1
|
Nie L, Bamisile BS, Li Y, Ran H, Wang S, Wang L, Xu Y. Interspecific competition predicts the potential impact of little fire ant Wasmannia auropunctata (Roger) (Hymenoptera: Formicidae) invasion on resident ants in southern China. INSECT SCIENCE 2023; 30:1518-1530. [PMID: 36583375 DOI: 10.1111/1744-7917.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The little fire ant Wasmannia auropunctata (Roger) is a major invasive species that seriously threatens the biodiversity of invaded areas. W. auropunctata was first reported in Chinese mainland in 2022 and its impact on native species is still unknown. To evaluate the impact of W. auropunctata invasion on the ant communities in southern China, a series of interspecific competition experiments were conducted in this study. The individual aggression index and group aggression experiments showed the advantage of W. auropunctata in competition with 5 resident ants under equal worker numbers. When encountering Anoplolepis gracilipes, Camponotus nicobarensis, Tetramorium bicarinatum, Polyrhachis dives, and Solenopsis invicta, W. auropunctata gradually gained a competitive advantage with an increase in its number of workers. In the group aggression experiments with equal worker numbers, there was a negative correlation between the body length and mortality rate of resident ants. The results of the foraging behavior experiments showed that W. auropunctata was able to dominate food resources under competition with Carebara diversa, which also displayed weak competition in the group aggression bioassay. In addition, the abilities to recruit workers and retrieve food were inhibited under competition with S. invicta and T. bicarinatum. The results of the nesting behavior experiments showed that in the 24-h bout of space resource competition, W. auropunctata was dominant over C. diversa, S. invicta, and T. bicarinatum. The results of this study show that W. auropunctata has certain advantages in competition for food and space resources over resident ants in southern China, and some resident ant species may be replaced in the future.
Collapse
Affiliation(s)
- Lei Nie
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Bamisope Steve Bamisile
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Yuling Li
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Hao Ran
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Suhang Wang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Lei Wang
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| | - Yijuan Xu
- Red Imported Fire Ant Research Center, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Buczkowski G, Wang S, Craig BA. Behavioral assays reveal mechanisms of supercolony formation in odorous house ants. Sci Rep 2023; 13:9013. [PMID: 37268644 DOI: 10.1038/s41598-023-35654-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
The formation of expansive multi-nest and multi-queen supercolonies is perhaps the most important factor responsible for the ecological success of invasive ants. The odorous house ant, Tapinoma sessile, is a widespread ant native to North America. T. sessile is a challenging urban pest, but also serves as an interesting system to study ant social organization and invasion biology. This is due to its remarkable dichotomy in colony social and spatial structure between natural and urban environments. Natural colonies typically consist of a small number of workers, inhabit a single nest, and are monogyne whereas urban colonies show extreme polygyny and polydomy and form large supercolonies. The current study examined the extent to which T. sessile colonies from different habitats (natural vs. urban) and social structures (monogynous vs. polygynous) exhibit aggression toward alien conspecifics. Additionally, interactions between mutually aggressive colonies were examined in colony fusion experiments to assess the potential role of colony fusion as a mechanism leading to supercolony formation. Aggression assays demonstrated high levels of aggression in pairings involving workers from different urban colonies and workers from different natural colonies, but low aggression in pairings involving queens from different urban colonies. Colony merging tests demonstrated that urban T. sessile colonies are highly aggressive to each other, but capable of fusing under laboratory conditions when competing for limited nesting and food resources. Despite highly aggressive interactions and relatively high worker and queen mortality, all colony pairs merged in 3-5 days. Fusion occurred after most workers died and the survivors merged. This result suggests that the success of T. sessile in urban areas may be driven, at least in part, by successful colony mergers of unrelated colonies which may be determined by ecological constraints such as seasonal shortages in nest and/or food availability. In summary, two independent factors including the growth of a single colony and/or the merger of multiple colonies may be responsible for the evolution of supercolonies in invasive ants. Both processes may be happening simultaneously and may act synergistically to produce supercolonies.
Collapse
Affiliation(s)
- Grzegorz Buczkowski
- Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA.
| | - Sihui Wang
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Bruce A Craig
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
3
|
Jacquier L, Molet M, Doums C. Urban colonies are less aggressive but forage more than their forest counterparts in the ant Temnothorax nylanderi. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
4
|
Krapf P, Sedfaoui K, Contala ML, Steiner FM, Schlick-Steiner BC. Short-time development of among-colony behaviour in a high-elevation ant. Behav Processes 2023; 208:104872. [PMID: 37011703 DOI: 10.1016/j.beproc.2023.104872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Standardised assays are often used to characterise aggression in animals. In ants,such assays can be applied at several organisational levels (e.g., colony, population) and at specific times during the season. However, whether the behaviour differs at these levels and changes over a few weeks remains largely unexplored. Here, six colonies from the high-elevation ant Tetramorium alpestre were collected weekly for five weeks from two behaviourally-different populations (aggressive and peaceful in intraspecific encounters). We conducted one-on-one worker encounters at the colony and population levels. When analysing the colony combinations separately, the behaviour was peaceful and remained so within the peaceful population; initial aggression became partially peaceful within the aggressive population; and initial aggression decreased occasionally and increased in one combination but remained constant for most across-population combinations. When analysing all colony combinations together, within-population behaviour remained similar, but acrosspopulation behaviour became peaceful. The observed behavioural differences among organisational levels emphasise the relevance of assessing both. Moreover, the effect of decreasing aggression is discernible already over a few weeks. Compression of the vegetation period at high elevations may compress such behavioural changes.Addressing both organisational levels and seasonality is important, particularly in studies of behavioural complexity such as in this ant.
Collapse
Affiliation(s)
- Patrick Krapf
- Molecular Ecology Group, Department of Ecology, Universität Innsbruck, Austria.
| | - Klaus Sedfaoui
- Molecular Ecology Group, Department of Ecology, Universität Innsbruck, Austria; Department of Biology, University of Padua, Italy
| | - Marie-Luise Contala
- Molecular Ecology Group, Department of Ecology, Universität Innsbruck, Austria
| | - Florian M Steiner
- Molecular Ecology Group, Department of Ecology, Universität Innsbruck, Austria
| | | |
Collapse
|
5
|
Lee CC, Hsu HW, Lin CY, Gustafson N, Matsuura K, Lee CY, Yang CCS. First Polycipivirus and Unmapped RNA Virus Diversity in the Yellow Crazy Ant, Anoplolepis gracilipes. Viruses 2022; 14:v14102161. [PMID: 36298716 PMCID: PMC9612232 DOI: 10.3390/v14102161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022] Open
Abstract
The yellow crazy ant, Anoplolepis gracilipes is a widespread invasive ant that poses significant threats to local biodiversity. Yet, compared to other global invasive ant species such as the red imported fire ant (Solenopsis invicta) or the Argentine ant (Linepithema humile), little is known about the diversity of RNA viruses in the yellow crazy ant. In the current study, we generated a transcriptomic database for A. gracilipes using a high throughput sequencing approach to identify new RNA viruses and characterize their genomes. Four virus species assigned to Dicistroviridae, two to Iflaviridae, one to Polycipiviridae, and two unclassified Riboviria viruses were identified. Detailed genomic characterization was carried out on the polycipivirus and revealed that this virus comprises 11,644 nucleotides with six open reading frames. Phylogenetic analysis and pairwise amino acid identity comparison classified this virus into the genus Sopolycivirus under Polycipiviridae, which is tentatively named "Anoplolepis gracilipes virus 3 (AgrV-3)". Evolutionary analysis showed that AgrV-3 possesses a high level of genetic diversity and elevated mutation rate, combined with the common presence of multiple viral strains within single worker individuals, suggesting AgrV-3 likely evolves following the quasispecies model. A subsequent field survey placed the viral pathogen "hotspot" of A. gracilipes in the Southeast Asian region, a pattern consistent with the region being recognized as part of the ant's native range. Lastly, infection of multiple virus species seems prevalent across field colonies and may have been linked to the ant's social organization.
Collapse
Affiliation(s)
- Chih-Chi Lee
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 6110011, Japan
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Hung-Wei Hsu
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 6110011, Japan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Yi Lin
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 6110011, Japan
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Nicolas Gustafson
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan
| | - Chow-Yang Lee
- Department of Entomology, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Chin-Cheng Scotty Yang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +1-540-231-3052
| |
Collapse
|
6
|
Aguilera-Olivares D, Torres-Guzmán B, Arab A, Flores-Prado L, Niemeyer HM. Body Size and Symmetry Properties of Termite Soldiers Under Two Intraspecific Competition Scenarios. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.882357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Single-piece nesting termites live and forage in the same piece of wood throughout their life, which limit their colony size. In certain species, more than one colony thrive in a given piece of wood (multicolonial substrate) and intraspecific competition become important in this limited resource, as has been reported in Zootermopsis nevadensis (Hagen, 1858) and Neotermes chilensis (Blattodea: Kalotermitidae) (Blanchard, 1851). The effects of such competition have been described mainly at population and colony levels rather than at the individual level. In eusocial insects such as termites, intraspecific competition constitutes a stress factor imposed to a colony as a whole and should also cause developmental instability in soldiers produced under such conditions. Investment in the production of soldiers involves a trade-off between colony maintenance costs and defense benefits. Hence, we hypothesize that body size and fluctuating asymmetry, two indicators of developmental instability, will increase when two or more colonies of N. chilensis share a piece of wood (high intraspecific competition scenario). Our results showed that soldiers developing in multicolonial substrates were indeed larger and more asymmetric than soldiers developing in unicolonial substrates. The large body size in a soldier could improve its chance to win a physical contest with a non-nestmate opponent; thus, despite the high cost to produce large soldiers in small colonies, larger soldier production could be an adaptative strategy to avoid being outcompeted. However, the effects of deviations from perfect symmetry on soldier performance are not clear.
Collapse
|
7
|
Fernández MB, Bleidorn C, Calcaterra LA. Wolbachia Infection in Native Populations of the Invasive Tawny Crazy Ant Nylanderia fulva. FRONTIERS IN INSECT SCIENCE 2022; 2:905803. [PMID: 38468766 PMCID: PMC10926365 DOI: 10.3389/finsc.2022.905803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/06/2022] [Indexed: 03/13/2024]
Abstract
Antagonistic interactions can affect population growth and dispersal of an invasive species. Wolbachia are intracellular endosymbiont bacteria that infect arthropod and nematode hosts and are able to manipulate reproduction, which in some cases leads to cocladogenesis. Moreover, the presence of the strictly maternally transferred Wolbachia in a population can indirectly induce selective sweeps on the hosts' mitochondria. Ants have a Wolbachia infection rate of about 34%, which makes phylogenetic studies using mitochondrial markers vulnerable of being confounded by the effect of the endosymbiont. Nylanderia fulva is an invasive ant native to South America, considered a pest in the United States. Its distribution and biology are poorly known in its native range, and the taxonomic identity of this and its closely related species, Nylanderia pubens, has only recently been understood with the aid of molecular phylogenies. Aiming at estimating robust phylogenetic relationships of N. fulva in its native range, we investigated the presence and pattern of Wolbachia infection in populations of N. fulva from Argentina, part of its native range, to account for its possible effect on the host population structure. Using the ftsZ gene, 30 nests of N. fulva and four from sympatric Nylanderia species were screened for the presence of Wolbachia. We sequenced the MLST genes, the highly variable gene wsp, as well as glyQ, a novel target gene for which new primers were designed. Phylogeny of the ants was estimated using mtDNA (COI). We found supergroup A Wolbachia strains infecting 73% of N. fulva nests and two nests of Nylanderia sp. 1. Wolbachia phylogenetic tree inferred with MLST genes is partially congruent with the host phylogeny topology, with the exception of a lineage of strains shared by ants from different N. fulva clades. Furthermore, by comparing with Wolbachia sequences infecting other ants, we found that the strains infecting different N. fulva clades are not monophyletic. Our findings suggest there are three recent independent horizontally transmitted Wolbachia infections in N. fulva, and we found no evidence of influence of Wolbachia in the host mtDNA based phylogeny.
Collapse
Affiliation(s)
- María Belén Fernández
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christoph Bleidorn
- Animal Evolution and Biodiversity, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August-University Göttingen, Göttingen, Germany
| | - Luis Alberto Calcaterra
- Fundación para el Estudio de Especies Invasivas (FuEDEI), Hurlingham, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
8
|
Shults P, Eyer PA, Moran M, Chura M, Ko A, Vargo EL. Assessing colony elimination in multicolonial ants: Estimating field efficacy of insecticidal baits against the invasive dark rover ant (Brachymyrmex patagonicus). PEST MANAGEMENT SCIENCE 2022; 78:2250-2257. [PMID: 35212165 DOI: 10.1002/ps.6849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND A frequent goal of pest management strategies targeting social insects is total colony elimination. Insecticidal baits are highly effective at controlling social insect pests, although their ability to provide total colony elimination has only been well studied in a few species. Genetically testing colony elimination in many urban pest ants can be challenging due to indistinct colony boundaries observed in unicolonial, invasive species; however, some pest ants, such as the dark rover ant (Brachymyrmex patagonicus), maintain strict colony borders through aggression towards non-nestmates. Each of these distinct colonies can be identified using molecular markers, allowing for the tracking of individual colonies pre- and post-treatment to measure colony density. While counting the number of foraging workers to assess treatment efficacy may suffice in some cases, it offers little insight into the colony-level impacts of a treatment. RESULTS Using microsatellite markers, distinct rover ant colonies were identified and tracked around residential structures before and after the application of an imidacloprid bait. The number of foraging ants at the treated structures was reduced by an average of 83.0% over a 28-day observation period. Baiting also significantly reduced the total number of colonies present. At the treatment structures, only ~25% of the original colonies remained at the end of the study. Colonies with foraging trails <1.5 m from a bait station had a higher chance of being eliminated. CONCLUSION Using insecticidal baits against B. patagonicus can be highly effective at colony elimination; however, with such small foraging ranges and high colony densities, proper placement is required to ensure enough bait is properly positioned to treat all colonies affecting a structure. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Phillip Shults
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Pierre-Andre Eyer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Megan Moran
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Madeleine Chura
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
9
|
LeBrun EG, Jones M, Plowes RM, Gilbert LE. Pathogen-mediated natural and manipulated population collapse in an invasive social insect. Proc Natl Acad Sci U S A 2022; 119:e2114558119. [PMID: 35344435 PMCID: PMC9168452 DOI: 10.1073/pnas.2114558119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 02/07/2022] [Indexed: 11/18/2022] Open
Abstract
SignificanceInvasive social insects are among the most damaging of invasive organisms and have proved universally intractable to biological control. Despite this, populations of some invasive social insects collapse from unknown causes. We report long-term studies demonstrating that infection by a microsporidian pathogen causes populations of a globally significant invasive ant to collapse to local extinction, providing a mechanistic understanding of a pervasive phenomenon in biological invasions: the collapse of established populations from endogenous factors. We apply this knowledge and successfully eliminate two large, introduced populations of these ants. More broadly, microsporidian pathogens should be evaluated for control of other supercolonial invasive social insects. Diagnosing the cause of unanticipated population collapse in invasive organisms can lead to applied solutions.
Collapse
Affiliation(s)
- Edward G. LeBrun
- Brackenridge Field Laboratory, Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78703
| | - Melissa Jones
- Texas Parks and Wildlife Department, Estero Llano Grande State Park, Weslaco, TX 78596
| | - Robert M. Plowes
- Brackenridge Field Laboratory, Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78703
| | - Lawrence E. Gilbert
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78701
| |
Collapse
|
10
|
Differential Selection on Caste-Associated Genes in a Subterranean Termite. INSECTS 2022; 13:insects13030224. [PMID: 35323522 PMCID: PMC8955789 DOI: 10.3390/insects13030224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/18/2022] [Accepted: 02/23/2022] [Indexed: 11/29/2022]
Abstract
Analyzing the information-rich content of RNA can help uncover genetic events associated with social insect castes or other social polymorphisms. Here, we exploit a series of cDNA libraries previously derived from whole-body tissue of different castes as well as from three behaviourally distinct populations of the Eastern subterranean termite Reticulitermes flavipes. We found that the number (~0.5 M) of single nucleotide variants (SNVs) was roughly equal between nymph, worker and soldier caste libraries, but dN/dS (ratio of nonsynonymous to synonymous substitutions) analysis suggested that some of these variants confer a caste-specific advantage. Specifically, the dN/dS ratio was high (~4.3) for genes expressed in the defensively specialized soldier caste, relative to genes expressed by other castes (~1.7−1.8) and regardless of the North American population (Toronto, Raleigh, Boston) from which the castes were sampled. The populations, meanwhile, did show a large difference in SNV count but not in the manner expected from known demographic and behavioural differences; the highly invasive unicolonial population from Toronto was not the least diverse and did not show any other unique substitution patterns, suggesting any past bottleneck associated with invasion or with current unicoloniality has become obscured at the RNA level. Our study raises two important hypotheses relevant to termite sociobiology. First, the positive selection (dN/dS > 1) inferred for soldier-biased genes is presumably indirect and of the type mediated through kin selection, and second, the behavioural changes that accompany some social insect urban invasions (i.e., ‘unicoloniality’) may be detached from the loss-of-diversity expected from invasion bottlenecks.
Collapse
|
11
|
Lei J, Tan Y, List F, Puckett R, Tarone AM, Vargo EL, Zhu-Salzman K. Cloning and Functional Characterization of a Double-Stranded RNA-Degrading Nuclease in the Tawny Crazy Ant (Nylanderia fulva). Front Physiol 2022; 13:833652. [PMID: 35153841 PMCID: PMC8836465 DOI: 10.3389/fphys.2022.833652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 01/07/2022] [Indexed: 11/13/2022] Open
Abstract
RNA interference is a powerful tool that post-transcriptionally silences target genes. However, silencing efficacy varies greatly among different insect species. Recently, we attempted to knock down some housekeeping genes in the tawny crazy ant (Nylanderia fulva), a relatively new invasive species in the southern United States, but only achieved relatively low silencing efficiency when dsRNA was orally administered. Here, we detected divalent cation-dependent, dsRNA-degrading activity in the midgut fluid of worker ants in ex vivo assays. To determine whether dsRNA degradation could contribute to low effectiveness of oral RNAi in N. fulva, we cloned its sole dsRNase gene (NfdsRNase). The deduced amino acid sequence contained a signal peptide and an endonuclease domain. Sequence alignment indicated a high degree of similarity with well-characterized dsRNases, particularly the six key residues at active sites. We also identified dsRNase homologs from five other ant species and found a tight phylogenetic relationship among ant dsRNases. NfdsRNase is expressed predominantly in the abdomen of worker ants. Oral delivery of dsRNA of NfdsRNase significantly reduced the expression of NfdsRNase transcripts, and substantially suppressed dsRNA-degrading activity of worker ants’ midgut fluids as well. Our data suggest that dsRNA stability in the alimentary tract is an important factor for gene silencing efficiency in N. fulva, and that blocking NfdsRNase in gut lumen could potentially improve RNAi, a novel pest management tactic in control of N. fulva and other ant species.
Collapse
Affiliation(s)
- Jiaxin Lei
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Yongan Tan
- Department of Entomology, Texas A&M University, College Station, TX, United States
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fabian List
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Robert Puckett
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Aaron M. Tarone
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Edward L. Vargo
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, United States
- *Correspondence: Keyan Zhu-Salzman,
| |
Collapse
|
12
|
Kjeldgaard MK, Eyer PA, McMichael CC, Bockoven AA, King JT, Hyodo A, Boutton TW, Vargo EL, Eubanks MD. Distinct colony boundaries and larval discrimination in polygyne red imported fire ants (Solenopsis invicta). Mol Ecol 2021; 31:1007-1020. [PMID: 34747530 DOI: 10.1111/mec.16264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
Evaluating the factors that promote invasive ant abundance is critical to assess their ecological impact and inform their management. Many invasive ant species show reduced nestmate recognition and an absence of boundaries between unrelated nests, which allow populations to achieve greater densities due to reduced intraspecific competition. We examined nestmate discrimination and colony boundaries in introduced populations of the red imported fire ant (Solenopsis invicta; hereafter, fire ant). Fire ants occur in two social forms: monogyne (colonies with a single egg-laying queen) and polygyne (colonies with multiple egg-laying queens). In contrast with monogyne nests, polygyne nests are thought to be interconnected due to the reduced antagonism between non-nestmate polygyne workers, perhaps because polygyne workers habituate the colony to an odour unique to Gp-9b -carrying adults. However, colony boundaries and nestmate discrimination are poorly documented, particularly for worker-brood interactions. To delimit boundaries between field colonies, we correlated the exchange of a 15 N-glycine tracer dissolved in a sucrose solution with social form. We also evaluated nestmate discrimination between polygyne workers and larvae in the laboratory. Counter to our expectations, polygyne colonies behaved identically to monogyne colonies, suggesting both social forms maintain strict colony boundaries. Polygyne workers also preferentially fed larval nestmates and may have selectively cannibalized non-nestmates. The levels of relatedness among workers in polygyne colonies was higher than those previously reported in North America (mean ± standard error: 0.269 ± 0.037). Our study highlights the importance of combining genetic analyses with direct quantification of resource exchange to better understand the factors influencing ant invasions.
Collapse
Affiliation(s)
| | - Pierre-André Eyer
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Collin C McMichael
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Alison A Bockoven
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Joanie T King
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Ayumi Hyodo
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| | - Thomas W Boutton
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, USA
| | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Micky D Eubanks
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
13
|
Blumenfeld AJ, Eyer PA, Helms AM, Buczkowski G, Vargo EL. Consistent signatures of urban adaptation in a native, urban invader ant Tapinoma sessile. Mol Ecol 2021; 31:4832-4850. [PMID: 34551170 DOI: 10.1111/mec.16188] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/11/2021] [Accepted: 09/15/2021] [Indexed: 11/29/2022]
Abstract
Biological invasions are becoming more prevalent due to the rise of global trade and expansion of urban areas. Ants are among the most prolific invaders with many exhibiting a multiqueen colony structure, dependent colony foundation and reduced internest aggression. Although these characteristics are generally associated with the invasions of exotic ants, they may also facilitate the spread of native ants into novel habitats. Native to diverse habitats across North America, the odorous house ant Tapinoma sessile has become abundant in urban environments throughout the United States. Natural colonies typically have a small workforce, inhabit a single nest, and are headed by a single queen, whereas urban colonies tend to be several orders of magnitude larger, inhabit multiple nests (i.e., polydomy) and are headed by multiple queens (i.e., polygyny). Here, we explore and compare the population genetic and breeding structure of T. sessile within and between urban and natural environments in several localities across its distribution range. We found the social structure of a colony to be a plastic trait in both habitats, although extreme polygyny was confined to urban habitats. Additionally, polydomous colonies were only present in urban habitats, suggesting T. sessile can only achieve supercoloniality within urbanized areas. Finally, we identified strong differentiation between urban and natural populations in each locality and continent-wide, indicating cities may restrict gene flow and exert intense selection pressure. Overall, our study highlights urbanization's influence in charting the evolutionary course for species.
Collapse
Affiliation(s)
| | - Pierre-André Eyer
- Department of Entomology, TAMU, Texas A&M University, College Station, Texas, USA
| | - Anjel M Helms
- Department of Entomology, TAMU, Texas A&M University, College Station, Texas, USA
| | | | - Edward L Vargo
- Department of Entomology, TAMU, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
14
|
Putri D, Yokozawa M, Yamanaka T, Cronin AL. Trait Plasticity among Invasive Populations of the Ant Technomyrmex brunneus in Japan. Animals (Basel) 2021; 11:ani11092702. [PMID: 34573668 PMCID: PMC8465827 DOI: 10.3390/ani11092702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/02/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Invasive ants are a global economic and ecological problem. Understanding what makes them tick is thus an active area of scientific research. Many invasive ant species form large networks of inter-connected colonies (‘supercolonies’) which can span many hundreds of kilometres. Supercolonies are typically a characteristic of invasive populations, and studies have also identified shifts in other traits including diet in invasive populations compared to populations in the native range. This suggests that the ability to plastically change behaviour in this way may facilitate invasiveness. In this study, we assess trait plasticity in the invasive range of the ant Technomyrmex brunneus. This species is native to southern Asia and has invaded many islands of the southern Japanese archipelago, allowing us to compare traits among different invasive populations. We find a supercolony in one of the three invasive populations studied, though interestingly, this population did not show the expected pattern of lower genetic diversity. The supercolony population did differ in diet compared to other populations. While it is unclear if variation in these traits is linked, our findings add weight to arguments that plasticity is important in facilitating invasiveness. Abstract Characters in invasive populations often differ from those in the native range, and the ability to express different characters may enhance invasive potential. Ants are among the most pervasive and damaging invasive species, by virtue of their transportability and broad-ranging ecological interactions. Their success is often attributed to the ability to exhibit different characteristics in invasive populations, including the formation of large, unicolonial associations (‘supercolonies’). It remains unclear, however, if such characteristics are a product or cause of the ecological dominance of invasive ants, and the advancement of our understanding has likely been restrained by the fact that studies to date have focused on a few globally important species with well-established invasions. In this study, we take advantage of an ongoing invasion of the tramp ant Technomyrmex brunneus in Japan to assess trait plasticity in the invasive range of this species. We find evidence for plasticity in social structure among island populations, with a supercolony evident on one of the three islands studied. Interestingly, we found no evidence of lower genetic diversity in this population, though natural isotope data indicate it was operating at a lower trophic level than other populations. These findings add weight to arguments that invasive species may benefit from the capacity to adaptively mould themselves to new ecological contexts.
Collapse
Affiliation(s)
- Diyona Putri
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; (M.Y.); (A.L.C.)
- Correspondence:
| | - Masanori Yokozawa
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; (M.Y.); (A.L.C.)
| | - Toshiro Yamanaka
- School of Marine Resource and Environment, Tokyo University of Marine Science and Technology, 4-5-7 Konan, Minato-ku, Tokyo 108-8477, Japan;
| | - Adam L. Cronin
- Department of Biology, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan; (M.Y.); (A.L.C.)
| |
Collapse
|
15
|
Sugar is an ant’s best friend? Testing food web theory predictions about trophic position and abundance in an invasive ant (Nylanderia fulva). Biol Invasions 2021. [DOI: 10.1007/s10530-021-02627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Eyer PA, Vargo EL. Breeding structure and invasiveness in social insects. CURRENT OPINION IN INSECT SCIENCE 2021; 46:24-30. [PMID: 33549724 DOI: 10.1016/j.cois.2021.01.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/15/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Plasticity in life history traits is commonly used to explain the invasion success of social insects. While intraspecific plasticity is often recognized, interspecific variability is easily overlooked, whereby different species exhibit different strategies. The presence of many queens per colony and the collapse of colony boundaries have favored invasiveness for many ant species. However, these strategies are absent from other successful social invaders. Here, we report that various life-history traits may differentially enhance the invasion success in social insects. We suggest that other aspects of their breeding system, like asexual reproduction, intranidal mating and pre-adaptation to inbreeding may enhance their invasion success. Thorough comparative studies between native and introduced populations or studies of closely related species will help identify additional traits favoring the invasion success of social insects, and ultimately provide a more comprehensive picture of the evolutionary factors enhancing invasiveness across this phylogenetically and ecologically diverse group.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA.
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, 77843-2143, USA
| |
Collapse
|
17
|
Hagan T, Gloag R. Founder effects on sex determination systems in invasive social insects. CURRENT OPINION IN INSECT SCIENCE 2021; 46:31-38. [PMID: 33610774 DOI: 10.1016/j.cois.2021.02.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Invasive populations are often established from a small number of individuals, and thus have low genetic diversity relative to native-range populations. Social ants, bees and wasps (social Hymenoptera) should be vulnerable to such founder effects on genetic diversity because sex in these species is determined genetically via Complementary Sex Determination (CSD). Under CSD, individuals homozygous at one or more critical sex loci are inviable or develop as infertile diploid males. Low diversity at sex loci leads to increased homozygosity and diploid male production, increasing the chance of colony death. In this review, we identify behavioral, social and reproductive traits that preserve allele richness at sex loci, allow colonies to cope with diploid male production, and eventually restore sex allele diversity in invasive populations of social Hymenoptera that experience founding bottlenecks.
Collapse
Affiliation(s)
- Thomas Hagan
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | - Rosalyn Gloag
- Behaviour, Ecology and Evolution Lab, School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia.
| |
Collapse
|
18
|
Development of a Set of Microsatellite Markers to Investigate Sexually Antagonistic Selection in the Invasive Ant Nylanderia fulva. INSECTS 2021; 12:insects12070643. [PMID: 34357303 PMCID: PMC8306888 DOI: 10.3390/insects12070643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 11/23/2022]
Abstract
Simple Summary The two sexes of a species usually exhibit phenotypic differences, such as in behavior, body size or color. They, however, share most of their genomes, preventing fixation of distinct alleles for genes coding for those traits in each sex. The different optima between the sexes on these loci lead to genomic conflicts, called sexually antagonistic selection (SAS). Under SAS, distinct alleles are therefore selected in each sex. In the invasive tawny crazy ant, Nylanderia fulva, a genomic region is under SAS, while the rest of the genome is randomly selected in males and females. Here, we provide a suite of 15 polymorphic microsatellite markers located in the SAS genomic region to study the origin and evolution of SAS in N. fulva. These markers have allelic frequencies that are highly different between males and females. All males carry only a subset of the alleles present in the population, while females are reliably heterozygous, with one allele from the male gene pool and a different allele inherited from their mother. The SAS markers may be used to test for the strength and the extent of the genomic regions under SAS in both the native and introduced ranges of N. fulva. These markers may serve to answer similar questions in other introduced species of the Nylanderia genus, yielding insights into the origin and evolution of SAS within and among species of the genus Nylanderia. Abstract Sexually antagonistic selection (SAS) occurs when distinct alleles are differentially selected in each sex. In the invasive tawny crazy ant, Nylanderia fulva, a genomic region is under SAS, while the rest of the genome is randomly selected in males and females. In this study, we designed a suite of 15 microsatellite markers to study the origin and evolution of SAS in N. fulva. These SAS markers were polymorphic, with allelic frequencies that are highly different between males and females. All haploid males carry only a subset of the alleles present in the population, while females are reliably heterozygous, with one allele from the male gene pool and a different allele inherited from their mother. In addition, we identified six polymorphic markers not associated with SAS and six markers yielding consistent, yet monomorphic, amplification in the introduced range of this species. Reaction condition optimizations allowed all retained markers to be co-amplified in four PCR mixes. The SAS markers may be used to test for the strength and the extent of the genomic regions under SAS in both the native and introduced ranges of N. fulva, while the set of non-SAS loci may be used to assess the invasion route of this species. Overall, the application of these microsatellite markers will yield insights into the origin and evolution of SAS within and among species of the genus Nylanderia.
Collapse
|
19
|
Eyer PA, Blumenfeld AJ, Johnson LNL, Perdereau E, Shults P, Wang S, Dedeine F, Dupont S, Bagnères AG, Vargo EL. Extensive human-mediated jump dispersal within and across the native and introduced ranges of the invasive termite Reticulitermes flavipes. Mol Ecol 2021; 30:3948-3964. [PMID: 34142394 DOI: 10.1111/mec.16022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 12/29/2022]
Abstract
As native ranges are often geographically structured, invasive species originating from a single source population only carry a fraction of the genetic diversity present in their native range. The invasion process is thus often associated with a drastic loss of genetic diversity resulting from a founder event. However, the fraction of diversity brought to the invasive range may vary under different invasion histories, increasing with the size of the propagule, the number of reintroduction events, and/or the total genetic diversity represented by the various source populations in a multiple-introduction scenario. In this study, we generated a SNP data set for the invasive termite Reticulitermes flavipes from 23 native populations in the eastern United States and six introduced populations throughout the world. Using population genetic analyses and approximate Bayesian computation random forest, we investigated its worldwide invasion history. We found a complex invasion pathway with multiple events out of the native range and bridgehead introductions from the introduced population in France. Our data suggest that extensive long-distance jump dispersal appears common in both the native and introduced ranges of this species, probably through human transportation. Overall, our results show that similar to multiple introduction events into the invasive range, admixture in the native range prior to invasion can potentially favour invasion success by increasing the genetic diversity that is later transferred to the introduced range.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA
| | | | - Laura N L Johnson
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA.,Department of Veterinary Sciences, University of Wyoming, Laramie, WY, USA
| | | | - Phillip Shults
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA
| | - Shichen Wang
- Texas A&M Agrilife Genomics and Bioinformatics Service, College Station, TX, USA
| | | | - Simon Dupont
- IRBI, UMR 7261 CNRS-Université de Tours, Tours, France
| | - Anne-Geneviève Bagnères
- IRBI, UMR 7261 CNRS-Université de Tours, Tours, France.,CEFE, CNRS, Univ Montpellier, Univ Paul Valéry Montpellier, Montpellier, France
| | - Edward L Vargo
- Department of Entomology, 2143 TAMU, Texas A&M University, College Station, TX, USA
| |
Collapse
|
20
|
Eyer P, Shults PT, Chura MR, Moran MN, Thompson MN, Helms AM, Saran RK, Vargo EL. Divide and conquer: Multicolonial structure, nestmate recognition, and antagonistic behaviors in dense populations of the invasive ant Brachymyrmex patagonicus. Ecol Evol 2021; 11:4874-4886. [PMID: 33976855 PMCID: PMC8093738 DOI: 10.1002/ece3.7396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 02/01/2023] Open
Abstract
The ecological success of ants has made them abundant in most environments, yet inter- and intraspecific competition usually limit nest density for a given population. Most invasive ant populations circumvent this limitation through a supercolonial structure, eliminating intraspecific competition through a loss of nestmate recognition and lack of aggression toward non-nestmates. Native to South America, Brachymyrmex patagonicus has recently invaded many locations worldwide, with invasive populations described as extremely large and dense. Yet, in contrast with most invasive ants, this species exhibits a multicolonial structure, whereby each colony occupies a single nest. Here, we investigated the interplay between genetic diversity, chemical recognition, and aggressive behaviors in an invasive population of B. patagonicus. We found that, in its invasive range, this species reaches a high nest density with individual colonies located every 2.5 m and that colony boundaries are maintained through aggression toward non-nestmates. This recognition and antagonism toward non-nestmates is mediated by chemical differentiation between colonies, as different colonies exhibit distinct chemical profiles. We highlighted that the level of aggression between colonies is correlated with their degree of genetic difference, but not their overall chemical differentiation. This may suggest that only a few chemical compounds influence nestmate recognition in this species or that weak chemical differences are sufficient to elicit aggression. Overall, this study demonstrates that invasive ant populations can reach high densities despite a multicolonial structure with strong aggression between colonies, raising questions about the factors underlying their ecological success and mitigating negative consequences of competitive interactions.
Collapse
Affiliation(s)
| | | | | | - Megan N. Moran
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| | | | - Anjel M. Helms
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| | - Raj K. Saran
- Bayer Environmental SciencesCollege StationTXUSA
| | - Edward L. Vargo
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
21
|
Eyer PA, Vargo EL, Peeters C. One tree, many colonies: colony structure, breeding system and colonization events of host trees in tunnelling Melissotarsus ants. Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
Ants exhibit a striking variety of lifestyles, including highly specialist or mutualist species. The minute blind workers of the African genus Melissotarsus chew tunnels in live trees to accommodate their obligate partner scale insects. Their modified legs are adapted for tunnelling, but are unsuited for walking outside, confining these ants to their initial host tree. Here, we investigated whether this unique lifestyle results in complex patterns of genetic diversity at different scales, from the same tree to different populations. Using 19 microsatellite markers, we assessed their mating strategy and colony structure among and across populations in South Africa. We showed that only one queen reproduces within a colony, mated with up to three males. However, several inseminated dealate queens are present in colonies; one probably replaces the older queen as the colony ages. The reproduction of a single queen per colony at a given time results in genetic differences between colonies, even those located on the same tree. We discuss how the slow process of colony digging under the bark and the lack of workers patrolling above the bark might result in reduced competition between colonies and allow several secluded colonies to cohabit the cramped space on a single tree.
Collapse
Affiliation(s)
- Pierre-André Eyer
- Department of Entomology, Texas A&M University, College Station, TXUSA
| | - Edward L Vargo
- Department of Entomology, Texas A&M University, College Station, TXUSA
| | - Christian Peeters
- Institut d’Écologie et des Sciences de l’Environnement, CNRS, Sorbonne Université, Paris, France
| |
Collapse
|
22
|
Eyer P, Espinoza EM, Blumenfeld AJ, Vargo EL. The underdog invader: Breeding system and colony genetic structure of the dark rover ant ( Brachymyrmex patagonicus Mayr). Ecol Evol 2020; 10:493-505. [PMID: 31993123 PMCID: PMC6972842 DOI: 10.1002/ece3.5917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/18/2019] [Indexed: 01/19/2023] Open
Abstract
Ants are among the most successful species at invading new environments. Their success undeniably comes from their various modes of reproduction and colony breeding structures, which influence their dispersal ability, reproductive potential, and foraging strategies. Almost all invasive ant species studied so far form supercolonies, a dense network of interconnected nests comprising numerous queens, without aggression toward non-nestmates. This strategy results in invasive colonies that are able to grow extremely fast and large while avoiding intraspecific competition, allowing them to monopolize environmental resources and outcompete native species. Here, we developed and used 10 microsatellite markers to investigate the population structure and breeding system of the dark rover ant Brachymyrmex patagonicus Mayr in its introduced range. We determined whether this species exhibits a supercolonial structure by assessing whether different nests belonged to the same genetic colony. We inferred its dispersal ability by investigating isolation by distance and estimated the numbers of queens per colonies and mating per queen through parent-offspring inferences. We found that most of the colonies of B. patagonicus were comprised of a single nest, headed by a single queen. Each nest was distinct from one another, without isolation by distance, which suggests strong dispersal ability through nuptial flights. These features are commonly observed in noninvasive and native ant species, but they are surprising for a successful invasive ant, as they strongly differ from other invasive ants. Overall, we discuss how this seemingly unfavorable strategy for an invasive ant might favor the invasive success of the dark rover ant in the United States.
Collapse
Affiliation(s)
| | - Elida M. Espinoza
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
- EnviroFlight, LLCYellow SpringsOHUSA
| | | | - Edward L. Vargo
- Department of EntomologyTexas A&M UniversityCollege StationTXUSA
| |
Collapse
|
23
|
Hsu HW, Chiu MC, Lee CC, Lee CY, Yang CCS. The Association between Virus Prevalence and Intercolonial Aggression Levels in the Yellow Crazy Ant, Anoplolepis Gracilipes (Jerdon). INSECTS 2019; 10:insects10120436. [PMID: 31817209 PMCID: PMC6956197 DOI: 10.3390/insects10120436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 01/30/2023]
Abstract
The recent discovery of multiple viruses in ants, along with the widespread infection of their hosts across geographic ranges, provides an excellent opportunity to test whether viral prevalence in the field is associated with the complexity of social interactions in the ant population. In this study, we examined whether the association exists between the field prevalence of a virus and the intercolonial aggression of its ant host, using the yellow crazy ant (Anoplolepis gracilipes) and its natural viral pathogen (TR44839 virus) as a model system. We delimitated the colony boundary and composition of A. gracilipes in a total of 12 study sites in Japan (Okinawa), Taiwan, and Malaysia (Penang), through intercolonial aggression assay. The spatial distribution and prevalence level of the virus was then mapped for each site. The virus occurred at a high prevalence in the surveyed colonies of Okinawa and Taiwan (100% infection rate across all sites), whereas virus prevalence was variable (30%–100%) or none (0%) at the sites in Penang. Coincidentally, colonies in Okinawa and Taiwan displayed a weak intercolonial boundary, as aggression between colonies is generally low or moderate. Contrastingly, sites in Penang were found to harbor a high proportion of mutually aggressive colonies, a pattern potentially indicative of complex colony composition. Our statistical analyses further confirmed the observed correlation, implying that intercolonial interactions likely contribute as one of the effective facilitators of/barriers to virus prevalence in the field population of this ant species.
Collapse
Affiliation(s)
- Hung-Wei Hsu
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| | - Ming-Chung Chiu
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan;
| | - Ching-Chen Lee
- Center for Ecology and Environment, Department of Life Science, Tunghai University, Taichung 40704, Taiwan;
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA;
| | - Chin-Cheng Scotty Yang
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Correspondence: ; Tel.: +81-70-4144-2823
| |
Collapse
|
24
|
Zhang YM, Vitone TR, Storer CG, Payton AC, Dunn RR, Hulcr J, McDaniel SF, Lucky A. From Pavement to Population Genomics: Characterizing a Long-Established Non-native Ant in North America Through Citizen Science and ddRADseq. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
25
|
Ritualized aggressive behavior reveals distinct social structures in native and introduced range tawny crazy ants. PLoS One 2019; 14:e0225597. [PMID: 31756233 PMCID: PMC6874334 DOI: 10.1371/journal.pone.0225597] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/07/2019] [Indexed: 11/19/2022] Open
Abstract
How workers within an ant colony perceive and enforce colony boundaries is a defining biological feature of an ant species. Ants fall along a spectrum of social organizations ranging from single-queen, single nest societies to species with multi-queen societies in which workers exhibit colony-specific, altruistic behaviors towards non-nestmate workers from distant locations. Defining where an ant species falls along this spectrum is critical for understanding its basic ecology. Herein we quantify queen numbers, describe intraspecific aggression, and characterize the distribution of colony sizes for tawny crazy ant (Nylanderia fulva) populations in native range areas in South America as well as in their introduced range in the Southeastern United States. In both ranges, multi-queen nests are common. In the introduced range, aggressive behaviors are absent at all spatial scales tested, indicating that within the population in the Southeastern United States N. fulva is unicolonial. However, this contrasts strongly with intraspecific aggression in its South American native range. In the native range, intraspecific aggression between ants from different nests is common and ritualized. Aggression is typically one-sided and follows a stereotyped sequence of escalating behaviors that stops before actual fighting occurs. Spatial patterns of non-aggressive nest aggregation and the transitivity of non-aggressive interactions demonstrate that results of neutral arena assays usefully delineate colony boundaries. In the native range, both the spatial extent of colonies and the average number of queens encountered per nest differ between sites. This intercontinental comparison presents the first description of intraspecific aggressive behavior for this invasive ant and characterizes the variation in colony organization in the native-range, a pre-requisite to a full understanding of the origins of unicoloniality in its introduced range.
Collapse
|
26
|
Sexually antagonistic selection promotes genetic divergence between males and females in an ant. Proc Natl Acad Sci U S A 2019; 116:24157-24163. [PMID: 31719204 DOI: 10.1073/pnas.1906568116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetic diversity acts as a reservoir for potential adaptations, yet selection tends to reduce this diversity over generations. However, sexually antagonistic selection (SAS) may promote diversity by selecting different alleles in each sex. SAS arises when an allele is beneficial to one sex but harmful to the other. Usually, the evolution of sex chromosomes allows each sex to independently reach different optima, thereby circumventing the constraint of a shared autosomal genome. Because the X chromosome is found twice as often in females than males, it represents a hot spot for SAS, offering a refuge for recessive male-beneficial but female-costly alleles. Hymenopteran species do not have sex chromosomes; females are diploid and males are haploid, with sex usually determined by heterozygosity at the complementary sex-determining locus. For this reason, their entire genomes display an X-linked pattern, as every chromosome is found twice as often in females than in males, which theoretically predisposes them to SAS in large parts of their genome. Here we report an instance of sexual divergence in the Hymenoptera, a sexually reproducing group that lacks sex chromosomes. In the invasive ant Nylanderia fulva, a postzygotic SAS leads daughters to preferentially carry alleles from their mothers and sons to preferentially carry alleles from their grandfathers for a substantial region (∼3%) of the genome. This mechanism results in nearly all females being heterozygous at these regions and maintains diversity throughout the population, which may mitigate the effects of a genetic bottleneck following introduction to an exotic area and enhance the invasion success of this ant.
Collapse
|