1
|
Espírito-Santo C, Guardiola FA, Ozório ROA, Magnoni LJ. Induced swimming in European seabass (Dicentrarchus labrax): effects on the stress response, immune, and antioxidant status. FISH PHYSIOLOGY AND BIOCHEMISTRY 2025; 51:58. [PMID: 40029414 DOI: 10.1007/s10695-025-01474-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/23/2025] [Indexed: 03/05/2025]
Abstract
Suitable swimming conditions can improve the growth and welfare of farmed fish. This study investigated how swimming affects immune and oxidative responses in European seabass (Dicentrarchus labrax), an important farmed fish species in Southern Europe. Thirty-two specimens were assigned into four experimental groups with the following conditions for 6 h: steady low (L, 0.8 body lengths (BL)⋅s-1); steady high (H, 2.2 BL⋅s-1); oscillating (O, 0.8-2.2 BL⋅s-1) swimming speeds; and control non-induced to swim (C, < 0.1 BL⋅s-1). The H group exhibited higher white blood cell counts and plasma cortisol levels compared to the C and L groups. However, innate immune parameters in plasma and skin mucus showed no differences between groups. Gene expression revealed an up-regulation of inflammatory cytokines (tnfα and il1β) and igf1 in the gills of fish from H and L groups, respectively, whilst no variations were observed in the head-kidney. In the skin, tnfα was up-regulated in the L group. Moreover, the H group showed increased superoxide dismutase and catalase activities and higher lipid peroxidation levels in red muscle. The L group had a higher ratio of reduced/oxidized glutathione (GSH: GSSG) in red muscle, suggesting enhanced antioxidant status. Under all swimming conditions, the GSH: GSSG ratio was increased in the white muscle. Conversely, hepatic markers of oxidative stress were similar among groups. Results suggest that steady swimming at 0.8 BL⋅s-1 enhanced the antioxidant status in red muscle which may be of relevance to improve the welfare of this cultured species.
Collapse
Affiliation(s)
- Carlos Espírito-Santo
- Faculty of Sciences, University of Porto, Rua Do Campo Alegre, 4069-007, Porto, Portugal.
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros Do Porto de Leixões, University of Porto, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal.
| | - Francisco A Guardiola
- Immunobiology for Aquaculture Group, Department of Cell Biology and Histology, Faculty of Biology, Campus Regional de Excelencia Internacional "Campus Mare Nostrum", University of Murcia, 30100, Murcia, Spain
| | - Rodrigo O A Ozório
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Terminal de Cruzeiros Do Porto de Leixões, University of Porto, Av. General Norton de Matos S/N, 4450-208, Matosinhos, Portugal
| | - Leonardo J Magnoni
- The New Zealand Institute for Plant and Food Research Limited, 293 Akersten St. Port Nelson, Nelson, 7010, New Zealand
| |
Collapse
|
2
|
Magnoni LJ, Cousin X, Leguen I, Espirito-Santo C, Clota F, Lallement S, Bégout ML. Early rearing of European seabass (Dicentrarchus labrax) with mild current enrichment modifies fish swimming behavior without altering their growth performance. Physiol Behav 2025; 289:114742. [PMID: 39542231 DOI: 10.1016/j.physbeh.2024.114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/02/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
The implementation of conditions that favor optimum swimming activity (e.g., suitable flow regimes), has been associated with enhanced growth and improved welfare in some farmed fish species. Despite the importance of European seabass in aquaculture, the potential beneficial effects of rearing flow conditions have not been sufficiently explored in this species. This study investigates how the application of fast (F, 0.01-0.20 m s-1) or slow (S, <0.01 m s-1) steady flows in rearing tanks for 75-77 days affected physiological and behavioral traits in seabass fingerlings. Growth performance, external and internal morphology, and several physiological variables, including hematocrit, plasma cortisol concentration, and osmotic and ionic balance were not affected by flow conditions during rearing. Also, behavioral tests implemented in groups or isolated individuals suggest that coping styles were not affected by the two tank-rearing conditions. On the contrary, the swimming behavior assessed in tests was modified by the flow condition experienced during rearing. Mean swimming speed, peak acceleration, swimming distance, angular velocity, and meander showed some variability across different tests and time, although consistently displaying higher values in seabass reared in the F condition, suggesting increased activity and more consistent swimming patterns in that group. However, the cumulative time in proximity between individuals measured in behavioral group tests suggested that group cohesion was variable, without displaying differences between F and S groups. These findings have particularly important implications for fish welfare and may suggest plasticity in the behavioral response to rearing conditions for this species, although not affecting the assignment of the individuals to the different coping styles. SUMMARY STATEMENT: We investigated how mild current enrichment applied during early rearing in seabass modifies physiological and behavioral responses involving swimming activity, exploring the potential associations to fish welfare.
Collapse
Affiliation(s)
- Leonardo J Magnoni
- Seafood Production Group, The New Zealand Institute for Plant and Food Research Limited, Nelson, New Zealand.
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Isabelle Leguen
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | - Carlos Espirito-Santo
- Faculty of Sciences (FCUP), University of Porto, Porto, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Matosinhos, Portugal
| | - Frédéric Clota
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, Palavas, France
| | | | | |
Collapse
|
3
|
Perelló-Amorós M, Fernández-Borràs J, Yu S, Sánchez-Moya A, García de la serrana D, Gutiérrez J, Blasco J. Improving the Aerobic Capacity in Fingerlings of European Sea Bass ( Dicentrarchus labrax) through Moderate and Sustained Exercise: A Metabolic Approach. Animals (Basel) 2024; 14:274. [PMID: 38254443 PMCID: PMC10812480 DOI: 10.3390/ani14020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Sustained swimming induces beneficial effects on growth and energy metabolism in some fish species. However, the absence of a standardized exercise regimen that guarantees an optimal response to physical activity is due to the anatomical, behavioral, and physiological differences among species, and the different conditions of tests applied, which are especially notable for the early stages of cultured species. The objective of this study was to assess the growth and metabolic responses of European sea bass submitted to continuous and moderate exercise exposure, selecting a practical swimming speed from swimming tests of groups of five fingerlings. The exercise-effects trial was carried out with 600 sea bass fingerlings (3-5 g body weight) distributed in two groups (control: voluntary swimming; exercised: under sustained swimming at 1.5 body lengths·s-1). After 6 weeks, growth parameters and proximal composition of both muscles were not altered by sustained swimming, but an increased synthetic capacity (increased RNA/DNA ratio) and more efficient use of proteins (decreased ΔN15) were observed in white muscle. The gene expression of mitochondrial proteins in white and red muscle was not affected by exercise, except for ucp3, which increased. The increase of UCP3 and Cox4 protein expression, as well as the higher COX/CS ratio of enzyme activity in white muscle, pointed out an enhanced oxidative capacity in this tissue during sustained swimming. In the protein expression of red muscle, only CS increased. All these metabolic adaptations to sustained exercise were also reflected in an enhanced maximum metabolic rate (MMR) with higher aerobic scope (AMS) of exercised fish in comparison to the non-trained fish, during a swimming test. These results demonstrated that moderate sustained swimming applied to sea bass fingerlings can improve the physical fitness of individuals through the enhancement of their aerobic capacities.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; (M.P.-A.); (J.F.-B.); (S.Y.); (A.S.-M.); (D.G.d.l.s.); (J.G.)
| |
Collapse
|
4
|
Palstra AP, Roque A, Kruijt L, Jéhannet P, Pérez-Sánchez J, Dirks RP. Physiological Effects of Water Flow Induced Swimming Exercise in Seabream Sparus aurata. Front Physiol 2020; 11:610049. [PMID: 33364981 PMCID: PMC7750471 DOI: 10.3389/fphys.2020.610049] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/17/2020] [Indexed: 11/25/2022] Open
Abstract
A longer on-land rearing period of Gilthead seabream Sparus aurata before transfer to sea-cages would allow the farmer to benefit from exercise-enhanced growth, resilience, and robustness as induced by increasing water flow in the tanks. In this study, the physiological effects of flow-conditioning were investigated by subjecting large groups of experimental fish to minimal flow or to flow regimes inducing swimming exercise at 1 or 2 body length (BL) s−1 for a period of 8 months (February–October) in 1,500 L tanks. Fish representing the three treatment groups were then used for: (1) a stress challenge netting test and plasma cortisol measurement (baseline, peaking, and recovery levels), (2) blood plasma measurements of glucose, triglycerides, lactate, cholesterol, growth hormone (GH), and insulin-like growth factor 1 (IGF1), and (3) heart and muscle gene expression of the GH and IGF1 receptors and the muscle transcriptome by deep RNA sequencing (RNAseq). Fish size after 8 months of flow conditioning was 92 ± 27 g body weight (BW) for fish under minimal flow, 106 ± 24 g BW (+15%) at 1 BL s−1, and 125 ± 27 g BW (+36%) at 2 BL s−1. Flow conditioning at 1 BL s−1 provided optimal conditions for growth and uniformity, but also stress (lowest baseline plasma cortisol), robustness (higher condition factor and larger hearts), and energy mobilization (increased plasma glucose). Although flow enhanced growth linearly with swimming speed, also the percentage of lordotic fish increased with exercise, particularly high for swimming at 2 BL s−1. The absence of important differences in plasma GH and IGF1, and expression levels of their receptors in heart and white skeletal muscle, indicated that other factors may be involved in growth enhancement. RNAseq of the white skeletal muscle showed upregulated expression of genes involved in muscle contraction, muscle development and its molecular regulation, and immune genes that may play a role in the muscle repair mechanism. An exercise regime of swimming at 1 BL s−1 can be considered as optimal for farming robust seabream although the increase of skeletal deformities should be avoided.
Collapse
Affiliation(s)
- Arjan P Palstra
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, Wageningen, Netherlands
| | - Ana Roque
- IRTA-SCR, Sant Carles de la Rapita, Spain
| | - Leo Kruijt
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, Wageningen, Netherlands
| | - Pauline Jéhannet
- Wageningen University & Research Animal Breeding and Genomics, Wageningen Livestock Research, Wageningen, Netherlands
| | - Jaume Pérez-Sánchez
- Nutrigenomics and Fish Growth Endocrinology Group, Institute of Aquaculture Torre de la Sal (CSIC), Castellon, Spain
| | - Ron P Dirks
- Future Genomics Technologies B.V., Leiden, Netherlands
| |
Collapse
|
5
|
Zhang L, Yin M, Wang X. Meat texture, muscle histochemistry and protein composition of Eriocheir sinensis with different size traits. Food Chem 2020; 338:127632. [PMID: 32882486 DOI: 10.1016/j.foodchem.2020.127632] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/09/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
The main aim of the present work was to investigate the effect of the inherent differences in the raw muscle on the textural quality of the cooked meat from different sized Eriocheir sinensis. The content of entrapped water was 73.8-77.7 g/100 g in raw muscle. The density and diameter of muscle thick microfilaments ranged between 137 and 158/μm2 and 20.9-27.0 nm. These results demonstrated that the raw muscle from the tender group had a smaller density of larger diameter thick microfilaments and more entrapped water than other samples, which could explain the high tenderness of the cooked meat (P < 0.05). The potential structural proteins that indicated tenderness include myosin regulatory light chain 2, ancient ubiquitous protein 1, tubulin α-2 chain, and β-catenin, was determined using liquid chromatography-tandem mass spectrometry. The inherent attributes of raw muscle could explain the textural differences of the cooked meat from Eriocheir sinensis.
Collapse
Affiliation(s)
- Long Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China
| | - Mingyu Yin
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Xichang Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Center of Aquatic-Product Processing and Preservation, Shanghai 201306, China.
| |
Collapse
|
6
|
Shi C, Wang J, Yang Z, Gao X, Liu Y, Wang C. Sustained Swimming Training Is Associated With Reversible Filet Texture Changes of European Sea Bass ( Dicentrarchus labrax L.). Front Physiol 2019; 10:725. [PMID: 31263426 PMCID: PMC6584975 DOI: 10.3389/fphys.2019.00725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 05/27/2019] [Indexed: 11/15/2022] Open
Abstract
This present study aimed to investigate the effect of training and detraining on the growth, chemical composition, white muscle fibers, and filet texture of the European sea bass (Dicentrarchus labrax L.). Fish were divided into control and training groups, which were subjected to water velocities of 0.2 and 1.0 body length per second (bl s-1), respectively, for 32 days (phase I). Half of the fish in the training group were then randomly selected and detrained at a velocity of 0.2 bl s-1 for another 32 days (detraining group), while the velocity of the remaining fish in the training group (1 bl s-1), and control group (0.2 bl s-1) remained unchanged (phase II). The results showed that the growth, body composition, and white muscle fiber densities of the control and trained fish were not significantly different in either phase. Training significantly altered the muscle fiber distribution (P < 0.05), with the training group having fewer 80-90 μm fibers than the control and detraining group at the end of the experiment (P < 0.05). The training group also had significantly higher values for white fiber muscle textural parameters (hardness, adhesiveness, cohesiveness, springiness, gumminess, and chewiness) in phase I (P < 0.05), and these parameters correlated significantly with pH (P < 0.05). However, these differences in texture and the pH correlation weakened when the fish were detrained in phase II. These results indicated that an increase in muscle pH after training may alter the flesh texture characteristics of sea bass. In addition, sustained swimming could induce a reversible change in the filet texture of sea bass.
Collapse
Affiliation(s)
- C. Shi
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Faculty of Life Science and Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| | - J. Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Faculty of Life Science and Biotechnology, Ningbo University, Ningbo, China
| | - Z. Yang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - X. Gao
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Y. Liu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, China
| | - C. Wang
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Faculty of Life Science and Biotechnology, Ningbo University, Ningbo, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, Ningbo, China
| |
Collapse
|