1
|
Chipman AD. The development and evolution of arthropod tagmata. Proc Biol Sci 2025; 292:20242950. [PMID: 40237508 PMCID: PMC12001983 DOI: 10.1098/rspb.2024.2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/18/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
The segmented body is a hallmark of the arthropod body plan. Morphological segments are formed during embryogenesis, through a complex procedure involving the activation of a series of gene regulatory networks. The segments of the arthropod body are organized into functional units known as tagmata, and these tagmata are different among the arthropod classes (e.g. head, thorax and abdomen in insects). Based on embryological work on segment generation in a number of arthropod species, coupled with a survey of classical descriptions of arthropod development, I suggest a new framework for the evolution of arthropod tagmata. The ancestral condition involves three developmental tagmata: the pre-gnathal segments, a tagma that is formed within a pre-existing developmental field and a tagma that is formed through the activity of a segment-addition zone that may be embryonic or post-embryonic. These embryonic tagmata may fuse post-embryonically to generate more complex adult tagmata. This framework is consistent with the evolution of tagmosis seen in the early arthropod fossil record. It also calls for a re-thinking of the decades-old division of arthropod development into short-germ versus long-germ development, a re-thinking of questions of segment identity determination and the role of Hox genes in tagma differentiation.
Collapse
Affiliation(s)
- Ariel D. Chipman
- Department of Ecology, Evolution & Behavior, The Silberman Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Pates S, Botting JP, Muir LA, Wolfe JM. Ordovician opabiniid-like animals and the role of the proboscis in euarthropod head evolution. Nat Commun 2022; 13:6969. [PMID: 36379946 PMCID: PMC9666559 DOI: 10.1038/s41467-022-34204-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
A crucial step in the evolution of Euarthropoda (chelicerates, myriapods, pancrustaceans) was the transition between fossil groups that possessed frontal appendages innervated by the first segment of the brain (protocerebrum), and living groups with a protocerebral labrum and paired appendages innervated by the second brain segment (deutocerebrum). Appendage homologies between the groups are controversial. Here we describe two specimens of opabiniid-like euarthropods, each bearing an anterior proboscis (a fused protocerebral appendage), from the Middle Ordovician Castle Bank Biota, Wales, UK. Phylogenetic analyses support a paraphyletic grade of stem-group euarthropods with fused protocerebral appendages and a posterior-facing mouth, as in the iconic Cambrian panarthropod Opabinia. These results suggest that the labrum may have reduced from an already-fused proboscis, rather than a pair of arthropodized appendages. If some shared features between the Castle Bank specimens and radiodonts are considered convergent rather than homologous, phylogenetic analyses retrieve them as opabiniids, substantially extending the geographic and temporal range of Opabiniidae.
Collapse
Affiliation(s)
- Stephen Pates
- grid.5335.00000000121885934Department of Zoology, University of Cambridge, Cambridge, UK
| | - Joseph P. Botting
- grid.9227.e0000000119573309Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, China ,grid.422296.90000 0001 2293 9551Department of Natural Sciences, Amgueddfa Cymru—National Museum Wales, Cardiff, UK
| | - Lucy A. Muir
- grid.422296.90000 0001 2293 9551Department of Natural Sciences, Amgueddfa Cymru—National Museum Wales, Cardiff, UK
| | - Joanna M. Wolfe
- grid.38142.3c000000041936754XMuseum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA USA
| |
Collapse
|
3
|
Vargas‐Parra EE, Hopkins MJ. Modularity in the trilobite head consistent with the hypothesized segmental origin of the eyes. Evol Dev 2022; 24:177-188. [PMID: 36111749 PMCID: PMC9786538 DOI: 10.1111/ede.12418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/06/2022] [Accepted: 08/18/2022] [Indexed: 12/30/2022]
Abstract
The trilobite head served multiple functions and was composed of several fused segments. Yet, the underlying organization of the trilobite head, and whether patterns are conserved across trilobites, remains unclear. Modeling the head as being composed of modules, or subunits that vary and thus have the potential to evolve semi-independently can reveal underlying patterns of organization. Hypotheses of modular organization based on the comparative developmental biology of arthropods were evaluated using geometric morphometrics. Two-dimensional (semi)landmark datasets collected from the cranidia of two Ordovician trilobite species, Calyptaulax annulata (Phacopida) and Cloacaspis senilis (Olenida sensu Adrain, 2011) were analyzed. The degree and pattern of modularity were assessed using the covariance ratio (CR), which compares the covariation within putative modules to the covariation between them, and the fit of different models was compared using an effect size measure derived from the CR. When treating the eyes as a distinct module, the best modular hypothesis identified for C. annulata shows the eyes and anteriormost region of the head integrated as a single module. The best modular hypotheses for C. senilis are more complex but the eyes still covary mostly strongly with the anterior part of the head. The latter is also the case for all other well-supported models for both species. These results can be interpreted as a developmental signal corresponding to the anteriormost ocular segment of early arthropods that is retained throughout development, despite any likely selective pressures related to functional needs.
Collapse
Affiliation(s)
| | - Melanie J. Hopkins
- Division of PaleontologyAmerican Museum of Natural HistoryNew YorkNew YorkUSA
| |
Collapse
|
4
|
Lev O, Edgecombe GD, Chipman AD. Serial Homology and Segment Identity in the Arthropod Head. Integr Org Biol 2022; 4:obac015. [PMID: 35620450 PMCID: PMC9128542 DOI: 10.1093/iob/obac015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The anterior-most unit of the crown-group arthropod body plan includes three segments, the pre-gnathal segments, that contain three neuromeres that together comprise the brain. Recent work on the development of this anterior region has shown that its three units exhibit many developmental differences to the more posterior segments, to the extent that they should not be considered serial homologs. Building on this revised understanding of the development of the pre-gnathal segments, we suggest a novel scenario for arthropod head evolution. We posit an expansion of an ancestral single-segmented head at the transition from Radiodonta to Deuteropoda in the arthropod stem group. The expanded head subdivided into three segmental units, each maintaining some of the structures of the ancestral head. This scenario is consistent with what we know of head evolution from the fossil record and helps reconcile some of the debates about early arthropod evolution.
Collapse
Affiliation(s)
- Oren Lev
- The Dept. of Ecology, Evolution & Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| | - Ariel D Chipman
- The Dept. of Ecology, Evolution & Behavior, The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem
| |
Collapse
|
5
|
Pates S, Wolfe JM, Lerosey-Aubril R, Daley AC, Ortega-Hernández J. New opabiniid diversifies the weirdest wonders of the euarthropod stem group. Proc Biol Sci 2022; 289:20212093. [PMID: 35135344 PMCID: PMC8826304 DOI: 10.1098/rspb.2021.2093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Once considered 'weird wonders' of the Cambrian, the emblematic Burgess Shale animals Anomalocaris and Opabinia are now recognized as lower stem-group euarthropods and have provided crucial data for constraining the polarity of key morphological characters in the group. Anomalocaris and its relatives (radiodonts) had worldwide distribution and survived until at least the Devonian. However, despite intense study, Opabinia remains the only formally described opabiniid to date. Here we reinterpret a fossil from the Wheeler Formation of Utah as a new opabiniid, Utaurora comosa nov. gen. et sp. By visualizing the sample of phylogenetic topologies in treespace, our results fortify support for the position of U. comosa beyond the nodal support traditionally applied. Our phylogenetic evidence expands opabiniids to multiple Cambrian stages. Our results underscore the power of treespace visualization for resolving imperfectly preserved fossils and expanding the known diversity and spatio-temporal ranges within the euarthropod lower stem group.
Collapse
Affiliation(s)
- Stephen Pates
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA.,Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Joanna M Wolfe
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Rudy Lerosey-Aubril
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Allison C Daley
- Institute of Earth Sciences, University of Lausanne, Géopolis, 1015 Lausanne, Switzerland
| | - Javier Ortega-Hernández
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
6
|
A juvenile-rich palaeocommunity of the lower Cambrian Chengjiang biota sheds light on palaeo-boom or palaeo-bust environments. Nat Ecol Evol 2021; 5:1082-1090. [PMID: 34183806 DOI: 10.1038/s41559-021-01490-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/06/2021] [Indexed: 02/06/2023]
Abstract
The fossil record, including the record of Burgess Shale-type deposits, is biased towards late ontogenetic stages. Larval stages, juvenile and subadult specimens exist but are very rare and often preserved as phosphatic fossils, resulting in biased population structures. Here, we report a new Burgess Shale-type Lagerstätte from Haiyan, China. The Haiyan palaeocommunity is extraordinary in that it is rich in fossils of early and middle ontogenetic stages of various phyla, with eggs also commonly found in the studied interval. This Lagerstätte also hosts a considerable number of new taxa-many related to later biotas of Gondwana and Laurentia. We propose that the deposit may either preserve one of the earliest nurseries in the fossil record or, alternatively, records several attempted invasions. Our study highlights the complexity of biotas and their interactions in the lower Cambrian ocean and calls for a better understanding of the mechanisms responsible for the observed spatial variation of fossil community composition in the Cambrian.
Collapse
|
7
|
Chipman AD, Edgecombe GD. Developing an integrated understanding of the evolution of arthropod segmentation using fossils and evo-devo. Proc Biol Sci 2019; 286:20191881. [PMID: 31575373 DOI: 10.1098/rspb.2019.1881] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Segmentation is fundamental to the arthropod body plan. Understanding the evolutionary steps by which arthropods became segmented is being transformed by the integration of data from evolutionary developmental biology (evo-devo), Cambrian fossils that allow the stepwise acquisition of segmental characters to be traced in the arthropod stem-group, and the incorporation of fossils into an increasingly well-supported phylogenetic framework for extant arthropods based on genomic-scale datasets. Both evo-devo and palaeontology make novel predictions about the evolution of segmentation that serve as testable hypotheses for the other, complementary data source. Fossils underpin such hypotheses as arthropodization originating in a frontal appendage and then being co-opted into other segments, and segmentation of the endodermal midgut in the arthropod stem-group. Insights from development, such as tagmatization being associated with different modes of segment generation in different body regions, and a distinct patterning of the anterior head segments, are complemented by palaeontological evidence for the pattern of tagmatization during ontogeny of exceptionally preserved fossils. Fossil and developmental data together provide evidence for a short head in stem-group arthropods and the mechanism of its formation and retention. Future breakthroughs are expected from identification of molecular signatures of developmental innovations within a phylogenetic framework, and from a focus on later developmental stages to identify the differentiation of repeated units of different systems within segmental precursors.
Collapse
Affiliation(s)
- Ariel D Chipman
- Department of Ecology, Evolution and Behavior, The Silberman Institute of Life Sciences, Edmond J. Safra Campus - Givat Ram, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK
| |
Collapse
|
8
|
Di Z, Edgecombe GD, Sharma PP. Homeosis in a scorpion supports a telopodal origin of pectines and components of the book lungs. BMC Evol Biol 2018; 18:73. [PMID: 29783957 PMCID: PMC5963125 DOI: 10.1186/s12862-018-1188-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/03/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The morphological and functional evolution of appendages has played a key role in the diversification of arthropods. While the ancestral arthropod appendage is held to be polyramous, terrestriality is associated with the reduction or loss of appendage rami, which may obscure the homology of different appendage derivatives. Proxies for appendage homology have included surveys of cross-reactive antibodies for wing markers like Nubbin/PDM, which have suggested that the abdominal appendages of arachnids (e.g., book lungs, tracheal tubules) are derived from ancestral gills (epipods). RESULTS Here, we discovered a rare case of inferred homeosis in a scorpion in which the bilobed genital opercula and the pectines are transformed to walking legs, and an abnormal sternite shows a book lung close to an everted structure comparable to the morphology of some Palaeozoic scorpion fossils. CONCLUSIONS The observed morphology is consistent with abnormal expression of homeotic genes during embryonic development. The phenotype of this abnormal specimen suggests that the genital opercula, the pectines, and parts of the book lung may be derived from the telopodite of abdominal appendages rather than from epipods. This interpretation contradicts the "ancestral gill" hypothesis but reconciles features of the Palaeozoic scorpion fossil record with the embryology of modern scorpions.
Collapse
Affiliation(s)
- Zhiyong Di
- Key Laboratory of Invertebrate Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK.
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 352 Birge Hall, 430 Lincoln Drive, Madison, WI, 53706, USA.
| |
Collapse
|
9
|
Abstract
The discovery of fossilized brains and ventral nerve cords in lower and mid-Cambrian arthropods has led to crucial insights about the evolution of their central nervous system, the segmental identity of head appendages and the early evolution of eyes and their underlying visual systems. Fundamental ground patterns of lower Cambrian arthropod brains and nervous systems correspond to the ground patterns of brains and nervous systems belonging to three of four major extant panarthropod lineages. These findings demonstrate the evolutionary stability of early neural arrangements over an immense time span. Here, we put these fossil discoveries in the context of evidence from cladistics, as well as developmental and comparative neuroanatomy, which together suggest that despite many evolved modifications of neuropil centers within arthropod brains and ganglia, highly conserved arrangements have been retained. Recent phylogenies of the arthropods, based on fossil and molecular evidence, and estimates of divergence dates, suggest that neural ground patterns characterizing onychophorans, chelicerates and mandibulates are likely to have diverged between the terminal Ediacaran and earliest Cambrian, heralding the exuberant diversification of body forms that account for the Cambrian Explosion.
Collapse
Affiliation(s)
- Nicholas J Strausfeld
- Department of Neuroscience and Center for Insect Science, University of Arizona, Tucson, AZ 85721, USA.
| | - Xiaoya Ma
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK; Yunnan Key Laboratory for Palaeobiology, Yunnan University, Kunming 650091, People's Republic of China
| | - Gregory D Edgecombe
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
10
|
Setton EVW, March LE, Nolan ED, Jones TE, Cho H, Wheeler WC, Extavour CG, Sharma PP. Expression and function of spineless orthologs correlate with distal deutocerebral appendage morphology across Arthropoda. Dev Biol 2017; 430:224-236. [PMID: 28764892 DOI: 10.1016/j.ydbio.2017.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 07/03/2017] [Accepted: 07/24/2017] [Indexed: 10/19/2022]
Abstract
The deutocerebral (second) head segment is putatively homologous across Arthropoda, in spite of remarkable disparity of form and function of deutocerebral appendages. In Mandibulata this segment bears a pair of sensory antennae, whereas in Chelicerata the same segment bears a pair of feeding appendages called chelicerae. Part of the evidence for the homology of deutocerebral appendages is the conserved function of homothorax (hth), which has been shown to specify antennal or cheliceral fate in the absence of Hox signaling, in both mandibulate and chelicerate exemplars. However, the genetic basis for the morphological disparity of antenna and chelicera is not understood. To test whether downstream targets of hth have diverged in a lineage-specific manner, we examined the evolution of the function and expression of spineless (ss), which in two holometabolous insects is known to act as a hth target and distal antennal determinant. Toward expanding phylogenetic representation of gene expression data, here we show that strong expression of ss is observed in developing antennae of a hemimetabolous insect, a centipede, and an amphipod crustacean. By contrast, ss orthologs are not expressed throughout the cheliceral limb buds of spiders or harvestmen during developmental stages when appendage fate is specified. RNA interference-mediated knockdown of ss in Oncopeltus fasciatus, which bears a simple plesiomorphic antenna, resulted in homeotic distal antenna-to-leg transformation, comparable to data from holometabolous insect counterparts. Knockdown of hth in Oncopeltus fasciatus abrogated ss expression, suggesting conservation of upstream regulation. These data suggest that ss may be a flagellar (distal antennal) determinant more broadly, and that this function was acquired at the base of Mandibulata.
Collapse
Affiliation(s)
- Emily V W Setton
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Logan E March
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Erik D Nolan
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Tamsin E Jones
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - Holly Cho
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
| | - Ward C Wheeler
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA 02138, USA
| | - Prashant P Sharma
- Department of Integrative Biology, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Wolfe JM. Metamorphosis Is Ancestral for Crown Euarthropods, and Evolved in the Cambrian or Earlier. Integr Comp Biol 2017; 57:499-509. [DOI: 10.1093/icb/icx039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
12
|
Janssen R. Comparative analysis of gene expression patterns in the arthropod labrum and the onychophoran frontal appendages, and its implications for the arthropod head problem. EvoDevo 2017; 8:1. [PMID: 28053697 PMCID: PMC5209905 DOI: 10.1186/s13227-016-0064-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 12/15/2016] [Indexed: 11/10/2022] Open
Abstract
The arthropod head problem has troubled scientists for more than a century. The segmental composition of the arthropod head, homology of its appendages, and especially the nature of the most anterior region of the head are still, at least partially, unclear. One morphological feature of the head that is in the center of current debate is the labrum (upper lip), a fleshy appendicular structure that covers the arthropod mouth. One hypothesis is that the labrum represents a fused pair of protocerebral limbs that likely are homologous with the frontal appendages (primary antennae) of extant onychophorans and the so-called great appendages of stem arthropods. Recently, this hypothesis obtained additional support through genetic data, showing that six3, an anterior-specific gene, is exclusively expressed in the arthropod labrum and the onychophoran frontal appendages, providing an additional line of evidence for homology. Here I present data that put this finding into perspective. The outcome of my study shows that the homologization of a morphological structure by the expression of a single genetic factor is potentially misleading.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236 Uppsala, Sweden
| |
Collapse
|