1
|
Dakhnevich A, Kazakova A, Iliushin D, Ivanov RA. Pyrrolysine Aminoacyl-tRNA Synthetase as a Tool for Expanding the Genetic Code. Int J Mol Sci 2025; 26:539. [PMID: 39859254 PMCID: PMC11764691 DOI: 10.3390/ijms26020539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
In addition to the 20 canonical amino acids encoded in the genetic code, there are two non-canonical ones: selenocysteine and pyrrolysine. The discovery of pyrrolysine synthetases (PylRSs) was a key event in the field of genetic code expansion research. The importance of this discovery is mainly due to the fact that the translation systems involving PylRS, pyrrolysine tRNA (tRNAPyl) and pyrrolysine are orthogonal to the endogenous translation systems of organisms that do not use this amino acid in protein synthesis. In addition, pyrrolysine synthetases belonging to different groups are also mutually orthogonal. This orthogonality is based on the structural features of PylRS and tRNAPyl, which include identical elements, such as a condensed core, certain base pairs and the structural motifs of tRNAPyl. This suggests that targeted structural changes in these molecules enable changes in their specificity for the amino acid and the codon. Such modifications were successfully used to obtain different aaRS/tRNA pairs that allow the incorporation of unnatural amino acids into peptides. This review presents the results of recent studies related to the correlation between the structure and activity of PylRS and tRNAPyl and the use of pyrrolysine synthetases to extend the genetic code.
Collapse
Affiliation(s)
| | | | | | - Roman A. Ivanov
- Biotechnology Department, Sirius University of Science and Technology, 354349 Sirius, Russia; (A.D.); (D.I.)
| |
Collapse
|
2
|
Williamson G, Harris T, Bizior A, Hoskisson PA, Pritchard L, Javelle A. Biological ammonium transporters: evolution and diversification. FEBS J 2024; 291:3786-3810. [PMID: 38265636 DOI: 10.1111/febs.17059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/14/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Although ammonium is the preferred nitrogen source for microbes and plants, in animal cells it is a toxic product of nitrogen metabolism that needs to be excreted. Thus, ammonium movement across biological membranes, whether for uptake or excretion, is a fundamental and ubiquitous biological process catalysed by the superfamily of the Amt/Mep/Rh transporters. A remarkable feature of the Amt/Mep/Rh family is that they are ubiquitous and, despite sharing low amino acid sequence identity, are highly structurally conserved. Despite sharing a common structure, these proteins have become involved in a diverse range of physiological process spanning all domains of life, with reports describing their involvement in diverse biological processes being published regularly. In this context, we exhaustively present their range of biological roles across the domains of life and after explore current hypotheses concerning their evolution to help to understand how and why the conserved structure fulfils diverse physiological functions.
Collapse
Affiliation(s)
- Gordon Williamson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Thomas Harris
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Adriana Bizior
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Paul Alan Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Arnaud Javelle
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
3
|
Weiss JL, Decker JC, Bolano A, Krahn N. Tuning tRNAs for improved translation. Front Genet 2024; 15:1436860. [PMID: 38983271 PMCID: PMC11231383 DOI: 10.3389/fgene.2024.1436860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 07/11/2024] Open
Abstract
Transfer RNAs have been extensively explored as the molecules that translate the genetic code into proteins. At this interface of genetics and biochemistry, tRNAs direct the efficiency of every major step of translation by interacting with a multitude of binding partners. However, due to the variability of tRNA sequences and the abundance of diverse post-transcriptional modifications, a guidebook linking tRNA sequences to specific translational outcomes has yet to be elucidated. Here, we review substantial efforts that have collectively uncovered tRNA engineering principles that can be used as a guide for the tuning of translation fidelity. These principles have allowed for the development of basic research, expansion of the genetic code with non-canonical amino acids, and tRNA therapeutics.
Collapse
Affiliation(s)
- Joshua L Weiss
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - J C Decker
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Ariadna Bolano
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Natalie Krahn
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Wright CL, Lehtovirta-Morley LE. Nitrification and beyond: metabolic versatility of ammonia oxidising archaea. THE ISME JOURNAL 2023; 17:1358-1368. [PMID: 37452095 PMCID: PMC10432482 DOI: 10.1038/s41396-023-01467-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/09/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023]
Abstract
Ammonia oxidising archaea are among the most abundant living organisms on Earth and key microbial players in the global nitrogen cycle. They carry out oxidation of ammonia to nitrite, and their activity is relevant for both food security and climate change. Since their discovery nearly 20 years ago, major insights have been gained into their nitrogen and carbon metabolism, growth preferences and their mechanisms of adaptation to the environment, as well as their diversity, abundance and activity in the environment. Despite significant strides forward through the cultivation of novel organisms and omics-based approaches, there are still many knowledge gaps on their metabolism and the mechanisms which enable them to adapt to the environment. Ammonia oxidising microorganisms are typically considered metabolically streamlined and highly specialised. Here we review the physiology of ammonia oxidising archaea, with focus on aspects of metabolic versatility and regulation, and discuss these traits in the context of nitrifier ecology.
Collapse
Affiliation(s)
- Chloe L Wright
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, United Kingdom
| | | |
Collapse
|
5
|
Fessler M, Madsen JS, Zhang Y. Conjugative plasmids inhibit extracellular electron transfer in Geobacter sulfurreducens. Front Microbiol 2023; 14:1150091. [PMID: 37007462 PMCID: PMC10063792 DOI: 10.3389/fmicb.2023.1150091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Geobacter sulfurreducens is part of a specialized group of microbes with the unique ability to exchange electrons with insoluble materials, such as iron oxides and electrodes. Therefore, G. sulfurreducens plays an essential role in the biogeochemical iron cycle and microbial electrochemical systems. In G. sulfurreducens this ability is primarily dependent on electrically conductive nanowires that link internal electron flow from metabolism to solid electron acceptors in the extracellular environment. Here we show that when carrying conjugative plasmids, which are self-transmissible plasmids that are ubiquitous in environmental bacteria, G. sulfurreducens reduces insoluble iron oxides at much slower rates. This was the case for all three conjugative plasmids tested (pKJK5, RP4 and pB10). Growth with electron acceptors that do not require expression of nanowires was, on the other hand, unaffected. Furthermore, iron oxide reduction was also inhibited in Geobacter chapellei, but not in Shewanella oneidensis where electron export is nanowire-independent. As determined by transcriptomics, presence of pKJK5 reduces transcription of several genes that have been shown to be implicated in extracellular electron transfer in G. sulfurreducens, including pilA and omcE. These results suggest that conjugative plasmids can in fact be very disadvantageous for the bacterial host by imposing specific phenotypic changes, and that these plasmids may contribute to shaping the microbial composition in electrode-respiring biofilms in microbial electrochemical reactors.
Collapse
Affiliation(s)
- Mathias Fessler
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jonas Stenløkke Madsen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yifeng Zhang
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
- *Correspondence: Yifeng Zhang,
| |
Collapse
|
6
|
Densi A, Iyer RS, Bhat PJ. Synonymous and Nonsynonymous Substitutions in Dictyostelium discoideum Ammonium Transporter amtA Are Necessary for Functional Complementation in Saccharomyces cerevisiae. Microbiol Spectr 2023; 11:e0384722. [PMID: 36840598 PMCID: PMC10100761 DOI: 10.1128/spectrum.03847-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
Ammonium transporters are present in all three domains of life. They have undergone extensive horizontal gene transfer (HGT), gene duplication, and functional diversification and therefore offer an excellent paradigm to study protein evolution. We attempted to complement a mep1Δmep2Δmep3Δ strain of Saccharomyces cerevisiae (triple-deletion strain), which otherwise cannot grow on ammonium as a sole nitrogen source at concentrations of <3 mM, with amtA of Dictyostelium discoideum, an orthologue of S. cerevisiae MEP2. We observed that amtA did not complement the triple-deletion strain of S. cerevisiae for growth on low-ammonium medium. We isolated two mutant derivatives of amtA (amtA M1 and amtA M2) from a PCR-generated mutant plasmid library that complemented the triple-deletion strain of S. cerevisiae. amtA M1 bears three nonsynonymous and two synonymous substitutions, which are necessary for its functionality. amtA M2 bears two nonsynonymous substitutions and one synonymous substitution, all of which are necessary for functionality. Interestingly, AmtA M1 transports ammonium but does not confer methylamine toxicity, while AmtA M2 transports ammonium and confers methylamine toxicity, demonstrating functional diversification. Preliminary biochemical analyses indicated that the mutants differ in their conformations as well as their mechanisms of ammonium transport. These intriguing results clearly point out that protein evolution cannot be fathomed by studying nonsynonymous and synonymous substitutions in isolation. The above-described observations have significant implications for various facets of biological processes and are discussed in detail. IMPORTANCE Functional diversification following gene duplication is one of the major driving forces of protein evolution. While the role of nonsynonymous substitutions in the functional diversification of proteins is well recognized, knowledge of the role of synonymous substitutions in protein evolution is in its infancy. Using functional complementation, we isolated two functional alleles of the D. discoideum ammonium transporter gene (amtA), which otherwise does not function in S. cerevisiae as an ammonium transporters. One of them is an ammonium transporter, while the other is an ammonium transporter that also confers methylammonium (ammonium analogue) toxicity, suggesting functional diversification. Surprisingly, both alleles require a combination of synonymous and nonsynonymous substitutions for their functionality. These results bring out a hitherto-unknown pathway of protein evolution and pave the way for not only understanding protein evolution but also interpreting single nucleotide polymorphisms (SNPs).
Collapse
Affiliation(s)
- Asha Densi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Revathi S. Iyer
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Paike Jayadeva Bhat
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
7
|
Smeulders MJ, Peeters SH, van Alen T, de Bruijckere D, Nuijten GHL, op den Camp HJM, Jetten MSM, van Niftrik L. Nutrient Limitation Causes Differential Expression of Transport- and Metabolism Genes in the Compartmentalized Anammox Bacterium Kuenenia stuttgartiensis. Front Microbiol 2020; 11:1959. [PMID: 32903544 PMCID: PMC7438415 DOI: 10.3389/fmicb.2020.01959] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022] Open
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria, members of the "Candidatus Brocadiaceae" family, play an important role in the nitrogen cycle and are estimated to be responsible for about half of the oceanic nitrogen loss to the atmosphere. Anammox bacteria combine ammonium with nitrite and produce dinitrogen gas via the intermediates nitric oxide and hydrazine (anammox reaction) while nitrate is formed as a by-product. These reactions take place in a specialized, membrane-enclosed compartment called the anammoxosome. Therefore, the substrates ammonium, nitrite and product nitrate have to cross the outer-, cytoplasmic-, and anammoxosome membranes to enter or exit the anammoxosome. The genomes of all anammox species harbor multiple copies of ammonium-, nitrite-, and nitrate transporter genes. Here we investigated how the distinct genes for ammonium-, nitrite-, and nitrate- transport were expressed during substrate limitation in membrane bioreactors. Transcriptome analysis of Kuenenia stuttgartiensis planktonic cells showed that four of the seven ammonium transporter homologs and two of the nine nitrite transporter homologs were significantly upregulated during ammonium-limited growth, while another ammonium transporter- and four nitrite transporter homologs were upregulated in nitrite limited growth conditions. The two nitrate transporters were expressed to similar levels in both conditions. In addition, genes encoding enzymes involved in the anammox reaction were differentially expressed, with those using nitrite as a substrate being upregulated under nitrite limited growth and those using ammonium as a substrate being upregulated during ammonium limitation. Taken together, these results give a first insight in the potential role of the multiple nutrient transporters in regulating transport of substrates and products in and out of the compartmentalized anammox cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Laura van Niftrik
- Department of Microbiology, Institute for Water and Wetland Research, Faculty of Science, Radboud University Nijmegen, Nijmegen, Netherlands
| |
Collapse
|
8
|
Lecompte M, Cattaert D, Vincent A, Birman S, Chérif-Zahar B. Drosophila ammonium transporter Rh50 is required for integrity of larval muscles and neuromuscular system. J Comp Neurol 2019; 528:81-94. [PMID: 31273786 DOI: 10.1002/cne.24742] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 05/30/2019] [Accepted: 06/21/2019] [Indexed: 12/18/2022]
Abstract
Rhesus glycoproteins (Rh50) have been shown to be ammonia transporters in many species from bacteria to human. They are involved in various physiological processes including acid excretion and pH regulation. Rh50 proteins can also provide a structural link between the cytoskeleton and the plasma membranes that maintain cellular integrity. Although ammonia plays essential roles in the nervous system, in particular at glutamatergic synapses, a potential role for Rh50 proteins at synapses has not yet been investigated. To better understand the function of these proteins in vivo, we studied the unique Rh50 gene of Drosophila melanogaster, which encodes two isoforms, Rh50A and Rh50BC. We found that Drosophila Rh50A is expressed in larval muscles and enriched in the postsynaptic regions of the glutamatergic neuromuscular junctions. Rh50 inactivation by RNA interference selectively in muscle cells caused muscular atrophy in larval stages and pupal lethality. Interestingly, Rh50-deficiency in muscles specifically increased glutamate receptor subunit IIA (GluRIIA) level and the frequency of spontaneous excitatory postsynaptic potentials. Our work therefore highlights a new role for Rh50 proteins in the maintenance of Drosophila muscle architecture and synaptic physiology, which could be conserved in other species.
Collapse
Affiliation(s)
- Mathilde Lecompte
- Genes Circuits Rhythmes et Neuropathologies, Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Daniel Cattaert
- Institut des Neurosciences Cognitives et Intégratives d'Aquitaine, CNRS, Bordeaux University, Bordeaux, France
| | - Alain Vincent
- Centre de Biologie du Développement, Centre de Biologie Intégrative, CNRS, Toulouse University, UPS, Toulouse, France
| | - Serge Birman
- Genes Circuits Rhythmes et Neuropathologies, Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France
| | - Baya Chérif-Zahar
- Genes Circuits Rhythmes et Neuropathologies, Plasticité du Cerveau, ESPCI Paris, CNRS, PSL University, Paris, France
| |
Collapse
|
9
|
Gene tree species tree reconciliation with gene conversion. J Math Biol 2019; 78:1981-2014. [PMID: 30767052 DOI: 10.1007/s00285-019-01331-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/03/2018] [Indexed: 01/19/2023]
Abstract
Gene tree/species tree reconciliation is a recent decisive progress in phylogenetic methods, accounting for the possible differences between gene histories and species histories. Reconciliation consists in explaining these differences by gene-scale events such as duplication, loss, transfer, which translates mathematically into a mapping between gene tree nodes and species tree nodes or branches. Gene conversion is a frequent and important evolutionary event, which results in the replacement of a gene by a copy of another from the same species and in the same gene tree. Including this event in reconciliation models has never been attempted because it introduces a dependency between lineages, and standard algorithms based on dynamic programming become ineffective. We propose here a novel mathematical framework including gene conversion as an evolutionary event in gene tree/species tree reconciliation. We describe a randomized algorithm that finds, in polynomial running time, a reconciliation minimizing the number of duplications, losses and conversions in the case when their weights are equal. We show that the space of optimal reconciliations includes an analog of the last common ancestor reconciliation, but is not limited to it. Our algorithm outputs any optimal reconciliation with a non-null probability. We argue that this study opens a research avenue on including gene conversion in reconciliation, and discuss its possible importance in biology.
Collapse
|
10
|
Koch H, van Kessel MAHJ, Lücker S. Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl Microbiol Biotechnol 2019; 103:177-189. [PMID: 30415428 PMCID: PMC6311188 DOI: 10.1007/s00253-018-9486-3] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/26/2018] [Accepted: 10/27/2018] [Indexed: 11/30/2022]
Abstract
Nitrification, the oxidation of ammonia via nitrite to nitrate, has been considered to be a stepwise process mediated by two distinct functional groups of microorganisms. The identification of complete nitrifying Nitrospira challenged not only the paradigm of labor division in nitrification, it also raises fundamental questions regarding the environmental distribution, diversity, and ecological significance of complete nitrifiers compared to canonical nitrifying microorganisms. Recent genomic and physiological surveys identified factors controlling their ecology and niche specialization, which thus potentially regulate abundances and population dynamics of the different nitrifying guilds. This review summarizes the recently obtained insights into metabolic differences of the known nitrifiers and discusses these in light of potential functional adaptation and niche differentiation between canonical and complete nitrifiers.
Collapse
Affiliation(s)
- Hanna Koch
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | - Sebastian Lücker
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
11
|
Paquola ACM, Asif H, Pereira CADB, Feltes BC, Bonatto D, Lima WC, Menck CFM. Horizontal Gene Transfer Building Prokaryote Genomes: Genes Related to Exchange Between Cell and Environment are Frequently Transferred. J Mol Evol 2018; 86:190-203. [DOI: 10.1007/s00239-018-9836-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
|
12
|
Abstract
Pyrrolysine is the 22nd proteinogenic amino acid encoded into proteins in response to amber (TAG) codons in a small number of archaea and bacteria. The incorporation of pyrrolysine is facilitated by a specialized aminoacyl-tRNA synthetase (PylRS) and its cognate tRNA (tRNAPyl). The secondary structure of tRNAPyl contains several unique features not found in canonical tRNAs. Numerous studies have demonstrated that the PylRS/tRNAPyl pair from archaea is orthogonal in E. coli and eukaryotic hosts, which has led to the widespread use of this pair for the genetic incorporation of non-canonical amino acids. In this brief review we examine the work that has been done to elucidate the structure of tRNAPyl, its interaction with PylRS, and survey recent progress on the use of tRNAPyl as a tool for genetic code expansion.
Collapse
Affiliation(s)
- Jeffery M Tharp
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| | - Andreas Ehnbom
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| | - Wenshe R Liu
- a Department of Chemistry , Texas A&M University , College Station , TX , USA
| |
Collapse
|
13
|
O’Halloran DM. phylo-node: A molecular phylogenetic toolkit using Node.js. PLoS One 2017; 12:e0175480. [PMID: 28410421 PMCID: PMC5391935 DOI: 10.1371/journal.pone.0175480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 03/27/2017] [Indexed: 12/05/2022] Open
Abstract
Background Node.js is an open-source and cross-platform environment that provides a JavaScript codebase for back-end server-side applications. JavaScript has been used to develop very fast and user-friendly front-end tools for bioinformatic and phylogenetic analyses. However, no such toolkits are available using Node.js to conduct comprehensive molecular phylogenetic analysis. Results To address this problem, I have developed, phylo-node, which was developed using Node.js and provides a stable and scalable toolkit that allows the user to perform diverse molecular and phylogenetic tasks. phylo-node can execute the analysis and process the resulting outputs from a suite of software options that provides tools for read processing and genome alignment, sequence retrieval, multiple sequence alignment, primer design, evolutionary modeling, and phylogeny reconstruction. Furthermore, phylo-node enables the user to deploy server dependent applications, and also provides simple integration and interoperation with other Node modules and languages using Node inheritance patterns, and a customized piping module to support the production of diverse pipelines. Conclusions phylo-node is open-source and freely available to all users without sign-up or login requirements. All source code and user guidelines are openly available at the GitHub repository: https://github.com/dohalloran/phylo-node.
Collapse
Affiliation(s)
- Damien M. O’Halloran
- Department of Biological Sciences, The George Washington University, Washington, DC, United States of America
- Institute for Neuroscience, The George Washington University, Washington, DC, United States of America
- * E-mail:
| |
Collapse
|