1
|
Nelson HV, Georges A, Farquharson KA, McLennan EA, DeGabriel JL, Belov K, Hogg CJ. A Genomic-Based Workflow for eDNA Assay Development for a Critically Endangered Turtle, Myuchelys georgesi. Ecol Evol 2025; 15:e70798. [PMID: 39781257 PMCID: PMC11707621 DOI: 10.1002/ece3.70798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Environmental DNA (eDNA) analysis has become a popular conservation tool for detecting rare and elusive species. eDNA assays typically target mitochondrial DNA (mtDNA) due to its high copy number per cell and its ability to persist in the environment longer than nuclear DNA. Consequently, the development of eDNA assays has relied on mitochondrial reference sequences available in online databases, or in cases where such data are unavailable, de novo DNA extraction and sequencing of mtDNA. In this study, we designed eDNA primers for the critically endangered Bellinger River turtle (Myuchelys georgesi) using a bioinformatically assembled mitochondrial genome (mitogenome) derived from a reference genome. We confirmed the accuracy of this assembled mitogenome by comparing it to a Sanger-sequenced mitogenome of the same species, and no base pair mismatches were detected. Using the bioinformatically extracted mitogenome, we designed two 20 bp primers that target a 152-base-pair-long fragment of the cytochrome oxidase 1 (CO1) gene and a 186-base-pair-long fragment of the cytochrome B (CytB) gene. Both primers were successfully validated in silico, in vitro, and in situ.
Collapse
Affiliation(s)
- Holly V. Nelson
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Arthur Georges
- Institute for Applied EcologyUniversity of CanberraBruceAustralian Capital TerritoryAustralia
| | - Katherine A. Farquharson
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNew South WalesAustralia
- NSW Department of Climate Change, The Environment, Energy and WaterParramattaNew South WalesAustralia
| | - Elspeth A. McLennan
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | - Jane L. DeGabriel
- NSW Department of Climate Change, The Environment, Energy and WaterParramattaNew South WalesAustralia
| | - Katherine Belov
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| | - Carolyn J. Hogg
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein ScienceThe University of SydneySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Osathanunkul M, Suwannapoom C. A comparative study on eDNA-based detection of Siamese bat catfish (Oreoglanis siamensis) in wet and dry conditions. Sci Rep 2024; 14:8885. [PMID: 38632301 PMCID: PMC11024149 DOI: 10.1038/s41598-024-58752-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
The use of environmental DNA (eDNA) analysis has demonstrated notable efficacy in detecting the existence of freshwater species, including those that are endangered or uncommon. This application holds significant potential for enhancing environmental monitoring and management efforts. However, the efficacy of eDNA-based detection relies on several factors. In this study, we assessed the impact of rainfall on the detection of eDNA for the Siamese bat catfish (Oreoglanis siamensis). Quantitative polymerase chain reaction (qPCR) analysis indicated that samples from days with average rainfall exceeding 35 mm (classified as heavy and very heavy rain) yielded negative results. While eDNA detection remains feasible on light or moderate rainy days, a noteworthy reduction in eDNA concentration and qPCR-positive likelihood was observed. Analysis across 12 sampling sites established a statistically significant negative relationship (p < 0.001) between eDNA detection and rainfall. Specifically, for each 1 mm increase in rainfall, there was an observed drop in eDNA concentration of 0.19 copies/mL (±0.14). The findings of this study provide definitive evidence that precipitation has a significant impact on the detection of eDNA in Siamese bat catfish. However, in the case of adverse weather conditions occurring on the day of sampling, our research indicates that it is acceptable to continue with the task, as long as the rainfall is not heavy or very heavy. To enhance the effectiveness of an eDNA survey, it is crucial to consider many factors related to climatic conditions. The aforementioned factor holds significant importance not only for the specific species under scrutiny but also for the broader dynamics of the climate.
Collapse
Affiliation(s)
- Maslin Osathanunkul
- Department of Biology, Faculty of Science, Chiang Mai University, Muang District, Chiang Mai, Thailand.
| | - Chatmongkon Suwannapoom
- School of Agriculture and Natural Resources, University of Phayao, Muang District, Phayao, Thailand.
| |
Collapse
|
3
|
Hong X, Wang K, Ji L, Liu X, Yu L, Wei J, Wang Y, Wei C, Li W, Zhu X. Exploring the relationship between environmental DNA concentration and biomass in Asian giant softshell turtle ( Pelochelys cantorii). PeerJ 2023; 11:e16218. [PMID: 37810767 PMCID: PMC10559886 DOI: 10.7717/peerj.16218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 09/11/2023] [Indexed: 10/10/2023] Open
Abstract
In recent years, environmental DNA (eDNA) technology has become an accepted approach for investigating rare and endangered species because of its economic efficiency, high sensitivity, and non-invasiveness. The Asian giant softshell turtle (Pelochelys cantorii) is a first-class protected aquatic animal in China, and traditional resource survey methods have not identified its natural populations for many years. In this study, primers and a TaqMan probe targeting ND5 were designed, reaction conditions were optimized, a standard curve was constructed using synthetic DNA, and an eDNA quantitative PCR (qPCR) detection method was established. The eDNA detection technology for P. cantorii revealed that the number of species in the experimental pools showed a significant linear relationship with the eDNA concentration (p < 0.05). The eDNA concentration was negatively correlated with the length of time after the removal of P. cantorii and retention in the water body for 9 days. The qPCR detection method for P. cantorii eDNA established in this study can be applied to the qualitative detection of P. cantorii in water bodies, as well as to preliminary evaluation of its relative biomass. This can serve as a baseline for the investigation of natural P. cantorii population and the evaluation of its wild release effects.
Collapse
Affiliation(s)
- Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Kaikuo Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Liqin Ji
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Lingyun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jie Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yakun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| |
Collapse
|