Abstract
The challenges posed by climate change and increasing world population are stimulating renewed efforts for improving the sustainability of animal production. To meet such challenges, the contribution of genomic selection approaches, in combination with assisted reproductive technologies (ARTs), to spreading and preserving animal genetics is essential. The largest increase in genetic gain can be achieved by shortening the generation interval. This review provides an overview of the current status and progress of advanced ARTs that could be applied to reduce the generation time in both female and male of domestic ruminants. In females, the use of juvenile in vitro embryo transfer (JIVET) enables to generate offspring after the transfer of in vitro produced embryos derived from oocytes of prepubertal genetically superior donors reducing the generational interval and acceleration genetic gain. The current challenge is increasing in vitro embryo production (IVEP) from prepubertal derived oocytes which is still low and variable. The two main factors limiting IVEP success are the intrinsic quality of prepubertal oocytes and the culture systems for in vitro maturation (IVM). In males, advancements in ARTs are providing new strategies to in vitro propagate spermatogonia and differentiate them into mature sperm or even to recapitulate the whole process of spermatogenesis from embryonic stem cells. Moreover, the successful use of immature cells, such as round spermatids, for intracytoplasmic injection (ROSI) and IVEP could allow to complete the entire process in few months. However, these approaches have been successfully applied to human and mouse whereas only a few studies have been published in ruminants and results are still controversial. This is also dependent on the efficiency of ROSI that is limited by the current isolation and selection protocols of round spermatids. In conclusion, the current efforts for improving these reproductive methodologies could lead toward a significant reduction of the generational interval in livestock animals that could have a considerable impact on agriculture sustainability.
Collapse
Affiliation(s)
- Rolando Pasquariello
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Francesca Di Filippo
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy
| | | | - Stefano Nieddu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Andrea Podda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Tiziana A L Brevini
- Laboratory of Biomedical Embryology and Tissue Engineering, Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Fulvio Gandolfi
- Department of Agricultural and Environmental Sciences, University of Milan, Milano, Italy.
| |
Collapse
|
9
|
Chen S, Tao L, He X, Di R, Wang X, Chu M. Single-nucleotide polymorphisms in <i>FLT3</i>, <i>NLRP5</i>, and <i>TGIF1</i> are associated with litter size in Small-tailed Han sheep. Arch Anim Breed 2021; 64:475-486. [PMID: 35024433 PMCID: PMC8738861 DOI: 10.5194/aab-64-475-2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/16/2021] [Indexed: 01/14/2023] Open
Abstract
Previous studies have indicated that FLT3, NLRP5, and TGIF1 play a pivotal role in sheep fecundity. Nevertheless, little is known about the association of the polymorphisms of these genes with litter size (LS). In this study, the selected single-nucleotide polymorphisms (SNPs) were genotyped using a Sequenom MassARRAY® platform, and the distribution of different genotypes of the SNPs in the seven sheep breeds (Small-tailed Han, Hu, Cele Black, Suffolk, Tan, Prairie Tibetan, and Sunite sheep) were analyzed. The reliability of the estimated allele frequency for all seven SNPs was at least 0.9545. Given the association of the TGIF1 g.37866222C > T polymorphism with LS in Small-tailed Han sheep (p<0.05), fecundity differences might be caused by the change in amino acid from proline (Pro) to serine (Ser), which has an impact on secondary, tertiary protein structures with concomitant TGIF1 functionality changes. The FLT3 rs421947730 locus has a great effect on the LS (p<0.05), indicating that the locus of FLT3 in synergy with KILTG is likely to facilitate ovarian follicle maturation and ovulation. Moreover, NLRP5 rs426897754 is associated with the LS of the second and third parities (p<0.05). We speculate that a synonymous variant of NLRP5 may be involved in folliculogenesis accompanied by BMP15, FSHR, BMPR1B, AMH, and GDF9, resulting in the different fecundity of Small-tailed Han sheep. Our studies provide valuable genetic markers for sheep breeding.
Collapse
|
10
|
Mao B, Jia X, Liu H, Xu X, Zhao X, Yuan Y, Li H, Ma X, Zhang L. A novel TLE6 mutation, c.541+1G>A, identified using whole-exome sequencing in a Chinese family with female infertility. Mol Genet Genomic Med 2021; 9:e1743. [PMID: 34264011 PMCID: PMC8404233 DOI: 10.1002/mgg3.1743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022] Open
Abstract
Background Oocytes have a lot of maternal RNAs and proteins, which are used by the early embryo before zygotic genome activation. Transducin‐like enhancer of split 6 (TLE6) is a component of a subcortical maternal complex which plays a critical role in early embryonic development. Methods The patient had been diagnosed with primary infertility for 6 years and had undergone multiple failed in vitro fertilization (IVF)/intracytoplasmic sperm injection (ICSI) cycles. Genomic DNA samples were extracted from her parents’ peripheral blood as well as hers. Whole‐exome sequencing and Sanger validation were performed to identify candidate variants. Results We identified a novel transducin‐like enhancer of split 6 (TLE6) gene mutations in the female patient with recurrent IVF/ICSI failure. The patient carried a homozygous mutation (NM_001143986.1(TLE6): c.541+1G>A) and had viable but low‐quality embryos. Her parents both had heterozygous mutations at this locus. Conclusion Our study expands the mutational and phenotypic spectrum of TLE6 and suggests the important role of TLE6 during embryonic development. Our findings have implications for the genetic diagnosis of female infertility with recurrent IVF/ICSI failure.
Collapse
Affiliation(s)
- Bin Mao
- The Reproductive Medicine Hospital of the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xueling Jia
- The Reproductive Medicine Hospital of the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hongfang Liu
- The Reproductive Medicine Hospital of the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaojuan Xu
- The Reproductive Medicine Hospital of the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaodong Zhao
- The Reproductive Medicine Hospital of the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yue Yuan
- The Reproductive Medicine Hospital of the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hongxing Li
- The Reproductive Medicine Hospital of the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaoling Ma
- The Reproductive Medicine Hospital of the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lili Zhang
- The Reproductive Medicine Hospital of the First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
11
|
Bebbere D, Albertini DF, Coticchio G, Borini A, Ledda S. The subcortical maternal complex: emerging roles and novel perspectives. Mol Hum Reprod 2021; 27:6311673. [PMID: 34191027 DOI: 10.1093/molehr/gaab043] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/19/2021] [Indexed: 11/13/2022] Open
Abstract
Since its recent discovery, the subcortical maternal complex (SCMC) is emerging as a maternally inherited and crucial biological structure for the initial stages of embryogenesis in mammals. Uniquely expressed in oocytes and preimplantation embryos, where it localizes to the cell subcortex, this multiprotein complex is essential for early embryo development in the mouse and is functionally conserved across mammalian species, including humans. The complex has been linked to key processes leading the transition from oocyte to embryo, including meiotic spindle formation and positioning, regulation of translation, organelle redistribution, and epigenetic reprogramming. Yet, the underlying molecular mechanisms for these diverse functions are just beginning to be understood, hindered by unresolved interplay of SCMC components and variations in early lethal phenotypes. Here we review recent advances confirming involvement of the SCMC in human infertility, revealing an unexpected relationship with offspring health. Moreover, SCMC organization is being further revealed in terms of novel components and interactions with additional cell constituents. Collectively, this evidence prompts new avenues of investigation into possible roles during the process of oogenesis and the regulation of maternal transcript turnover during the oocyte to embryo transition.
Collapse
Affiliation(s)
- Daniela Bebbere
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | | | | | | | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
12
|
Mastrorocco A, Cacopardo L, Lamanna D, Temerario L, Brunetti G, Carluccio A, Robbe D, Dell’Aquila ME. Bioengineering Approaches to Improve In Vitro Performance of Prepubertal Lamb Oocytes. Cells 2021; 10:cells10061458. [PMID: 34200771 PMCID: PMC8230371 DOI: 10.3390/cells10061458] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/15/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022] Open
Abstract
Juvenile in vitro embryo technology (JIVET) provides exciting opportunities in animal reproduction by reducing the generation intervals. Prepubertal oocytes are also relevant models for studies on oncofertility. However, current JIVET efficiency is still unpredictable, and further improvements are needed in order for it to be used on a large-scale level. This study applied bioengineering approaches to recreate: (1) the three-dimensional (3D) structure of the cumulus–oocyte complex (COC), by constructing—via bioprinting technologies—alginate-based microbeads (COC-microbeads) for 3D in vitro maturation (3D-IVM); (2) dynamic IVM conditions, by culturing the COC in a millifluidic bioreactor; and (3) an artificial follicular wall with basal membrane, by adding granulosa cells (GCs) and type I collagen (CI) during bioprinting. The results show that oocyte nuclear and cytoplasmic maturation, as well as blastocyst quality, were improved after 3D-IVM compared to 2D controls. The dynamic 3D-IVM did not enhance oocyte maturation, but it improved oocyte bioenergetics compared with static 3D-IVM. The computational model showed higher oxygen levels in the bioreactor with respect to the static well. Microbead enrichment with GCs and CI improved oocyte maturation and bioenergetics. In conclusion, this study demonstrated that bioengineering approaches that mimic the physiological follicle structure could be valuable tools to improve IVM and JIVET.
Collapse
Affiliation(s)
- Antonella Mastrorocco
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
- Correspondence:
| | - Ludovica Cacopardo
- Research Centre E. Piaggio, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy;
| | - Daniela Lamanna
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Letizia Temerario
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Giacomina Brunetti
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| | - Augusto Carluccio
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
| | - Domenico Robbe
- Faculty of Veterinary Medicine, University of Teramo, Loc. Piano d’Accio, 64100 Teramo, Italy; (A.C.); (D.R.)
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies & Biopharmaceutics, University of Bari Aldo Moro, Via Edoardo Orabona, 70125 Bari, Italy; (D.L.); (L.T.); (G.B.); (M.E.D.)
| |
Collapse
|
13
|
Amoushahi M, Sunde L, Lykke-Hartmann K. The pivotal roles of the NOD-like receptors with a PYD domain, NLRPs, in oocytes and early embryo development†. Biol Reprod 2020; 101:284-296. [PMID: 31201414 DOI: 10.1093/biolre/ioz098] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 03/29/2019] [Accepted: 06/11/2019] [Indexed: 12/19/2022] Open
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors with a pyrin domain (PYD), NLRPs, are pattern recognition receptors, well recognized for their important roles in innate immunity and apoptosis. However, several NLRPs have received attention for their new, specialized roles as maternally contributed genes important in reproduction and embryo development. Several NLRPs have been shown to be specifically expressed in oocytes and preimplantation embryos. Interestingly, and in line with divergent functions, NLRP genes reveal a complex evolutionary divergence. The most pronounced difference is the human-specific NLRP7 gene, not identified in rodents. However, mouse models have been extensively used to study maternally contributed NLRPs. The NLRP2 and NLRP5 proteins are components of the subcortical maternal complex (SCMC), which was recently identified as essential for mouse preimplantation development. The SCMC integrates multiple proteins, including KHDC3L, NLRP5, TLE6, OOEP, NLRP2, and PADI6. The NLRP5 (also known as MATER) has been extensively studied. In humans, inactivating variants in specific NLRP genes in the mother are associated with distinct phenotypes in the offspring, such as biparental hydatidiform moles (BiHMs) and preterm birth. Maternal-effect recessive mutations in KHDC3L and NLRP5 (and NLRP7) are associated with reduced reproductive outcomes, BiHM, and broad multilocus imprinting perturbations. The precise mechanisms of NLRPs are unknown, but research strongly indicates their pivotal roles in the establishment of genomic imprints and post-zygotic methylation maintenance, among other processes. Challenges for the future include translations of findings from the mouse model into human contexts and implementation in therapies and clinical fertility management.
Collapse
Affiliation(s)
| | - Lone Sunde
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark
| | - Karin Lykke-Hartmann
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Genetics, Aarhus University Hospital, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
14
|
Mastrorocco A, Cacopardo L, Martino NA, Fanelli D, Camillo F, Ciani E, Roelen BAJ, Ahluwalia A, Dell’Aquila ME. One-step automated bioprinting-based method for cumulus-oocyte complex microencapsulation for 3D in vitro maturation. PLoS One 2020; 15:e0238812. [PMID: 32915922 PMCID: PMC7485809 DOI: 10.1371/journal.pone.0238812] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/23/2020] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional in vitro maturation (3D IVM) is a promising approach to improve IVM efficiency as it could prevent cumulus-oocyte complex (COC) flattening and preserve its structural and functional integrity. Methods reported to date have low reproducibility and validation studies are limited. In this study, a bioprinting based production process for generating microbeads containing a COC (COC-microbeads) was optimized and its validity tested in a large animal model (sheep). Alginate microbeads were produced and characterized for size, shape and stability under culture conditions. COC encapsulation had high efficiency and reproducibility and cumulus integrity was preserved. COC-microbeads underwent IVM, with COCs cultured in standard 2D IVM as controls. After IVM, oocytes were analyzed for nuclear chromatin configuration, bioenergetic/oxidative status and transcriptional activity of genes biomarker of mitochondrial activity (TFAM, ATP6, ATP8) and oocyte developmental competence (KHDC3, NLRP5, OOEP and TLE6). The 3D system supported oocyte nuclear maturation more efficiently than the 2D control (P<0.05). Ooplasmic mitochondrial activity and reactive oxygen species (ROS) generation ability were increased (P<0.05). Up-regulation of TFAM, ATP6 and ATP8 and down-regulation of KHDC3, NLRP5 expression were observed in 3D IVM. In conclusion, the new bioprinting method for producing COC-microbeads has high reproducibility and efficiency. Moreover, 3D IVM improves oocyte nuclear maturation and relevant parameters of oocyte cytoplasmic maturation and could be used for clinical and toxicological applications.
Collapse
Affiliation(s)
- Antonella Mastrorocco
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
- * E-mail:
| | | | - Nicola Antonio Martino
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Diana Fanelli
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| | - Bernard A. J. Roelen
- Department of Clinical Sciences, Embryology, Anatomy and Physiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Arti Ahluwalia
- Research Centre E. Piaggio, University of Pisa, Pisa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Maria Elena Dell’Aquila
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
15
|
Knockout of the Transducin-Like Enhancer of Split 6 Gene Affects the Proliferation and Cell Cycle Process of Mouse Spermatogonia. Int J Mol Sci 2020; 21:ijms21165827. [PMID: 32823735 PMCID: PMC7461562 DOI: 10.3390/ijms21165827] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/30/2020] [Accepted: 08/10/2020] [Indexed: 12/19/2022] Open
Abstract
Tle6 (Transducin-like enhancer of split 6) is a member of the Tle co-repressor superfamily, which is expressed in various tissues of invertebrates and vertebrates and participates in the developmental process. However, the current research has only found that the TLE6 mutation is related to infertility, and the key regulatory mechanism of TLE6 remains to be explored. In this study, we combined Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 and the Tet-on system to construct mouse spermatogonia cell lines that induced TLE6 protein knockout (KO), and studied the effect of Tle6 on mouse spermatogonia proliferation and the cell cycle. The results showed that, after drug induction, the Tle6 gene in mouse spermatogonia was successfully knocked out at the genome and protein levels, and the Tle6 gene knockout efficiency was confirmed to be 87.5% with gene-cloning technology. At the same time, we also found that the mouse spermatogonia proliferated slowly after the Tle6 knockout. Using flow cytometry, we found that the cells did not undergo significant apoptosis, and the number of cells in the S phase decreased. After real-time quantity PCR (qRT-PCR) analysis, we found that the expression of cell-proliferation-related genes, CCAAT enhancer-binding protein α(C/ebp α), granulocyte-colony stimulating factor(G-csf), cyclin-dependent kinases 4(Cdk 4), Cyclin E, proliferating cell nuclear antigen(Pcna), and S-phase kinase-associated protein 2 (Skp2) was significantly reduced, which further affected cell growth. In summary, Tle6 can regulate spermatogonia cell proliferation and the cell cycle and provide a scientific basis for studying the role of TLE6 on spermatogenesis.
Collapse
|
16
|
Subcortical maternal complex (SCMC) expression during folliculogenesis is affected by oocyte donor age in sheep. J Assist Reprod Genet 2020; 37:2259-2271. [PMID: 32613414 DOI: 10.1007/s10815-020-01871-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/25/2020] [Indexed: 12/15/2022] Open
Abstract
PURPOSE The age-associated decline in female fertility is largely ascribable to the decrease in oocyte quality. The subcortical maternal complex (SCMC) is a multiprotein complex essential for early embryogenesis and female fertility and functionally conserved across mammals. The present work evaluated expression dynamics of its components during folliculogenesis in relation to maternal age in sheep. METHODS The expression of the SCMC components (KHDC3/FILIA, NLRP2, NLRP5/MATER, OOEP/FLOPED, PADI6, TLE6 and ZBED3) was analyzed by real-time PCR in pools of growing oocytes (GO) of different diameters (70-90 μm (S), 90-110 μm (M), or 110-130 μm (L)) derived from non-hormonally treated adult (Ad; age < 4 years), prepubertal (Pr; age 40 days), or aged ewes (age > 6 years). RESULTS Specific expression patterns associated with donor age were observed during folliculogenesis for all genes, except ZBED3. In oocytes of adult donors, the synthesis of NLRP2, NLRP5, PADI6, and ZBED3 mRNAs was complete in S GO, while FILIA, TLE6, and OOEP were actively transcribed at this stage. Conversely, Pr GO showed active transcription of all mRNAs, except for ZBED3, during the entire window of oocyte growth. Notably, aged GO showed a completely inverse pattern, with a decrease of NLRP2, TLE6, FILIA, and PADI6 mRNA abundance during the latest stage of oocyte growth (L GO). Interestingly, MATER showed high expression variability, suggesting large inter-oocyte differences. CONCLUSION Our study describes the SCMC expression dynamics during sheep oogenesis and reports age-specific patterns that are likely involved in the age-related decline of oocyte quality.
Collapse
|
17
|
Zhang Z, Tang J, He X, Di R, Chu M. Mutations in NLRP5 and NLRP9 are Associated with Litter Size in Small Tail Han Sheep. Animals (Basel) 2020; 10:ani10040689. [PMID: 32326631 PMCID: PMC7222816 DOI: 10.3390/ani10040689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/02/2020] [Accepted: 04/12/2020] [Indexed: 01/06/2023] Open
Abstract
Previous studies showed that the NLR family pyrin domain-containing 5 (NLRP5) and NLRP9 genes are two important reproductive genes; however, their effects on sheep litter size are unknown. Therefore, in this study, we first genotyped seven sheep breeds via the MassARRAY® SNP system at the loci g.60495375A > G, g.60495363G > A, and g.60499690C > A in NLRP5, and g.59030623T > C and g.59043397A > C in NLRP9. Our results revealed that each locus in most sheep breeds contained three genotypes. Then, we conducted population genetic analysis of single nucleotide polymorphisms in NLRP5 and NLRP9, and we found that the polymorphism information content value in all sheep breeds ranged from 0 to 0.36, and most sheep breeds were under Hardy-Weinberg equilibrium (p > 0.05). Furthermore, association analysis in Small Tail Han sheep indicated that two loci, g.60495363G > A in NLRP5 and g.59030623T > C in NLRP9, were highly associated with litter size. The mutation in g.60495363G > A may decrease interactions of NLRP5 with proteins, such as GDF9, whereas the mutation in g.59030623T > C may enhance the combining capacity of NLRP9 with these proteins; consequently, these mutations may influence the ovulation rate and even litter size. The findings of our study provide valuable genetic markers that can be used to improve the breeding of sheep and even other mammals.
Collapse
Affiliation(s)
- Zhuangbiao Zhang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Jishun Tang
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Ran Di
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
| | - Mingxing Chu
- Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.Z.); (J.T.); (X.H.); (R.D.)
- Correspondence: ; Tel.: +86-010-6281-9850
| |
Collapse
|
18
|
Differential Regulation of TLE3 in Sertoli Cells of the Testes during Postnatal Development. Cells 2019; 8:cells8101156. [PMID: 31569653 PMCID: PMC6848928 DOI: 10.3390/cells8101156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 12/31/2022] Open
Abstract
Spermatogenesis is a process by which haploid cells differentiate from germ cells in the seminiferous tubules of the testes. TLE3, a transcriptional co-regulator that interacts with DNA-binding factors, plays a role in the development of somatic cells. However, no studies have shown its role during germ cell development in the testes. Here, we examined TLE3 expression in the testes during spermatogenesis. TLE3 was highly expressed in mouse testes and was dynamically regulated in different cell types of the seminiferous tubules, spermatogonia, spermatids, and Sertoli cells, but not in the spermatocytes. Interestingly, TLE3 was not detected in Sertoli cells on postnatal day 7 (P7) but was expressed from P10 onward. The microarray analysis showed that the expression of numerous genes changed upon TLE3 knockdown in a Sertoli cell line TM4. These include 1597 up-regulated genes and 1452 down-regulated genes in TLE3-knockdown TM4 cells. Ingenuity Pathway Analysis (IPA) showed that three factors were up-regulated and two genes were down-regulated upon TLE3 knockdown in TM4 cells. The abnormal expression of the three factors is associated with cellular malfunctions such as abnormal differentiation and Sertoli cell formation. Thus, TLE3 is differentially expressed in Sertoli cells and plays a crucial role in regulating cell-specific genes involved in the differentiation and formation of Sertoli cells during testicular development.
Collapse
|
19
|
Qin D, Gao Z, Xiao Y, Zhang X, Ma H, Yu X, Nie X, Fan N, Wang X, Ouyang Y, Sun QY, Yi Z, Li L. The subcortical maternal complex protein Nlrp4f is involved in cytoplasmic lattice formation and organelle distribution. Development 2019; 146:dev.183616. [DOI: 10.1242/dev.183616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/13/2019] [Indexed: 01/09/2023]
Abstract
In mammalian oocytes and embryos, the subcortical maternal complex (SCMC) and cytoplasmic lattices (CPLs) are two closely related structures. Their detailed compositions and functions remain largely unclear. Here, we characterized Nlrp4f as a novel component associated with the SCMC and CPLs. Disruption of maternal Nlrp4f leads to decreased fecundity and delayed preimplantation development in the mouse. Lack of Nlrp4f affects organelle distribution in mouse oocytes and early embryos. Depletion of Nlrp4f disrupts CPL formation but does not affect the interactions of other SCMC proteins. Interestingly, the loss of Filia or Tle6, two other SCMC proteins, also disrupts CPL formation in mouse oocytes. Thus, the absence of CPLs and aberrant distribution of organelles in the oocytes disrupted the examined SCMC genes, including previously reported Zbed3, Mater, Floped and Padi6, indicate that the SCMC is required for CPL formation and organelle distribution. Consistent with the SCMC's role in CPL formation, the SCMC forms before CPLs during oogenesis. Together, our results suggest that SCMC protein Nlrp4f is involved in CPL formation and organelle distribution in mouse oocytes.
Collapse
Affiliation(s)
- Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zheng Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Reproductive Medicine Center of the Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China
| | - Yi Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Haixia Ma
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xingjiang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoqing Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Na Fan
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaoqing Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yingchun Ouyang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qing-Yuan Sun
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaohong Yi
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, 102206, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
20
|
Proteomic landscape of seminal plasma associated with dairy bull fertility. Sci Rep 2018; 8:16323. [PMID: 30397208 PMCID: PMC6218504 DOI: 10.1038/s41598-018-34152-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/18/2018] [Indexed: 12/19/2022] Open
Abstract
Male fertility is the ability of sperm to fertilize the egg and sustain embryo development. Several factors determine the fertilizing capacity of mammalian sperm, including those intrinsic to sperm and components of the seminal plasma. The present study analyzed the seminal fluid proteome of Bos taurus and potential associations between proteins and fertility scores. Mass spectrometry coupled with nano HPLC allowed the identification of 1,159 proteins in the dairy bull seminal plasma. There were 50 and 29 seminal proteins more abundant in high (HF) low fertility (LF) bulls, respectively. Based on multivariate analysis, C-type natriuretic peptide, TIMP-2, BSP5 and sulfhydryl oxidase indicated relationship with HF bulls. Clusterin, tissue factor pathway inhibitor 2, galectin-3-binding protein and 5′-nucleotidase were associated with LF bulls. Abundance of NAD(P)(+)-arginine ADP-ribosyltransferase, prosaposin and transmembrane protein 2 proteins had the highest positive correlations with fertility ranking. Quantities of vitamin D-binding protein, nucleotide exchange factor SIL1 and galectin-3-binding protein showed the highest negative correlations with fertility ranking. A fertility ranking score was calculated and the relationship with these proteins was significant (Spearman’s rho = 0.94). The present findings represent a major and novel contribution to the study of bovine seminal proteins. Indicators of fertility can be used to improve reproductive biotechnologies.
Collapse
|
21
|
Amorim ST, Kluska S, Berton MP, de Lemos MVA, Peripolli E, Stafuzza NB, Martin JF, Álvarez MS, Gaviña BV, Toro MA, Banchero G, Oliveira PS, Grigoletto L, Eler JP, Baldi F, Ferraz JBS. Genomic study for maternal related traits in Santa Inês sheep breed. Livest Sci 2018. [DOI: 10.1016/j.livsci.2018.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
22
|
Masala L, Ariu F, Bogliolo L, Bellu E, Ledda S, Bebbere D. Delay in maternal transcript degradation in ovine embryos derived from low competence oocytes. Mol Reprod Dev 2018; 85:427-439. [PMID: 29542856 DOI: 10.1002/mrd.22977] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/14/2018] [Accepted: 02/18/2018] [Indexed: 01/06/2023]
Abstract
Oocytes from prepubertal animals have a reduced ability to undergo embryo development and produce viable offspring. The present work used an ovine model consisting of oocytes derived from adult and prepubertal donors to assess the molecular status of oocytes and preimplantation embryos with different developmental competence. The lower potential of oocytes of young donors was confirmed in terms of in vitro developmental capabilities and kinetics. A panel of genes including maternal effect (DPPA3, GDF9, NMP2, ZAR1) and housekeeping genes (ACTB, RPL19, SDHA, YWHAZ, ATP1A1), genes involved in DNA methylation (DNMT1, DNMT3A, DNMT3B), genomic imprinting (IGF2R), pluripotency (NANOG, POU5F1) and cell cycle regulation (CCNB1, CDK1, MELK) was relatively quantified. Temporal analysis during oocyte maturation and preimplantation embryo development evidenced patterns associated with donor age. With a few gene-specific exceptions, the differential model showed a reduced transcript abundance in immature prepubertal oocytes that completely reversed trend after fertilization, when higher mRNA levels were consistently observed in early embryos, indicating a delay in maternal transcript degradation. We propose that the molecular shortage in the prepubertal oocyte may affect its developmental potential and impair the early pathways of maternal mRNA clearance in the embryo. While confirming the different potential of oocytes derived from adult and prepubertal donors, our work showed for the first time a consistent delay in maternal transcript degradation in embryos derived from low competence oocytes that interestingly recalls the delayed developmental kinetics. Such abnormal transcript persistence may hinder further development and represents a novel perspective on the complexity of developmental competence.
Collapse
Affiliation(s)
- Laura Masala
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Federica Ariu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Luisa Bogliolo
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Emanuela Bellu
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Sergio Ledda
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| | - Daniela Bebbere
- Department of Veterinary Medicine, University of Sassari, Sassari, Italy
| |
Collapse
|
23
|
Mossa F, Bebbere D, Ledda A, Burrai GP, Chebli I, Antuofermo E, Ledda S, Cannas A, Fancello F, Atzori AS. Testicular development in male lambs prenatally exposed to a high-starch diet. Mol Reprod Dev 2018. [DOI: 10.1002/mrd.22974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Francesca Mossa
- Department of Veterinary Medicine; University of Sassari; Sassari Italy
| | - Daniela Bebbere
- Department of Veterinary Medicine; University of Sassari; Sassari Italy
| | - Antonello Ledda
- Department of Agricultural Sciences; University of Sassari; Sassari Italy
| | | | - Imane Chebli
- Faculty of Science, Department of Biology; University of Djillali Liabes; Sidi Bel Abbes Algeria
| | | | - Sergio Ledda
- Department of Veterinary Medicine; University of Sassari; Sassari Italy
| | - Antonello Cannas
- Department of Agricultural Sciences; University of Sassari; Sassari Italy
| | - Francesco Fancello
- Department of Agricultural Sciences; University of Sassari; Sassari Italy
| | - Alberto S. Atzori
- Department of Agricultural Sciences; University of Sassari; Sassari Italy
| |
Collapse
|
24
|
Lu X, Gao Z, Qin D, Li L. A Maternal Functional Module in the Mammalian Oocyte-To-Embryo Transition. Trends Mol Med 2017; 23:1014-1023. [DOI: 10.1016/j.molmed.2017.09.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/05/2017] [Accepted: 09/14/2017] [Indexed: 01/21/2023]
|
25
|
Gao Z, Zhang X, Yu X, Qin D, Xiao Y, Yu Y, Xiang Y, Nie X, Lu X, Liu W, Yi Z, Li L. Zbed3 participates in the subcortical maternal complex and regulates the distribution of organelles. J Mol Cell Biol 2017; 10:74-88. [DOI: 10.1093/jmcb/mjx035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/29/2017] [Indexed: 01/08/2023] Open
Affiliation(s)
- Zheng Gao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoxin Zhang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xingjiang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yi Xiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yang Yu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yunlong Xiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xiaoqing Nie
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Xukun Lu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wenbo Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zhaohong Yi
- Key Laboratory of Urban Agriculture (North) of Ministry of Agriculture, College of Biological Science and Engineering, Beijing University of Agriculture, Beijing, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
26
|
Ariu F, Bogliolo L, Pinna A, Malfatti L, Innocenzi P, Falchi L, Bebbere D, Ledda S. Cerium oxide nanoparticles (CeO2 NPs) improve the developmental competence of in vitro-matured prepubertal ovine oocytes. Reprod Fertil Dev 2017; 29:1046-1056. [DOI: 10.1071/rd15521] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 02/11/2016] [Indexed: 12/15/2022] Open
Abstract
The present study investigated whether supplementation with different doses of cerium dioxide nanoparticles (CeO2 NPs) during in vitro maturation (IVM) of prepubertal ovine oocytes influenced their embryonic development in vitro. Cumulus–oocyte complexes derived from the ovaries of slaughtered prepubertal sheep underwent IVM with CeO2NPs (0, 44, 88 or 220 µg mL–1). Matured oocytes were fertilised in vitro and zygotes were cultured for 7 days. The results demonstrated that CeO2NPs were internalised in the cumulus cells and not in the oocyte. The treatment with CeO2NPs did not affect nuclear maturation or intracellular levels of reactive oxygen species of the oocytes. The percentage of oocytes with regular chromatin configuration and cytoskeleton structures when treated with 44 µg mL–1 CeO2NPs was similar to oocytes matured in the absence of CeO2NPs and significantly higher than those treated with 88 or 220 µg mL–1 CeO2NPs. The relative quantification of transcripts in the cumulus cells of oocytes matured with 44 µg mL–1 CeO2NPs showed a statistically lower mRNA abundance of BCL2-associated X protein (BAX), B-cell CLL/lymphoma 2 (BCL2) and superoxide dismutase 1 (SOD1) compared with the 0 µg mL–1 CeO2 NPs group. A concentration of 44 µg mL–1 CeO2NPs significantly increased the blastocyst yield and their total, inner cell mass and trophectoderm cell numbers, compared with the 0 and 220 µg mL–1 groups. A low concentration of CeO2NPs in the maturation medium enhanced in vitro embryo production of prepubertal ovine oocytes.
Collapse
|
27
|
Bebbere D, Masala L, Albertini DF, Ledda S. The subcortical maternal complex: multiple functions for one biological structure? J Assist Reprod Genet 2016; 33:1431-1438. [PMID: 27525657 DOI: 10.1007/s10815-016-0788-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 08/02/2016] [Indexed: 02/07/2023] Open
Abstract
The subcortical maternal complex (SCMC) is a multiprotein complex uniquely expressed in mammalian oocytes and early embryos, essential for zygote progression beyond the first embryonic cell divisions. Similiar to other factors encoded by maternal effect genes, the physiological role of SCMC remains unclear, although recent evidence has provided important molecular insights into different possible functions. Its potential involvement in human fertility is attracting increasing attention; however, the complete story is far from being told. The present mini review provides an overview of recent findings related to the SCMC and discusses its potential physiological role/s with the aim of inspiring new directions for future research.
Collapse
Affiliation(s)
- D Bebbere
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy.
| | - L Masala
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy
| | - D F Albertini
- The Center for Human Reproduction, New York, NY, USA.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - S Ledda
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100, Sassari, Italy
| |
Collapse
|
28
|
Supplementation with nanomolar concentrations of verbascoside during in vitro maturation improves embryo development by protecting the oocyte against oxidative stress: a large animal model study. Reprod Toxicol 2016; 65:204-211. [PMID: 27522010 DOI: 10.1016/j.reprotox.2016.08.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/27/2016] [Accepted: 08/10/2016] [Indexed: 02/06/2023]
Abstract
The effects of verbascoside (VB), added at nanomolar concentrations during in vitro maturation (IVM) of juvenile sheep oocytes, on in vitro embryo development and its mechanisms of action at the oocyte level were analyzed. Developmental rates, after IVM in the presence/absence of VB (1nM for 24h; 1nM for 2h; 10nM for 2h), were evaluated. The bioenergetic/oxidative status of oocytes matured after IVM in the presence/absence of 1nM VB for 24h was assessed by confocal analysis of mitochondria and reactive oxygen species (ROS), lipid peroxidation (LPO) assay, and quantitative PCR of bioenergy/redox-related genes. The addition of 1nM VB during 24h IVM significantly increased blastocyst formation and quality. Verbascoside reduced oocyte ROS and LPO and increased mitochondria/ROS colocalization while keeping mitochondria activity and gene expression unchanged. In conclusion, supplementation with nanomolar concentrations of VB during IVM, in the juvenile sheep model, promotes embryo development by protecting the oocyte against oxidative stress.
Collapse
|
29
|
Virant-Klun I, Leicht S, Hughes C, Krijgsveld J. Identification of Maturation-Specific Proteins by Single-Cell Proteomics of Human Oocytes. Mol Cell Proteomics 2016; 15:2616-27. [PMID: 27215607 DOI: 10.1074/mcp.m115.056887] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Indexed: 12/25/2022] Open
Abstract
Oocytes undergo a range of complex processes via oogenesis, maturation, fertilization, and early embryonic development, eventually giving rise to a fully functioning organism. To understand proteome composition and diversity during maturation of human oocytes, here we have addressed crucial aspects of oocyte collection and proteome analysis, resulting in the first proteome and secretome maps of human oocytes. Starting from 100 oocytes collected via a novel serum-free hanging drop culture system, we identified 2,154 proteins, whose function indicate that oocytes are largely resting cells with a proteome that is tailored for homeostasis, cellular attachment, and interaction with its environment via secretory factors. In addition, we have identified 158 oocyte-enriched proteins (such as ECAT1, PIWIL3, NLRP7)(1) not observed in high-coverage proteomics studies of other human cell lines or tissues. Exploiting SP3, a novel technology for proteomic sample preparation using magnetic beads, we scaled down proteome analysis to single cells. Despite the low protein content of only ∼100 ng per cell, we consistently identified ∼450 proteins from individual oocytes. When comparing individual oocytes at the germinal vesicle (GV) and metaphase II (MII) stage, we found that the Tudor and KH domain-containing protein (TDRKH) is preferentially expressed in immature oocytes, while Wee2, PCNA, and DNMT1 were enriched in mature cells, collectively indicating that maintenance of genome integrity is crucial during oocyte maturation. This study demonstrates that an innovative proteomics workflow facilitates analysis of single human oocytes to investigate human oocyte biology and preimplantation development. The approach presented here paves the way for quantitative proteomics in other quantity-limited tissues and cell types. Data associated with this study are available via ProteomeXchange with identifier PXD004142.
Collapse
Affiliation(s)
- Irma Virant-Klun
- From the ‡Reproductive Unit, Department of Obstetrics and Gynecology, University Medical Centre Ljubljana, Slajmerjeva 3, 1000 Ljubljana, Slovenia
| | - Stefan Leicht
- §European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christopher Hughes
- ¶British Columbia Cancer Research Agency, 675 West 10th Avenue, Vancouver, Canada
| | - Jeroen Krijgsveld
- §European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117 Heidelberg, Germany; ‖German Cancer Research Center and Heidelberg University, Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| |
Collapse
|
30
|
Zahmatkesh A, Ansari Mahyari S, Daliri Joupari M, Rahmani H, Shirazi A, Amiri Roudbar M, Ansari Majd S. Expressional and Bioinformatic Analysis of Bovine Filia/Ecat1/Khdc3l Gene: A Comparison with Ovine Species. Anim Biotechnol 2016; 27:174-81. [PMID: 27070240 DOI: 10.1080/10495398.2016.1157081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Maternal effect genes have highly impressive effects on pre-implantation development. Filia/Ecat1/Khdc3l is a maternal effect gene found in mouse oocytes and embryos, loss of which causes a 50% decrease in fertility. In the present study, we investigated Filia mRNA expression in bovine oviduct, 30- to 40-day fetus, liver, heart, lung, and oocytes (as a positive control), by RT-PCR and detected it only in oocytes. A 443 bp fragment was amplified only in oocytes and was sequenced as a part of bovine predicted Filia mRNA. We analyzed bovine and ovine Filia N-terminal peptide sequence in PHYRE2, and a KH domain was predicted. Protein alignment using ClustalW indicated a highly identical N-terminal extention between the 2 species. Immunohistochemical analysis using anti-bovine Filia antibody showed the expression of Filia protein in the zone surrounding the nuclear membrane, and in the subcortex of ovine oocytes of primary and antral follicles. However, in the bovine, Filia has been found through the oocyte cytoplasm of antral follicles, and here it is further confirmed in the primary follicles. Our data suggests a difference in Filia expression pattern between cow and sheep, although the sequence is highly conserved.
Collapse
Affiliation(s)
- Azadeh Zahmatkesh
- a Department of Animal Science, College of Agriculture , Isfahan University of Technology , Isfahan , Iran
| | - Saeid Ansari Mahyari
- a Department of Animal Science, College of Agriculture , Isfahan University of Technology , Isfahan , Iran
| | - Morteza Daliri Joupari
- b Department of Animal Biotechnology , Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| | - Hamidreza Rahmani
- a Department of Animal Science, College of Agriculture , Isfahan University of Technology , Isfahan , Iran
| | - Abolfazl Shirazi
- c Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR , Tehran , Iran
| | - Mahmood Amiri Roudbar
- d Department of Animal Science, Faculty of Agriculture , Shahid Bahonar University of Kerman , Kerman , Iran
| | - Saeid Ansari Majd
- b Department of Animal Biotechnology , Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology , Tehran , Iran
| |
Collapse
|
31
|
Alazami AM, Awad SM, Coskun S, Al-Hassan S, Hijazi H, Abdulwahab FM, Poizat C, Alkuraya FS. TLE6 mutation causes the earliest known human embryonic lethality. Genome Biol 2015; 16:240. [PMID: 26537248 PMCID: PMC4634911 DOI: 10.1186/s13059-015-0792-0] [Citation(s) in RCA: 147] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/28/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Embryonic lethality is a recognized phenotypic expression of individual gene mutations in model organisms. However, identifying embryonic lethal genes in humans is challenging, especially when the phenotype is manifested at the preimplantation stage. RESULTS In an ongoing effort to exploit the highly consanguineous nature of the Saudi population to catalog recessively acting embryonic lethal genes in humans, we have identified two families with a female-limited infertility phenotype. Using autozygosity mapping and whole exome sequencing, we map this phenotype to a single mutation in TLE6, a maternal effect gene that encodes a member of the subcortical maternal complex in mammalian oocytes. Consistent with the published phenotype of mouse Tle6 mutants, embryos from female patients who are homozygous for the TLE6 mutation fail to undergo early cleavage, with resulting sterility. The human mutation abrogates TLE6 phosphorylation, a step that is reported to be critical for the PKA-mediated progression of oocyte meiosis II. Furthermore, the TLE6 mutation impairs its binding to components of the subcortical maternal complex. CONCLUSION In this first report of a human defect in a member of the subcortical maternal subcritical maternal complex, we show that the TLE6 mutation is gender-specific and leads to the earliest known human embryonic lethality phenotype.
Collapse
Affiliation(s)
- Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Salma M Awad
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Serdar Coskun
- Department of Pathology and Laboratory Medicine, King Faisal Specialist Hospital and Research Center, Alfaisal University, Riyadh, Saudi Arabia
| | - Saad Al-Hassan
- Department of Obstetrics and Gynecology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hadia Hijazi
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Firdous M Abdulwahab
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Coralie Poizat
- Cardiovascular Research Program, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia. .,Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| |
Collapse
|