1
|
Nagai S, Otaki JM. Wound Healing in Butterfly Pupal Wing Tissues: Real-Time In Vivo Imaging of Long-Range Cell Migration, Cluster Formation, and Calcium Oscillations. INSECTS 2025; 16:124. [PMID: 40003754 PMCID: PMC11856899 DOI: 10.3390/insects16020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/21/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025]
Abstract
Insects can repair wounds and regenerate body parts in response to physical damage. Wound healing in butterfly pupal wing tissues is developmentally interesting because ectopic color patterns develop during healing, suggesting that normal and damage-induced color patterns may use similar mechanisms. Here we physiologically investigated wound healing and ectopic color pattern formation in butterfly pupal wing tissues using the blue pansy butterfly Junonia orithya. In response to physical puncture damage, various ectopic color patterns are formed around the damage site. After the wounding operation, we observed hemocytes migrating over long distances along the wing veins (lacunae) toward the damage site, where hemocytes and epidermal cells formed cellular clusters. Calcium oscillations were observed in cells at and near the damage site. Calcium oscillations were transiently affected by ruthenium red, an inhibitor of calcium transporters and channels, and ruthenium red caused various abnormalities in the scales of adult wings. These results suggest that cell migration, cluster formation, and calcium oscillations play important roles in wound healing and scale development at and near the damage site. Ectopic color patterns may develop in response to local calcium oscillations as a consequence of the evolutionary co-option of the healing process for normal development.
Collapse
Affiliation(s)
- Shuka Nagai
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
- Department of Molecular Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
2
|
Otaki JM, Tanaka A, Hirose E. Butterfly pupal wing tissue with an eyespot organizer. Cells Dev 2025:203992. [PMID: 39755276 DOI: 10.1016/j.cdev.2024.203992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/25/2024] [Accepted: 12/28/2024] [Indexed: 01/06/2025]
Abstract
Butterfly wing eyespots are developmentally determined at the early pupal stage, when prospective eyespot focal cells underneath the pupal cuticle focal spot function as eyespot organizers in the pupal wing tissue. Here, we performed light microscopy and transmission electron microscopy (TEM) to describe cellular structures of pupal wing tissue with an eyespot organizer immediately after pupation using the Blue Pansy butterfly Junonia orithya. The pupal forewing dorsal epidermis was a pseudostratified monolayer of vertically elongated epidermal cells. The apical portion of the cells adhered laterally to one another, but their medial and basal portions were thinner than the apical portion and were tilted to enclose cells at the center, forming a cellular cluster. The cellular cluster at the organizer was relatively large laterally and vertically. The apical portion of the cells and its corresponding cuticle at the organizer were thicker than those in the surroundings. The innermost cuticle layer was being synthesized, indicating high cuticle synthesis and secretion activity of the cells. At the medial and basal portions of the dorsal epidermis, there were many intracellular and extracellular vacuole-like globules, most likely containing extracellular matrix molecules. Some of the basal processes from epidermal cells extended to form protrusions of the basement membrane, which was often attended by hemocytes. These results suggest that the butterfly eyespot organizer is composed of a single or a few cellular clusters that secrete more cuticle than surrounding clusters, supporting the pupal cuticle hypothesis that cuticle formation is critical for eyespot color pattern determination in butterflies.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan.
| | - Atsuko Tanaka
- Laboratory of Algal Functional Morphology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| | - Euichi Hirose
- Tunicate Laboratory, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
3
|
Nakazato Y, Otaki JM. Socket Array Irregularities and Wing Membrane Distortions at the Eyespot Foci of Butterfly Wings Suggest Mechanical Signals for Color Pattern Determination. INSECTS 2024; 15:535. [PMID: 39057268 PMCID: PMC11276954 DOI: 10.3390/insects15070535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024]
Abstract
Eyespot foci on butterfly wings function as organizers of eyespot color patterns during development. Despite their importance, focal structures have not been examined in detail. Here, we microscopically examined scales, sockets, and the wing membrane in the butterfly eyespot foci of both expanded and unexpanded wings using the Blue Pansy butterfly Junonia orithya. Images from a high-resolution light microscope revealed that, although not always, eyespot foci had scales with disordered planar polarity. Scanning electron microscopy (SEM) images after scale removal revealed that the sockets were irregularly positioned and that the wing membrane was physically distorted as if the focal site were mechanically squeezed from the surroundings. Focal areas without eyespots also had socket array irregularities, but less frequently and less severely. Physical damage in the background area induced ectopic patterns with socket array irregularities and wing membrane distortions, similar to natural eyespot foci. These results suggest that either the process of determining an eyespot focus or the function of an eyespot organizer may be associated with wing-wide mechanics that physically disrupt socket cells, scale cells, and the wing membrane, supporting the physical distortion hypothesis of the induction model for color pattern determination in butterfly wings.
Collapse
Affiliation(s)
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara 903-0213, Okinawa, Japan
| |
Collapse
|
4
|
George LF, Follmer ML, Fontenoy E, Moran HR, Brown JR, Ozekin YH, Bates EA. Endoplasmic Reticulum Calcium Mediates Drosophila Wing Development. Bioelectricity 2023; 5:290-306. [PMID: 38143873 PMCID: PMC10733776 DOI: 10.1089/bioe.2022.0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023] Open
Abstract
Background The temporal dynamics of morphogen presentation impacts transcriptional responses and tissue patterning. However, the mechanisms controlling morphogen release are far from clear. We found that inwardly rectifying potassium (Irk) channels regulate endogenous transient increases in intracellular calcium and bone morphogenetic protein (BMP/Dpp) release for Drosophila wing development. Inhibition of Irk channels reduces BMP/Dpp signaling, and ultimately disrupts wing morphology. Ion channels impact development of several tissues and organisms in which BMP signaling is essential. In neurons and pancreatic beta cells, Irk channels modulate membrane potential to affect intracellular Ca++ to control secretion of neurotransmitters and insulin. Based on Irk activity in neurons, we hypothesized that electrical activity controls endoplasmic reticulum (ER) Ca++ release into the cytoplasm to regulate the release of BMP. Materials and Methods To test this hypothesis, we reduced expression of four proteins that control ER calcium, Stromal interaction molecule 1 (Stim), Calcium release-activated calcium channel protein 1 (Orai), SarcoEndoplasmic Reticulum Calcium ATPase (SERCA), small conductance calcium-activated potassium channel (SK), and Bestrophin 2 (Best2) using RNAi and documented wing phenotypes. We use live imaging to study calcium and Dpp release within pupal wings and larval wing discs. Additionally, we employed immunohistochemistry to characterize Small Mothers Against Decapentaplegic (SMAD) phosphorylation downstream of the BMP/Dpp pathway following RNAi knockdown. Results We found that reduced Stim and SERCA function decreases amplitude and frequency of endogenous calcium transients in the wing disc and reduced BMP/Dpp release. Conclusion Our results suggest control of ER calcium homeostasis is required for BMP/Dpp release, and Drosophila wing development.
Collapse
Affiliation(s)
- Laura Faith George
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Mikaela Lynn Follmer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Fontenoy
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Hannah Rose Moran
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Jeremy Ryan Brown
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Yunus H. Ozekin
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily Anne Bates
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
5
|
Nakazato Y, Otaki JM. Live Detection of Intracellular Chitin in Butterfly Wing Epithelial Cells In Vivo Using Fluorescent Brightener 28: Implications for the Development of Scales and Color Patterns. INSECTS 2023; 14:753. [PMID: 37754721 PMCID: PMC10532232 DOI: 10.3390/insects14090753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023]
Abstract
Chitin is the major component of the extracellular cuticle and plays multiple roles in insects. In butterflies, chitin builds wing scales for structural colors. Here, we show that intracellular chitin in live cells can be detected in vivo with fluorescent brightener 28 (FB28), focusing on wing epithelial cells of the small lycaenid butterfly Zizeeria maha immediately after pupation. A relatively small number of cells at the apical surface of the epithelium were strongly FB28-positive in the cytosol and seemed to have extensive ER-Golgi networks, which may be specialized chitin-secreting cells. Some cells had FB28-positive tadpole-tail-like or rod-like structures relative to the nucleus. We detected FB28-positive hexagonal intracellular objects and their associated structures extending toward the apical end of the cell, which may be developing scale bases and shafts. We also observed FB28-positive fibrous intracellular structures extending toward the basal end. Many cells were FB28-negative in the cytosol, which contained FB28-positive dots or discs. The present data are crucial to understanding the differentiation of the butterfly wing epithelium, including scale formation and color pattern determination. The use of FB28 in probing intracellular chitin in live cells may be applicable to other insect systems.
Collapse
Affiliation(s)
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Okinawa 903-0213, Japan
| |
Collapse
|
6
|
Moore JL, Bhaskar D, Gao F, Matte-Martone C, Du S, Lathrop E, Ganesan S, Shao L, Norris R, Campamà Sanz N, Annusver K, Kasper M, Cox A, Hendry C, Rieck B, Krishnaswamy S, Greco V. Cell cycle controls long-range calcium signaling in the regenerating epidermis. J Cell Biol 2023; 222:e202302095. [PMID: 37102999 PMCID: PMC10140546 DOI: 10.1083/jcb.202302095] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/27/2023] [Accepted: 03/31/2023] [Indexed: 04/28/2023] Open
Abstract
Skin homeostasis is maintained by stem cells, which must communicate to balance their regenerative behaviors. Yet, how adult stem cells signal across regenerative tissue remains unknown due to challenges in studying signaling dynamics in live mice. We combined live imaging in the mouse basal stem cell layer with machine learning tools to analyze patterns of Ca2+ signaling. We show that basal cells display dynamic intercellular Ca2+ signaling among local neighborhoods. We find that these Ca2+ signals are coordinated across thousands of cells and that this coordination is an emergent property of the stem cell layer. We demonstrate that G2 cells are required to initiate normal levels of Ca2+ signaling, while connexin43 connects basal cells to orchestrate tissue-wide coordination of Ca2+ signaling. Lastly, we find that Ca2+ signaling drives cell cycle progression, revealing a communication feedback loop. This work provides resolution into how stem cells at different cell cycle stages coordinate tissue-wide signaling during epidermal regeneration.
Collapse
Affiliation(s)
- Jessica L. Moore
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Dhananjay Bhaskar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Feng Gao
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | | | - Shuangshuang Du
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Elizabeth Lathrop
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Smirthy Ganesan
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Lin Shao
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Rachael Norris
- Department of Cell Biology, UConn Health, Farmington, CT, USA
| | - Nil Campamà Sanz
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Karl Annusver
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Maria Kasper
- Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden
| | - Andy Cox
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Caroline Hendry
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Bastian Rieck
- Helmholtz Pioneer Campus, Helmholtz Munich, Neuherberg, Germany
| | - Smita Krishnaswamy
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Computer Science, Yale University, New Haven, CT, USA
- Applied Mathematics Program, Yale University, New Haven, CT, USA
- Program for Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Valentina Greco
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
- Department of Dermatology, Yale University School of Medicine, New Haven, CT, USA
- Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA
- Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
7
|
George LF, Bates EA. Mechanisms Underlying Influence of Bioelectricity in Development. Front Cell Dev Biol 2022; 10:772230. [PMID: 35237593 PMCID: PMC8883286 DOI: 10.3389/fcell.2022.772230] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/07/2022] [Indexed: 12/25/2022] Open
Abstract
To execute the intricate process of development, cells coordinate across tissues and organs to determine where each cell divides and differentiates. This coordination requires complex communication between cells. Growing evidence suggests that bioelectrical signals controlled via ion channels contribute to cell communication during development. Ion channels collectively regulate the transmembrane potential of cells, and their function plays a conserved role in the development of organisms from flies to humans. Spontaneous calcium oscillations can be found in nearly every cell type and tissue, and disruption of these oscillations leads to defects in development. However, the mechanism by which bioelectricity regulates development is still unclear. Ion channels play essential roles in the processes of cell death, proliferation, migration, and in each of the major canonical developmental signaling pathways. Previous reviews focus on evidence for one potential mechanism by which bioelectricity affects morphogenesis, but there is evidence that supports multiple different mechanisms which are not mutually exclusive. Evidence supports bioelectricity contributing to development through multiple different mechanisms. Here, we review evidence for the importance of bioelectricity in morphogenesis and provide a comprehensive review of the evidence for several potential mechanisms by which ion channels may act in developmental processes.
Collapse
Affiliation(s)
- Laura Faith George
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Emily Anne Bates
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
8
|
From spikes to intercellular waves: Tuning intercellular calcium signaling dynamics modulates organ size control. PLoS Comput Biol 2021; 17:e1009543. [PMID: 34723960 PMCID: PMC8601605 DOI: 10.1371/journal.pcbi.1009543] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/18/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Abstract
Information flow within and between cells depends significantly on calcium (Ca2+) signaling dynamics. However, the biophysical mechanisms that govern emergent patterns of Ca2+ signaling dynamics at the organ level remain elusive. Recent experimental studies in developing Drosophila wing imaginal discs demonstrate the emergence of four distinct patterns of Ca2+ activity: Ca2+ spikes, intercellular Ca2+ transients, tissue-level Ca2+ waves, and a global “fluttering” state. Here, we used a combination of computational modeling and experimental approaches to identify two different populations of cells within tissues that are connected by gap junction proteins. We term these two subpopulations “initiator cells,” defined by elevated levels of Phospholipase C (PLC) activity, and “standby cells,” which exhibit baseline activity. We found that the type and strength of hormonal stimulation and extent of gap junctional communication jointly determine the predominate class of Ca2+ signaling activity. Further, single-cell Ca2+ spikes are stimulated by insulin, while intercellular Ca2+ waves depend on Gαq activity. Our computational model successfully reproduces how the dynamics of Ca2+ transients varies during organ growth. Phenotypic analysis of perturbations to Gαq and insulin signaling support an integrated model of cytoplasmic Ca2+ as a dynamic reporter of overall tissue growth. Further, we show that perturbations to Ca2+ signaling tune the final size of organs. This work provides a platform to further study how organ size regulation emerges from the crosstalk between biochemical growth signals and heterogeneous cell signaling states. Calcium (Ca2+) is a universal second messenger that regulates a myriad of cellular processes such as cell division, cell proliferation and apoptosis. Multiple patterns of Ca2+ signaling including single-cell spikes, multicellular Ca2+ transients, large-scale Ca2+ waves, and global “fluttering” have been observed in epithelial systems during organ development. Key molecular players and biophysical mechanisms involved in formation of these patterns during organ development are not well understood. In this work, we developed a generalized multicellular model of Ca2+ that captures all the key categories of Ca2+ activity as a function of key hormonal signals. Integration of model predictions and experiments reveals two subclasses of cell populations and demonstrates that Ca2+ signaling activity at the organ scale is defined by a general decrease in gap junction communication as an organ grows. Our experiments also reveal that a “goldilocks zone” of optimal Ca2+ activity is required to achieve optimal growth at the organ level.
Collapse
|
9
|
Otaki JM. Butterfly eyespot color pattern formation requires physical contact of the pupal wing epithelium with extracellular materials for morphogenic signal propagation. BMC DEVELOPMENTAL BIOLOGY 2020; 20:6. [PMID: 32234033 PMCID: PMC7110832 DOI: 10.1186/s12861-020-00211-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 03/13/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Eyespot color pattern formation on butterfly wings is sensitive to physical damage and physical distortion as well as physical contact with materials on the surface of wing epithelial tissue at the pupal stage. Contact-mediated eyespot color pattern changes may imply a developmental role of the extracellular matrix in morphogenic signal propagation. Here, we examined eyespot responses to various contact materials, focusing on the hindwing posterior eyespots of the blue pansy butterfly, Junonia orithya. RESULTS Contact with various materials, including both nonbiological and biological materials, induced eyespot enlargement, reduction, or no change in eyespot size, and each material was characterized by a unique response profile. For example, silicone glassine paper almost always induced a considerable reduction, while glass plates most frequently induced enlargement, and plastic plates generally produced no change. The biological materials tested here (fibronectin, polylysine, collagen type I, and gelatin) resulted in various responses, but polylysine induced more cases of enlargement, similar to glass plates. The response profile of the materials was not readily predictable from the chemical composition of the materials but was significantly correlated with the water contact angle (water repellency) of the material surface, suggesting that the surface physical chemistry of materials is a determinant of eyespot size. When the proximal side of a prospective eyespot was covered with a size-reducing material (silicone glassine paper) and the distal side and the organizer were covered with a material that rarely induced size reduction (plastic film), the proximal side of the eyespot was reduced in size in comparison with the distal side, suggesting that signal propagation but not organizer activity was inhibited by silicone glassine paper. CONCLUSIONS These results suggest that physical contact with an appropriate hydrophobic surface is required for morphogenic signals from organizers to propagate normally. The binding of the apical surface of the epithelium with an opposing surface may provide mechanical support for signal propagation. In addition to conventional molecular morphogens, there is a possibility that mechanical distortion of the epithelium that is propagated mechanically serves as a nonmolecular morphogen to induce subsequent molecular changes, in accordance with the distortion hypothesis for butterfly wing color pattern formation.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213, Japan.
| |
Collapse
|
10
|
Banerjee TD, Monteiro A. Dissection of Larval and Pupal Wings of Bicyclus anynana Butterflies. Methods Protoc 2020; 3:E5. [PMID: 31936719 PMCID: PMC7189656 DOI: 10.3390/mps3010005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022] Open
Abstract
The colorful wings of butterflies are emerging as model systems for evolutionary and developmental studies. Some of these studies focus on localizing gene transcripts and proteins in wings at the larval and pupal stages using techniques such as immunostaining and in situ hybridization. Other studies quantify mRNA expression levels or identify regions of open chromatin that are bound by proteins at different stages of wing development. All these techniques require dissection of the wings from the animal but a detailed video protocol describing this procedure has not been available until now. Here, we present a written and accompanying video protocol where we describe the tools and the method we use to remove the larval and pupal wings of the African Squinting Bush Brown butterfly Bicyclus anynana. This protocol should be easy to adapt to other species.
Collapse
Affiliation(s)
- Tirtha Das Banerjee
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore;
| | - Antónia Monteiro
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore;
- Yale-NUS College, 10 College Avenue West, Singapore 138609, Singapore
| |
Collapse
|
11
|
Iwata M, Otaki JM. Insights into eyespot color-pattern formation mechanisms from color gradients, boundary scales, and rudimentary eyespots in butterfly wings. JOURNAL OF INSECT PHYSIOLOGY 2019; 114:68-82. [PMID: 30797779 DOI: 10.1016/j.jinsphys.2019.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 02/20/2019] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
Butterfly eyespot color patterns are traditionally explained by the gradient model, where positional information is stably provided by a morphogen gradient from a single organizer and its output is a set of non-graded (or graded) colors based on pre-determined threshold levels. An alternative model is the induction model, in which the outer black ring and the inner black core disk of an eyespot are specified by graded signals from the primary and secondary organizers that also involve lateral induction. To examine the feasibility of these models, we analyzed eyespot color gradients, boundary scales, and rudimentary eyespots in various nymphalid butterflies. Most parts of eyespots showed color gradients with gradual or fluctuating changes with sharp boundaries in many species, but some species had eyespots that were composed of a constant color within a given part. Thus, a plausible model should be flexible enough to incorporate this diversity. Some boundary scales appeared to have two kinds of pigments, and others had "misplaced" colors, suggesting an overlapping of two signals and a difficulty in assuming sharp threshold boundaries. Rudimentary eyespots of three Junonia species revealed that the outer black ring is likely determined first and the inner yellow or red ring is laterally induced. This outside-to-inside determination together with the lateral induction may favor the induction model, in which dynamic signal interactions play a major role. The implications of these results for the ploidy hypothesis and color-pattern rules are discussed.
Collapse
Affiliation(s)
- Masaki Iwata
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan; Department of International Agricultural Development, Faculty of International Agriculture and Food Studies, Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
12
|
Hirata K, Otaki JM. Real-Time In Vivo Imaging of the Developing Pupal Wing Tissues in the Pale Grass Blue Butterfly Zizeeria maha: Establishing the Lycaenid System for Multiscale Bioimaging. J Imaging 2019; 5:jimaging5040042. [PMID: 34460480 PMCID: PMC8320941 DOI: 10.3390/jimaging5040042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 11/17/2022] Open
Abstract
To systematically analyze biological changes with spatiotemporal dynamics, it is important to establish a system that is amenable for real-time in vivo imaging at various size levels. Herein, we focused on the developing pupal wing tissues in the pale grass blue butterfly, Zizeeria maha, as a system of choice for a systematic multiscale approach in vivo in real time. We showed that the entire pupal wing could be monitored throughout development using a high-resolution bright-field time-lapse imaging system under the forewing-lift configuration; we recorded detailed dynamics of the dorsal and ventral epithelia that behaved independently for peripheral adjustment. We also monitored changes in the dorsal hindwing at the compartmental level and directly observed evaginating scale buds. We also employed a confocal laser microscopy system with multiple fluorescent dyes for three-dimensional observations at the tissue and cellular levels. We discovered extensive cellular clusters that may be functionally important as a unit of cellular communication and differentiation. We also identified epithelial discal and marginal dents that may function during development. Together, this lycaenid forewing system established a foundation to study the differentiation process of epithelial cells and can be used to study biophysically challenging mechanisms such as the determination of color patterns and scale nanoarchitecture at the multiscale levels.
Collapse
|
13
|
Brodskiy PA, Wu Q, Soundarrajan DK, Huizar FJ, Chen J, Liang P, Narciso C, Levis MK, Arredondo-Walsh N, Chen DZ, Zartman JJ. Decoding Calcium Signaling Dynamics during Drosophila Wing Disc Development. Biophys J 2019; 116:725-740. [PMID: 30704858 PMCID: PMC6382932 DOI: 10.1016/j.bpj.2019.01.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/04/2018] [Accepted: 01/04/2019] [Indexed: 01/07/2023] Open
Abstract
The robust specification of organ development depends on coordinated cell-cell communication. This process requires signal integration among multiple pathways, relying on second messengers such as calcium ions. Calcium signaling encodes a significant portion of the cellular state by regulating transcription factors, enzymes, and cytoskeletal proteins. However, the relationships between the inputs specifying cell and organ development, calcium signaling dynamics, and final organ morphology are poorly understood. Here, we have designed a quantitative image-analysis pipeline for decoding organ-level calcium signaling. With this pipeline, we extracted spatiotemporal features of calcium signaling dynamics during the development of the Drosophila larval wing disc, a genetic model for organogenesis. We identified specific classes of wing phenotypes that resulted from calcium signaling pathway perturbations, including defects in gross morphology, vein differentiation, and overall size. We found four qualitative classes of calcium signaling activity. These classes can be ordered based on agonist stimulation strength Gαq-mediated signaling. In vivo calcium signaling dynamics depend on both receptor tyrosine kinase/phospholipase C γ and G protein-coupled receptor/phospholipase C β activities. We found that spatially patterned calcium dynamics correlate with known differential growth rates between anterior and posterior compartments. Integrated calcium signaling activity decreases with increasing tissue size, and it responds to morphogenetic perturbations that impact organ growth. Together, these findings define how calcium signaling dynamics integrate upstream inputs to mediate multiple response outputs in developing epithelial organs.
Collapse
Affiliation(s)
- Pavel A Brodskiy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Qinfeng Wu
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Dharsan K Soundarrajan
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Francisco J Huizar
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Jianxu Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Peixian Liang
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Cody Narciso
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Megan K Levis
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana
| | | | - Danny Z Chen
- Department of Computer Science and Engineering, University of Notre Dame, Notre Dame, Indiana
| | - Jeremiah J Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana.
| |
Collapse
|
14
|
Otaki JM. Long-Range Effects of Wing Physical Damage and Distortion on Eyespot Color Patterns in the Hindwing of the Blue Pansy Butterfly Junonia orithya. INSECTS 2018; 9:insects9040195. [PMID: 30572627 PMCID: PMC6316528 DOI: 10.3390/insects9040195] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 11/24/2022]
Abstract
Butterfly eyespot color patterns have been studied using several different approaches, including applications of physical damage to the forewing. Here, damage and distortion experiments were performed, focusing on the hindwing eyespots of the blue pansy butterfly Junonia orithya. Physical puncture damage with a needle at the center of the eyespot reduced the eyespot size. Damage at the eyespot outer rings not only deformed the entire eyespot, but also diminished the eyespot core disk size, despite the distance from the damage site to the core disk. When damage was inflicted near the eyespot, the eyespot was drawn toward the damage site. The induction of an ectopic eyespot-like structure and its fusion with the innate eyespots were observed when damage was inflicted in the background area. When a small stainless ball was placed in close proximity to the eyespot using the forewing-lift method, the eyespot deformed toward the ball. Taken together, physical damage and distortion elicited long-range inhibitory, drawing (attracting), and inducing effects, suggesting that the innate and induced morphogenic signals travel long distances and interact with each other. These results are consistent with the distortion hypothesis, positing that physical distortions of wing tissue contribute to color pattern determination in butterfly wings.
Collapse
Affiliation(s)
- Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
15
|
Developmental dynamics of butterfly wings: real-time in vivo whole-wing imaging of twelve butterfly species. Sci Rep 2018; 8:16848. [PMID: 30442931 PMCID: PMC6237780 DOI: 10.1038/s41598-018-34990-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/24/2018] [Indexed: 01/13/2023] Open
Abstract
Colour pattern development of butterfly wings has been studied from several different approaches. However, developmental changes in the pupal wing tissues have rarely been documented visually. In this study, we recorded real-time developmental changes of the pupal whole wings of 9 nymphalid, 2 lycaenid, and 1 pierid species in vivo, from immediately after pupation to eclosion, using the forewing-lift method. The developmental period was roughly divided into four sequential stages. At the very early stage, the wing tissue was transparent, but at the second stage, it became semi-transparent and showed dynamic peripheral adjustment and slow low-frequency contractions. At this stage, the wing peripheral portion diminished in size, but simultaneously, the ventral epithelium expanded in size. Likely because of scale growth, the wing tissue became deeply whitish at the second and third stages, followed by pigment deposition and structural colour expression at the fourth stage. Some red or yellow (light-colour) areas that emerged early were “overpainted” by expanding black areas, suggesting the coexistence of two morphogenic signals in some scale cells. The discal spot emerged first in some nymphalid species, as though it organised the entire development of colour patterns. These results indicated the dynamic wing developmental processes common in butterflies.
Collapse
|
16
|
Abstract
Decoding how tissue properties emerge across multiple spatial and temporal scales from the integration of local signals is a grand challenge in quantitative biology. For example, the collective behavior of epithelial cells is critical for shaping developing embryos. Understanding how epithelial cells interpret a diverse range of local signals to coordinate tissue-level processes requires a systems-level understanding of development. Integration of multiple signaling pathways that specify cell signaling information requires second messengers such as calcium ions. Increasingly, specific roles have been uncovered for calcium signaling throughout development. Calcium signaling regulates many processes including division, migration, death, and differentiation. However, the pleiotropic and ubiquitous nature of calcium signaling implies that many additional functions remain to be discovered. Here we review a selection of recent studies to highlight important insights into how multiple signals are transduced by calcium transients in developing epithelial tissues. Quantitative imaging and computational modeling have provided important insights into how calcium signaling integration occurs. Reverse-engineering the conserved features of signal integration mediated by calcium signaling will enable novel approaches in regenerative medicine and synthetic control of morphogenesis.
Collapse
Affiliation(s)
- Pavel A. Brodskiy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 205 McCourtney Hall, Notre Dame, IN 46556, USA
| | - Jeremiah J. Zartman
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, 205 McCourtney Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
17
|
Wound healing, calcium signaling, and other novel pathways are associated with the formation of butterfly eyespots. BMC Genomics 2017; 18:788. [PMID: 29037153 PMCID: PMC5644175 DOI: 10.1186/s12864-017-4175-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/05/2017] [Indexed: 01/21/2023] Open
Abstract
Background One hypothesis surrounding the origin of novel traits is that they originate from the co-option of pre-existing genes or larger gene regulatory networks into novel developmental contexts. Insights into a trait’s evolutionary origins can, thus, be gained via identification of the genes underlying trait development, and exploring whether those genes also function in other developmental contexts. Here we investigate the set of genes associated with the development of eyespot color patterns, a trait that originated once within the Nymphalid family of butterflies. Although several genes associated with eyespot development have been identified, the eyespot gene regulatory network remains largely unknown. Results In this study, next-generation sequencing and transcriptome analyses were used to identify a large set of genes associated with eyespot development of Bicyclus anynana butterflies, at 3-6 h after pupation, prior to the differentiation of the color rings. Eyespot-associated genes were identified by comparing the transcriptomes of homologous micro-dissected wing tissues that either develop or do not develop eyespots in wild-type and a mutant line of butterflies, Spotty, with extra eyespots. Overall, 186 genes were significantly up and down-regulated in wing tissues that develop eyespots compared to wing tissues that do not. Many of the differentially expressed genes have yet to be annotated. New signaling pathways, including the Toll, Fibroblast Growth Factor (FGF), extracellular signal–regulated kinase (ERK) and/or Jun N-terminal kinase (JNK) signaling pathways are associated for the first time with eyespot development. In addition, several genes involved in wound healing and calcium signaling were also found to be associated with eyespots. Conclusions Overall, this study provides the identity of many new genes and signaling pathways associated with eyespots, and suggests that the ancient wound healing gene regulatory network may have been co-opted to cells at the center of the pattern to aid in eyespot origins. New transcription factors that may be providing different identities to distinct wing sectors, and genes with sexually dimorphic expression in the eyespots were also identified. Electronic supplementary material The online version of this article (10.1186/s12864-017-4175-7) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Beldade P, Peralta CM. Developmental and evolutionary mechanisms shaping butterfly eyespots. CURRENT OPINION IN INSECT SCIENCE 2017; 19:22-29. [PMID: 28521939 DOI: 10.1016/j.cois.2016.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/20/2016] [Accepted: 10/24/2016] [Indexed: 06/07/2023]
Abstract
Butterfly eyespots are visually compelling models to study the reciprocal interactions between evolutionary and developmental processes that shape phenotypic variation. They are evolutionarily diversified, ecologically relevant, and developmentally tractable, and have made key contributions to linking genotype, development, phenotype and fitness. Advances in the availability of analytical tools (e.g. gene editing and visualization techniques) and resources (e.g. genomic and transcriptomic data) are boosting the detailed dissection of the mechanisms underlying eyespot development and evolution. Here, we review current knowledge on the ecology, development, and evolution of butterfly eyespots, with focus on recent advances. We also highlight a number of unsolved mysteries in our understanding of the patterns and processes underlying the diversification of these structures.
Collapse
Affiliation(s)
- Patrícia Beldade
- Instituto Gulbenkian de Ciência, Oeiras, Portugal; UMR5174, University of Toulouse, France.
| | | |
Collapse
|
19
|
Ohno Y, Iguchi A, Shinzato C, Inoue M, Suzuki A, Sakai K, Nakamura T. An aposymbiotic primary coral polyp counteracts acidification by active pH regulation. Sci Rep 2017; 7:40324. [PMID: 28098180 PMCID: PMC5241827 DOI: 10.1038/srep40324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 12/05/2016] [Indexed: 01/12/2023] Open
Abstract
Corals build their skeletons using extracellular calcifying fluid located in the tissue-skeleton interface. However, the mechanism by which corals control the transport of calcium and other ions from seawater and the mechanism of constant alkalization of calcifying fluid are largely unknown. To address these questions, we performed direct pH imaging at calcification sites (subcalicoblastic medium, SCM) to visualize active pH upregulation in live aposymbiotic primary coral polyps treated with HCl-acidified seawater. Active alkalization was observed in all individuals using vital staining method while the movement of HPTS and Alexa Fluor to SCM suggests that certain ions such as H+ could diffuse via a paracellular pathway to SCM. Among them, we discovered acid-induced oscillations in the pH of SCM (pHSCM), observed in 24% of polyps examined. In addition, we discovered acid-induced pH up-regulation waves in 21% of polyps examined, which propagated among SCMs after exposure to acidified seawater. Our results showed that corals can regulate pHSCM more dynamically than was previously believed. These observations will have important implications for determining how corals regulate pHSCM during calcification. We propose that corals can sense ambient seawater pH via their innate pH-sensitive systems and regulate pHSCM using several unknown pH-regulating ion transporters that coordinate with multicellular signaling occurring in coral tissue.
Collapse
Affiliation(s)
- Yoshikazu Ohno
- Marine and Environmental Sciences Course, Graduate School of Engineering and Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
| | - Akira Iguchi
- Department of Bioresources Engineering, National Institute of Technology, Okinawa College, 905 Henoko, Nago, Okinawa 905-2192, Japan
| | - Chuya Shinzato
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa 904-0495, Japan
| | - Mayuri Inoue
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Okayama 700-8530, Japan
| | - Atsushi Suzuki
- Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan
| | - Kazuhiko Sakai
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
| | - Takashi Nakamura
- Marine and Environmental Sciences Course, Graduate School of Engineering and Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa 903-0213, Japan
- Sesoko Station, Tropical Biosphere Research Center, University of the Ryukyus, 3422 Sesoko, Motobu, Okinawa 905-0227, Japan
- Japan Science and Technology Agency (JST)/Japan International Cooperation Agency (JICA) SATREPS, Tokyo, Japan
| |
Collapse
|
20
|
Iwasaki M, Ohno Y, Otaki JM. Butterfly eyespot organiser: in vivo imaging of the prospective focal cells in pupal wing tissues. Sci Rep 2017; 7:40705. [PMID: 28094808 PMCID: PMC5240560 DOI: 10.1038/srep40705] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/09/2016] [Indexed: 12/01/2022] Open
Abstract
Butterfly wing eyespot patterns are determined in pupal tissues by organisers located at the centre of the prospective eyespots. Nevertheless, organiser cells have not been examined cytochemically in vivo, partly due to technical difficulties. Here, we directly observed organiser cells in pupal forewing epithelium via an in vivo confocal fluorescent imaging technique, using 1-h post-pupation pupae of the blue pansy butterfly, Junonia orithya. The prospective eyespot centre was indented from the plane of the ventral tissue surface. Three-dimensional reconstruction images revealed that the apical portion of “focal cells” at the bottom of the eyespot indentation contained many mitochondria. The mitochondrial portion was connected with a “cell body” containing a nucleus. Most focal cells had globular nuclei and were vertically elongated, but cells in the wing basal region had flattened nuclei and were tilted toward the distal direction. Epithelial cells in any wing region had cytoneme-like horizontal processes. From 1 h to 10 h post-pupation, nuclear volume increased, suggesting DNA synthesis during this period. Morphological differences among cells in different regions may suggest that organiser cells are developmentally ahead of cells in other regions and that position-dependent heterochronic development is a general mechanism for constructing colour patterns in butterfly wings.
Collapse
Affiliation(s)
- Mayo Iwasaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Yoshikazu Ohno
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa 903-0213, Japan
| |
Collapse
|
21
|
Iwata M, Otaki JM. Focusing on butterfly eyespot focus: uncoupling of white spots from eyespot bodies in nymphalid butterflies. SPRINGERPLUS 2016; 5:1287. [PMID: 27547662 PMCID: PMC4977239 DOI: 10.1186/s40064-016-2969-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/29/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND Developmental studies on butterfly wing color patterns often focus on eyespots. A typical eyespot (such as that of Bicyclus anynana) has a few concentric rings of dark and light colors and a white spot (called a focus) at the center. The prospective eyespot center during the early pupal stage is known to act as an organizing center. It has often been assumed, according to gradient models for positional information, that a white spot in adult wings corresponds to an organizing center and that the size of the white spot indicates how active that organizing center was. However, there is no supporting evidence for these assumptions. To evaluate the feasibility of these assumptions in nymphalid butterflies, we studied the unique color patterns of Calisto tasajera (Nymphalidae, Satyrinae), which have not been analyzed before in the literature. RESULTS In the anterior forewing, one white spot was located at the center of an eyespot, but another white spot associated with either no or only a small eyespot was present in the adjacent compartment. The anterior hindwing contained two adjacent white spots not associated with eyespots, one of which showed a sparse pattern. The posterior hindwing contained two adjacent pear-shaped eyespots, and the white spots were located at the proximal side or even outside the eyespot bodies. The successive white spots within a single compartment along the midline in the posterior hindwing showed a possible trajectory of a positional determination process for the white spots. Several cases of focus-less eyespots in other nymphalid butterflies were also presented. CONCLUSIONS These results argue for the uncoupling of white spots from eyespot bodies, suggesting that an eyespot organizing center does not necessarily differentiate into a white spot and that a prospective white spot does not necessarily signify organizing activity for an eyespot. Incorporation of these results in future models for butterfly wing color pattern formation is encouraged.
Collapse
Affiliation(s)
- Masaki Iwata
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213 Japan
| |
Collapse
|
22
|
Adhikari K, Otaki JM. A Single-Wing Removal Method to Assess Correspondence Between Gene Expression and Phenotype in Butterflies: The Case of Distal-less. Zoolog Sci 2016; 33:13-20. [PMID: 26853864 DOI: 10.2108/zs150113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It is often desirable but difficult to retrieve information on the mature phenotype of an immature tissue sample that has been subjected to gene expression analysis. This problem cannot be ignored when individual variation within a species is large. To circumvent this problem in the butterfly wing system, we developed a new surgical method for removing a single forewing from a pupa using Junonia orithya; the operated pupa was left to develop to an adult without eclosion. The removed right forewing was subjected to gene expression analysis, whereas the non-removed left forewing was examined for color patterns. As a test case, we focused on Distal-less (Dll), which likely plays an active role in inducing elemental patterns, including eyespots. The Dll expression level in forewings was paired with eyespot size data from the same individual. One third of the operated pupae survived and developed wing color patterns. Dll expression levels were significantly higher in males than in females, although male eyespots were smaller in size than female eyespots. Eyespot size data showed weak but significant correlations with the Dll expression level in females. These results demonstrate that a single-wing removal method was successfully applied to the butterfly wing system and suggest the weak and non-exclusive contribution of Dll to eyespot size determination in this butterfly. Our novel methodology for establishing correspondence between gene expression and phenotype can be applied to other candidate genes for color pattern development in butterflies. Conceptually similar methods may also be applicable in other developmental systems.
Collapse
Affiliation(s)
- Kiran Adhikari
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| |
Collapse
|
23
|
Iwata M, Otaki JM. Spatial patterns of correlated scale size and scale color in relation to color pattern elements in butterfly wings. JOURNAL OF INSECT PHYSIOLOGY 2016; 85:32-45. [PMID: 26654884 DOI: 10.1016/j.jinsphys.2015.11.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/27/2015] [Accepted: 11/30/2015] [Indexed: 06/05/2023]
Abstract
Complex butterfly wing color patterns are coordinated throughout a wing by unknown mechanisms that provide undifferentiated immature scale cells with positional information for scale color. Because there is a reasonable level of correspondence between the color pattern element and scale size at least in Junonia orithya and Junonia oenone, a single morphogenic signal may contain positional information for both color and size. However, this color-size relationship has not been demonstrated in other species of the family Nymphalidae. Here, we investigated the distribution patterns of scale size in relation to color pattern elements on the hindwings of the peacock pansy butterfly Junonia almana, together with other nymphalid butterflies, Vanessa indica and Danaus chrysippus. In these species, we observed a general decrease in scale size from the basal to the distal areas, although the size gradient was small in D. chrysippus. Scales of dark color in color pattern elements, including eyespot black rings, parafocal elements, and submarginal bands, were larger than those of their surroundings. Within an eyespot, the largest scales were found at the focal white area, although there were exceptional cases. Similarly, ectopic eyespots that were induced by physical damage on the J. almana background area had larger scales than in the surrounding area. These results are consistent with the previous finding that scale color and size coordinate to form color pattern elements. We propose a ploidy hypothesis to explain the color-size relationship in which the putative morphogenic signal induces the polyploidization (genome amplification) of immature scale cells and that the degrees of ploidy (gene dosage) determine scale color and scale size simultaneously in butterfly wings.
Collapse
Affiliation(s)
- Masaki Iwata
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Joji M Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan.
| |
Collapse
|
24
|
Taira W, Otaki JM. Butterfly Wings Are Three-Dimensional: Pupal Cuticle Focal Spots and Their Associated Structures in Junonia Butterflies. PLoS One 2016; 11:e0146348. [PMID: 26731532 PMCID: PMC4701663 DOI: 10.1371/journal.pone.0146348] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/15/2015] [Indexed: 11/19/2022] Open
Abstract
Butterfly wing color patterns often contain eyespots, which are developmentally determined at the late larval and early pupal stages by organizing activities of focal cells that can later form eyespot foci. In the pupal stage, the focal position of a future eyespot is often marked by a focal spot, one of the pupal cuticle spots, on the pupal surface. Here, we examined the possible relationships of the pupal focal spots with the underneath pupal wing tissues and with the adult wing eyespots using Junonia butterflies. Large pupal focal spots were found in two species with large adult eyespots, J. orithya and J. almana, whereas only small pupal focal spots were found in a species with small adult eyespots, J. hedonia. The size of five pupal focal spots on a single wing was correlated with the size of the corresponding adult eyespots in J. orithya. A pupal focal spot was a three-dimensional bulge of cuticle surface, and the underside of the major pupal focal spot exhibited a hollowed cuticle in a pupal case. Cross sections of a pupal wing revealed that the cuticle layer shows a curvature at a focal spot, and a positional correlation was observed between the cuticle layer thickness and its corresponding cell layer thickness. Adult major eyespots of J. orithya and J. almana exhibited surface elevations and depressions that approximately correspond to the coloration within an eyespot. Our results suggest that a pupal focal spot is produced by the organizing activity of focal cells underneath the focal spot. Probably because the focal cell layer immediately underneath a focal spot is thicker than that of its surrounding areas, eyespots of adult butterfly wings are three-dimensionally constructed. The color-height relationship in adult eyespots might have an implication in the developmental signaling for determining the eyespot color patterns.
Collapse
Affiliation(s)
- Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
- * E-mail:
| |
Collapse
|
25
|
Dhungel B, Ohno Y, Matayoshi R, Iwasaki M, Taira W, Adhikari K, Gurung R, Otaki JM. Distal-less induces elemental color patterns in Junonia butterfly wings. ZOOLOGICAL LETTERS 2016; 2:4. [PMID: 26937287 PMCID: PMC4774158 DOI: 10.1186/s40851-016-0040-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/17/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND The border ocellus, or eyespot, is a conspicuous color pattern element in butterfly wings. For two decades, it has been hypothesized that transcription factors such as Distal-less (Dll) are responsible for eyespot pattern development in butterfly wings, based on their expression in the prospective eyespots. In particular, it has been suggested that Dll is a determinant for eyespot size. However, functional evidence for this hypothesis has remained incomplete, due to technical difficulties. RESULTS Here, we show that ectopically expressed Dll induces ectopic elemental color patterns in the adult wings of the blue pansy butterfly, Junonia orithya (Lepidoptera, Nymphalidae). Using baculovirus-mediated gene transfer, we misexpressed Dll protein fused with green fluorescent protein (GFP) in pupal wings, resulting in ectopic color patterns, but not the formation of intact eyespots. Induced changes included clusters of black and orange scales (a basic feature of eyespot patterns), black and gray scales, and inhibition of cover scale development. In contrast, ectopic expression of GFP alone did not induce any color pattern changes using the same baculovirus-mediated gene transfer system. CONCLUSIONS These results suggest that Dll plays an instructive role in the development of color pattern elements in butterfly wings, although Dll alone may not be sufficient to induce a complete eyespot. This study thus experimentally supports the hypothesis of Dll function in eyespot development.
Collapse
Affiliation(s)
- Bidur Dhungel
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Yoshikazu Ohno
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Rie Matayoshi
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Mayo Iwasaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Wataru Taira
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Kiran Adhikari
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Raj Gurung
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Okinawa, 903-0213 Japan
| |
Collapse
|
26
|
Dean DM, Maroja LS, Cottrill S, Bomkamp BE, Westervelt KA, Deitcher DL. The wavy Mutation Maps to the Inositol 1,4,5-Trisphosphate 3-Kinase 2 (IP3K2) Gene of Drosophila and Interacts with IP3R to Affect Wing Development. G3 (BETHESDA, MD.) 2015; 6:299-310. [PMID: 26613949 PMCID: PMC4751550 DOI: 10.1534/g3.115.024307] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP3) regulates a host of biological processes from egg activation to cell death. When IP3-specific receptors (IP3Rs) bind to IP3, they release calcium from the ER into the cytoplasm, triggering a variety of cell type- and developmental stage-specific responses. Alternatively, inositol polyphosphate kinases can phosphorylate IP3; this limits IP3R activation by reducing IP3 levels, and also generates new signaling molecules altogether. These divergent pathways draw from the same IP3 pool yet cause very different cellular responses. Therefore, controlling the relative rates of IP3R activation vs. phosphorylation of IP3 is essential for proper cell functioning. Establishing a model system that sensitively reports the net output of IP3 signaling is crucial for identifying the controlling genes. Here we report that mutant alleles of wavy (wy), a classic locus of the fruit fly Drosophila melanogaster, map to IP3 3-kinase 2 (IP3K2), a member of the inositol polyphosphate kinase gene family. Mutations in wy disrupt wing structure in a highly specific pattern. RNAi experiments using GAL4 and GAL80(ts) indicated that IP3K2 function is required in the wing discs of early pupae for normal wing development. Gradations in the severity of the wy phenotype provide high-resolution readouts of IP3K2 function and of overall IP3 signaling, giving this system strong potential as a model for further study of the IP3 signaling network. In proof of concept, a dominant modifier screen revealed that mutations in IP3R strongly suppress the wy phenotype, suggesting that the wy phenotype results from reduced IP4 levels, and/or excessive IP3R signaling.
Collapse
Affiliation(s)
- Derek M Dean
- Department of Biology, Williams College, Williamstown, Massachusetts 01267
| | - Luana S Maroja
- Department of Biology, Williams College, Williamstown, Massachusetts 01267
| | - Sarah Cottrill
- Department of Biology, Williams College, Williamstown, Massachusetts 01267
| | - Brent E Bomkamp
- Department of Biology, Williams College, Williamstown, Massachusetts 01267
| | | | - David L Deitcher
- Department of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853
| |
Collapse
|
27
|
Ohno Y, Otaki JM. Live Cell Imaging of Butterfly Pupal and Larval Wings In Vivo. PLoS One 2015; 10:e0128332. [PMID: 26107809 PMCID: PMC4481267 DOI: 10.1371/journal.pone.0128332] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/24/2015] [Indexed: 01/28/2023] Open
Abstract
Butterfly wing color patterns are determined during the late larval and early pupal stages. Characterization of wing epithelial cells at these stages is thus critical to understand how wing structures, including color patterns, are determined. Previously, we successfully recorded real-time in vivo images of developing butterfly wings over time at the tissue level. In this study, we employed similar in vivo fluorescent imaging techniques to visualize developing wing epithelial cells in the late larval and early pupal stages 1 hour post-pupation. Both larval and pupal epithelial cells were rich in mitochondria and intracellular networks of endoplasmic reticulum, suggesting high metabolic activities, likely in preparation for cellular division, polyploidization, and differentiation. Larval epithelial cells in the wing imaginal disk were relatively large horizontally and tightly packed, whereas pupal epithelial cells were smaller and relatively loosely packed. Furthermore, larval cells were flat, whereas pupal cells were vertically elongated as deep as 130 μm. In pupal cells, many endosome-like or autophagosome-like structures were present in the cellular periphery down to approximately 10 μm in depth, and extensive epidermal feet or filopodia-like processes were observed a few micrometers deep from the cellular surface. Cells were clustered or bundled from approximately 50 μm in depth to deeper levels. From 60 μm to 80 μm in depth, horizontal connections between these clusters were observed. The prospective eyespot and marginal focus areas were resistant to fluorescent dyes, likely because of their non-flat cone-like structures with a relatively thick cuticle. These in vivo images provide important information with which to understand processes of epithelial cell differentiation and color pattern determination in butterfly wings.
Collapse
Affiliation(s)
- Yoshikazu Ohno
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903–0213, Japan
| | - Joji M. Otaki
- The BCPH Unit of Molecular Physiology, Department of Chemistry, Biology and Marine Science, Faculty of Science, University of the Ryukyus, Nishihara, Okinawa, 903–0213, Japan
| |
Collapse
|